Correction to: Renormalized self-intersection local time of bifractional Brownian motion

Zhenlong Chen', Liheng Sang ${ }^{1,2^{*}}$ and Xiaozhen Hao'

*Correspondence:
Ihsang_math@163.com
${ }^{1}$ School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, China ${ }^{2}$ School of Mathematics and Finance, Chuzhou University, Chuzhou, China

1 Correction

In the publication of this article [1], there are five errors. They have now been corrected in this correction.
The error:

1. Page 2 , line -2-Page 3, line 1 : "The Dirac delta function is formally

$$
\begin{equation*}
\delta(x)=\lim _{\varepsilon \rightarrow 0} p_{\varepsilon}(x)=(2 \pi)^{-d} \int_{\mathbb{R}^{d}} \exp \{i\langle\xi, x\rangle\} d \xi, \tag{1.6}
\end{equation*}
$$

where"
Should instead read:
"In order to give a rigorous meaning to $L(H, K, T)$, we approximate the Dirac delta function by the heat kernel".
Remark: equation number "(1.6)" in line 3 of Page 3 and line 10 of Page 4 isn't affected by the error.
The error:
2. Page 8, line 7: " $\lambda=\lambda_{1}:=(a+b)^{2 H K}, \rho=\rho_{1}:=(b+c)^{2 H K}$ "

Should instead read:
$2^{-K}(a+b)^{2 H K} \leq \lambda=\lambda_{1} \leq 2^{1-K}(a+b)^{2 H K}, 2^{-K}(b+c)^{2 H K} \leq \rho=\rho_{1} \leq 2^{1-K}(b+c)^{2 H K}$.
The error:
3. Page 8, line 12: " $\lambda=\lambda_{2}:=(a+b+c)^{2 H K}, \rho=\rho_{2}:=b^{2 H K}$,"

Should instead read:
$2^{-K}(a+b+c)^{2 H K} \leq \lambda=\lambda_{2} \leq 2^{1-K}(a+b+c)^{2 H K}, 2^{-K} b^{2 H K} \leq \rho=\rho_{2} \leq 2^{1-K} b^{2 H K}$.
The error:
4. Page 8, line 18: " $\lambda=\lambda_{3}:=a^{2 H K}, \rho=\rho_{3}:=c^{2 H K "}$

Should instead read:
$2^{-K} a^{2 H K} \leq \lambda=\lambda_{3} \leq 2^{1-K} a^{2 H K}, 2^{-K} c^{2 H K} \leq \rho=\rho_{3} \leq 2^{1-K} c^{2 H K}$,.
The error:
5. Page 10, Line -4-Page 11, line 6. Should instead read:

Since

$$
\lambda_{1} \bar{c}+\rho_{1} \bar{a} \geq \frac{1}{2}(\bar{a} \bar{b}+\bar{b} \bar{c}+\bar{a} \bar{c}),
$$

when k is small enough, we have

$$
\begin{aligned}
\delta_{1} & \geq k[(\bar{a}+\bar{b}) \bar{c}+(\bar{b}+\bar{c}) \bar{a}] \\
& \geq k\left[\left(a^{2 H K}+b^{2 H K}\right) c^{2 H K}+\left(b^{2 H K}+c^{2 H K}\right) a^{2 H K}\right] \\
& \geq k\left[(a+b)^{2 H K} c^{2 H K}+(b+c)^{2 H K} a^{2 H K}\right],
\end{aligned}
$$

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 19 December 2018 Accepted: 19 December 2018 Published online: 24 January 2019

References

1. Chen, Z., Sang, L., Hao, X.: Renormalized self-intersection local time of bifractional Brownian motion. J. Inequal. Appl. 2018, 326 (2018). https://doi.org/10.1186/s13660-018-1916-3
