Skip to main content

Correction to: Renormalized self-intersection local time of bifractional Brownian motion

The Original Article was published on 23 November 2018

1 Correction

In the publication of this article [1], there are five errors. They have now been corrected in this correction.

The error:

1. Page 2, line -2–Page 3, line 1 : “The Dirac delta function is formally

$$\begin{aligned} \delta(x)=\lim_{\varepsilon\rightarrow 0}p_{\varepsilon}(x)=(2 \pi)^{-d} \int_{\mathbb{R}^{d}}\exp \bigl\{ i\langle \xi,x\rangle \bigr\} \,d{\xi}, \end{aligned}$$


Should instead read:

  • “In order to give a rigorous meaning to \(L(H,K,T)\), we approximate the Dirac delta function by the heat kernel”.

  • Remark: equation number “(1.6)” in line 3 of Page 3 and line 10 of Page 4 isn’t affected by the error.

The error:

2. Page 8, line 7: “\(\lambda=\lambda_{1}:=(a+b)^{2HK}, \rho=\rho_{1}:=(b+c)^{2HK}\)

Should instead read:

\(2^{-K}(a+b)^{2HK}\leq\lambda=\lambda_{1}\leq2^{1-K}(a+b)^{2HK}, 2^{-K}(b+c)^{2HK}\leq\rho=\rho_{1}\leq2^{1-K}(b+c)^{2HK} \).

The error:

3. Page 8, line 12: “\(\lambda=\lambda_{2} :=(a+b+c)^{2HK}, \rho=\rho_{2}:=b^{2HK}\),”

Should instead read:

\(2^{-K}(a+ b+c )^{2HK}\leq\lambda=\lambda_{2}\leq2^{1-K}(a+b+c)^{2HK}, 2^{-K}b^{2HK}\leq\rho=\rho_{2} \leq2^{1-K}b^{2HK}\).

The error:

4. Page 8, line 18: “\(\lambda=\lambda_{3} :=a^{2HK}, \rho=\rho_{3}:=c^{2HK}\)

Should instead read:

\(2^{-K} a^{2HK}\leq\lambda=\lambda_{3}\leq2^{1-K}a^{2HK}, 2^{-K}c^{2HK}\leq\rho=\rho_{3}\leq2^{1-K}c^{2HK}\),.

The error:

5. Page 10, Line -4–Page 11, line 6. Should instead read:


$$\begin{aligned} \lambda_{1} \bar{c}+\rho_{1} \bar{a}\geq\frac{1}{2}( \bar{a}\bar{b}+\bar {b}\bar{c}+\bar{a}\bar{c}), \end{aligned}$$

when k is small enough, we have

$$\begin{aligned} \delta_{1}&\geq k \bigl[(\bar{a}+\bar{b})\bar{c}+(\bar{b}+\bar{c}) \bar{a} \bigr] \\ &\geq k \bigl[ \bigl({a}^{2HK}+{b}^{2HK} \bigr){c}^{2HK}+ \bigl({b}^{2HK}+{c}^{2HK} \bigr){a}^{2HK} \bigr] \\ &\geq k \bigl[(a+b)^{2HK}{c}^{2HK}+(b+c)^{2HK}{a}^{2HK} \bigr], \end{aligned}$$


  1. Chen, Z., Sang, L., Hao, X.: Renormalized self-intersection local time of bifractional Brownian motion. J. Inequal. Appl. 2018, 326 (2018).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Liheng Sang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The online version of the original article can be found under

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Sang, L. & Hao, X. Correction to: Renormalized self-intersection local time of bifractional Brownian motion. J Inequal Appl 2019, 21 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: