Ozcan Journal of Inequalities and Applications (2023) 2023:121 ® Journal of Inequalities and Applications
https://doi.org/10.1186/513660-023-03032-x a SpringerOpen Journal

RESEARCH Open Access
()]

Check for
updates

Hermite-Hadamard type inequalities for
multiplicatively p-convex functions

Serap Ozcan'"

“Correspondence:

serapozcan87@gmail.com; Abstract

serapozcan@klu.edu.tr . . T .
'Department of Mathematics In this paper, we introduced the concept of multiplicatively p-convex functions and
Faculty of Sciences and Arts, established Hermite-Hadamard type integral inequalities in the setting of

Kirklareli University, Kirklareli, Turkey multiplicative calculus for this newly created class of functions. We also gave integral

inequalities of Hermite-Hadamard type for product and quotient of multiplicatively
p-convex functions. Furthermore, we obtained novel multiplicative integral-based
inequalities for the product and quotient of convex and multiplicatively p-convex
functions. Additionally, we derived certain upper limits for this new class of functions.
The findings we proved are generalizations of the results in the literature. The results
obtained in this study may inspire further research in various scientific areas.

Mathematics Subject Classification: 26D15; 26A51

Keywords: Hermite-Hadamard inequality; Multiplicative calculus; Multiplicative
integrals

1 Introduction and preliminaries
The classical or usual convexity is defined as follows:

The function ¢ : [01,6;,] C R — R is said to be convex in the classical sense if

p(tse+ (1= 1t)y) <te(0) + (1 - )p(»)

for all »¢,y € [0;,0;] and £ € [0, 1]. The function ¢ is said to be concave if —¢ is convex.

Many studies have indicated that several inequalities can be derived from convex func-
tions. One of the most renowned inequalities that pertain to the integral mean of a convex
function is the Hermite-Hadamard inequality. This double inequality is stated as follows
(see, [1-3]).

Theorem 1.1 Let ¢ : I = [6;,6:] CR — R be an integrable convex function. Then

0, + 6 1 02 2 o
P 1+ 6, - / w(%)d%iﬁl’( 1)+ o( 2).
2 62— 61 Jo, 2

Both inequalities hold in the reversed direction if ¢ is concave.
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The Hermite-Hadamard inequality can be seen as a refinement of the concept of con-
vexity. Numerous researchers have been extensively investigated this concept since it was
independently discovered by Hermite in 1883 and Hadamard in 1896. In particular, over
the past two decades, many researchers have devoted their efforts to finding new bounds
for both the left- and right-hand sides of the Hermite-Hadamard inequality. Several stud-

ies have proposed novel approaches to enhance, improve, and extend this inequality.

2 Preliminaries
Now we present basic definitions and results, where I and < are intervals.
In [4], Iscan defined the concept of harmonically convexity and proved the Hermite—

Hadamard inequality for harmonically convex functions as following:

Definition 2.1 Let C R\ {0} be an interval. A function ¢ : I — R is said to be harmoni-
cally convex function if

7y
¢(m> < (1 -1t)e(s) +te(y)

forall sr,y €I, t € [0,1].

Theorem 2.1 Let ¢ : I C R\{0} — R be a harmonically convex function and 6,6, € I with
01 < 0. If ¢ € L[61,0,], then following inequalities hold:

( 20,6, ) _ 06 /92 00 4, - 900+ 96 W

61+92 - 92—91 0 22 2

Some recent results for Hermite—Hadamard inequalities for harmonically type convex

function can be seen in [5-8].

Definition 2.2 ([9]) LetI C (0, 00) be a real interval and p € R\ {0}. A function ¢ : I — R

is said to be a p-convex function if

([t + (1= 1y"]"™") < te(0) + (1 - ()
forall s,y e I and ¢ € [0, 1].

According to Definition (2.2), it is obvious that for p = 1 and p = —1, p-convexity reduces
to classical convexity and harmonically convexity of functions defined on I C (0, 00), re-
spectively.

In Theorem 5 of [10], if we take I C (0,00), p € R\ {0} and /k(¢) = ¢, then we have the
following theorem:

Theorem 2.2 Let ¢ : I C (0,00) — R be a p-convex function, p € R\ {0} and 6,,0, € I with
91 < 92. lfg[) (S] L[61,92], then

o1 +6; ’ p 2 (9(x) 01 + 6,
@ < / dx <ol — ).
2 05 — 07 Jo, \ 2P 2
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Definition 2.3 ([3]) A function ¢ : I — (0, 00) is said to be log or multiplicatively convex,
if

o(t7+ (1-1)y) < [0 [e )]
forall 5,y € Jand ¢ € [0,1].

2.1 Multiplicative calculus
Recall that the multiplicative integral, which is a type of integral that involves the prod-
uct of terms raised to certain powers, is represented by f;? (¢(»))?*, while the ordinary
integral, which is a type of integral that involves the sum of terms, is typically denoted
by fe (5¢)) ds«. Using distinct symbols helps to differentiate between these two types of
integrals.

There is the following relation between the Riemann integral and the multiplicative in-

tegral [11].

Proposition 2.1 If ¢ is Riemann integrable on [01,0,], then ¢ is multiplicative integrable
on [61,6,], and

62 0y
f (QD(%)) j In(p %'
%

1

In [11], Bashirov et al. show that multiplicative integral has the following results and
notations:

Proposition 2.2 Ify is positive and Riemann integrable on [61,0,], then ¢ is multiplicative
integrable on [61,0,] and

L [ (0GP = [2 (9 (o)),

2 fgl (w(mvf GNP = [ ()™ [ (W (),
b Jo2 ey

3 I GE Gt

4 [ (z))d% = [ G, [ (0™, 01 < 11 < 0.
5 [l =1and [;2(0()" = ([, (p(0))*) .
In [12], Ali et al. established the Hermite—Hadamard inequality for multiplicatively convex

functions in the setting of multiplicative calculus as follows:

Theorem 2.3 Let ¢ be a positive and multiplicatively convex function on [6,0,]. Then

02 ﬁ
g0(@) = <f (w(%))d") < G(p®), ¢(6),
01

where G(-,-) is the geometric mean.

One of the first studies of multiplicative calculus was made by [13] in the 1970s. Since
then, a number of interesting results has been obtained due to its many applications in
various fields. For example, in [14], Bashirov and Riza introduced complex multiplicative
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calculus. In [15] and [16], some properties of stochastic multiplicative calculus have been
studied. For some applications and other aspects of this discipline, (see [17-22]) and the
references cited therein.

3 Main results

In this section, we give a new definition, called multiplicatively p-convex function, and
obtain some Hermite-Hadamard type integral inequalities in the setting of multiplicative
calculus for multiplicatively p-convex and convex functions.

Definition 3.1 A nonnegative function ¢ : I — R is said to be multiplicatively p-convex
if

o[t + 1 -]") < [0 [e )] "™
holds for all s,y € I, t € [0,1] and p € R\ {0}.

Theorem 3.1 Let ¢ be a multiplicatively p-convex function on [61,0,]. Then

917 91’ é 0 ( ) ds gé’{gf
(D)) ewonon

Proof Note that

1
me([%52])

< t0p+(1—t9p+(1—t)9p+t9p:| )
=Ing

[
oo [

t0 +(1—t9" (1—t)9f+t9§r>
+
2

ASTE

)2 (o((1— 087 + 162)7)?]

= %lmp((té’f +(1 —t)@f)'l’) + %lngo(((l -1 + t@f)’l’).

<In[(p(e6) + (1-1)65)

Integrating the above inequality with respect to ¢ on [0, 1], we have

wl[%57T)

1

1 1 ! 1
5/ lnga((t@p+(1—t)0p)1’)dt+§/0 Ing(((1-1)67 + t65)?) dt

)
= pp p/ ln( (%)>d%,
91—92 0 %

which implies that

91’ 917 1 6o
lngp([g]p)f pp p/ ln((p(%)>d%.
2 0, —01 Jo, 1P
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Thus, we have

1 0
Y4 Y4 p 2 ¢(32)
<P(|:91 +06, ]p) <% Joy W iZp)d>

()

which gives the first inequality. Now, consider the second inequality

% [ () \“\ T
o, \ P

0 p_ P
B e(,fof ln(%)d;{) b=

P

061

p (929 9(s)
_ AT Jo (L) d>e

—eh ]nw((t9f+(1—t)0§)%)dt

< elo @O (@E) ) de

— eJo EnpO)+(1-1)Ing(®:)) dt

_ npe)p(02))/0 1)

= G(p(61), (62)).
So, the proof is completed. O
Remark 3.1 Choosing p =1 in Theorem 3.1, we get Theorem 5 in [12].

Corollary 3.1 Let ¢ and  be multiplicatively p-convex functions on [61,0,]. Then

oF + 0077 0r + 00 7»
(D))
B\ [ (YD EA

([ (=) [C5))

< G(p(61), 9(62)).G(¥ (61), ¥ (62)).

Proof Since ¢ and y are multiplicatively p-convex functions, then ¢ is a multiplicatively
p-convex function. Thus, if we apply Theorem 3.1 to the function ¢, we obtain the de-
sired result. d

Remark 3.2 Choosing p =1 in Corollary 3.1, we get Theorem 7 in [12].

Corollary 3.2 Let ¢ and  be multiplicatively p-convex functions on [61,0,]. Then

- G(p(61), 9(62))
G (61), ¥ (62)

0P +of 11 602 1 9(30) \d p

o([(2527) <( o (575) ”)egef
P P — 6 %3

v M G

s



Ozcan Journal of Inequalities and Applications (2023) 2023:121 Page 6 of 14

Proof Since ¢ and v are multiplicatively p-convex functions, then %

p-convex function. Thus, if we apply Theorem 3.1 to the function %, we obtain the re-

is a multiplicatively

quired result. O
Remark 3.3 Choosing p = 1 in Corollary 3.2, we get Theorem 9 in [12].

Theorem 3.2 Let ¢ be a convex function and  be a multiplicatively p-convex function.
Then

@092\ st
< (wew("l Jrreoy

(W )d% Hp—ﬁ
( 92(‘/'% )”“‘) T G0, v (6)e

01

Proof Note that

0 P

912 ( ftgjf,)y )d% o) o7

62 ( Y(5) )d%
1P

01
62 1 ( £(32) P
[91 In( %1 p)d;{ 9579{,
j921n () Vd s

%119

P
P
~Jy2 (L) dso) 7=
Pl

f
1 1

_ e(.fol In@((¢6) +(1-0)05) P ) dt— [} Inyr (62 +(1-)65) P ) dit)

oo I(@(O2)+£(p(01)-9(62) di— [y In((y(61))" (¥ (62)) 1) dt)

9y) 1
m((%) P9 ) 1-In(y (61)(62)) 10

(%)W
¢\o1

G (61), ¥ (62))e

So, the proof is completed. d
Remark 3.4 Choosing p =1 in Theorem 3.2, we get Theorem 11 in [12].

Theorem 3.3 Let ¢ be a multiplicatively p-convex function and  be a convex function.
Then

(LN _ G0 ¢0))-e
()

—.
(62) A ETIC)
e ((‘Pz—en) =Gy

01
Proof Note that

0: P
912 ( i(l}—{; )d% o -l
62 ( V() )d>

2l-P

0
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P
4
20 dse- 192 in(4) Ydse) %

(fgzln

1 1
— eUo (8} +(1-0)6) P ) dt— [ In (e8] +(1-0)65) P ) dt)
oo In((@(61) (p(62))10) de= [ In(yr (B2)+£(y (01)- (62))) )

(9(62)) W((’z)

1
o) ) #(62)-¢(01) )11
)¢

Inp (61 ) (6))/0 £ ~In((
e (961

G(p(61), §0(92))

B )V 02) | L
(%W)MZ) o

Hence, the proof is completed. O
Remark 3.5 Choosing p = 1 in Theorem 3.3, we get Theorem 12 in [12].

Theorem 3.4 Let ¢ be a convex function and  be a multiplicatively p-convex function.
Then

(Le02) )? 2

2 (9() YOI\ N\NEE _ W—MM Gy (6), w(ez))
([ ) [ E)) :

Proof Note that

% (9GI\® [ (UGN B
A (W> 1 C5))

P

(f92 In( )d%+f92 In( Wg’j; yds) B

1 1
— eUo (@8] +(1=0)6) 7 ) dt+ [ Inyr(¢6] +(1-0)65) P ) )
oo In(@(B2)+(p(61)~p(62))) di+ [ In((y(61)" (v (62)) 1) )

1
m((%) D) )1 ein( ) (620 1

(D)) ST Gy (61), ¥/ (62))

e

This completes the proof. d
Remark 3.6 Choosing p =1 in Theorem 3.4, we get Theorem 13 in [12].

Theorem 3.5 Let ¢ : I — R be multiplicatively p-convex function, where 01,6, € I and
61 < 65. Then

( /ﬁ(ﬂ@)d")ﬁ _ 900 +9(6)
01 %l—p - 2 ’
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Proof Note that

% (@) \ N\ T T
01 m

)2
P _P
_ U (£ o) 2

)dsx

—eh lnw((t9f+(1—t)9§)}7)dt

1 1
S/ eln¢((t@{”+(1-t)9§)ﬂ)dt
0

:/01 ((¢67 + (1 - 0)02)7 ) de
/ T(0®) (0(0) ") de

2)/ ( 92>)

_ @(61) — 9(62)
log ¢(61) — log ¢(62)

- @(61) + ¢(62)
= ) .

This completes the proof. O

Theorem 3.6 Let ¢,V : I — R be multiplicatively p-convex functions, where 61,6, € I and

01 < 65. Then
([ (=52) ") < o
where
$(01,62) = (9(01)" + (0(62))" + (W(61)" + (¥(62))".
Proof Note that
o

< /92 (so(%)w%))d”) o
61 sl-p

(f92 In(LL)) 1y 0]

217D

_r (>0)
_eeé,_ai,f ln( 717 Yd s

1 1
—e T In[p((e0) +(1-£)62) P )y (167 +(1-0)08) P )] dit

1 1 1
5/ Lo (07 +(1-0)8) P )y (167 +(1-005)P)] 1,
0

Page 8 of 14
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=

)] dt

f 1[(¢(91)) (0(62) " (w(6)" ((62))" "] at

0(0)p 2)/ (‘/’(91)1/’(91 )

_ (0¥ (61) — @(62) ¥ (62)
log(e(01) ¥ (61)) — log(p(62) v (62))

_ 9O 6) +9(02)¥(6)
- 2

1
=5 [ [o(t +a-om)
1t (1-9) ¢ (1= 2
= /0 [((060) (002)" ) + (0 O0) ((62) )] de
(@6 [ eB)\* (¥ (62)) 1(1#(91))%
" /0(‘/’(92)) s /0 voy)

1 (9(61))* - (p(62))* +1 (Y (61))* = (¥ (62))*
4logp(01) —logp(61) 4 logyr(61)—log ¥ (61)

1 1
=f0 [o((t67 + (1= 0)05) 7 )y (267 + (1 - )65

=

)+ (v (167 + (1 - 0)68) 7)) de

100)+e0) ¢@)-90)  1yO)+¥0) Y0) -0
T2 2 log(61) —logg(62) 2 2 log ¥(61) — log ¥/ (62)
< 2 [(@O)) + (0@)" + (W) + (¥(6)’).

This completes the proof. O

Theorem 3.7 Let ¢,V : I — R be multiplicatively p-convex functions, where 61,6, € I and
61 < 65. Then

(&)
(/ <<p(%)1ﬁ(%)> )%”’f %¢(91,92)+ = p(61,6)
0

1P

where

$(61,60) = (9(61))" + (0(62)) + (w(61))” + (¥(62))°

and

p(01,62) = 0(01)¥ (61) + p(62) ¥ (62).

Proof Let ¢ and ¢ be multiplicatively p-convex functions. Using the inequality

1
0160, < 1(91 +6))% V0,6, €R,
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we have

([(=7))

1 1
< /0 [o((e6F + (1 - )08) 7 )yr((¢6F + (1 - )6

e"

1

ST

)] dt
< %/Ol[w((tef + (L= 080)F) 4 v ((e6] + (1-0)02))]" e

1
= /0 [(0(00) (062) "™ + (w(6)' (v (6) "] dt
1! w(el)) <w(e))‘]2
— d
4/0 [¢(92)(¢(92) VO yey) |
@) [Pe®)) . W®)? [2(vE))
"3 /(‘P(Gz)) @y /0 (we») @
w(ez)w(ez) f (go(el)l/fwl)) W
6)
1 (¢(91>)2—(¢(92>)2 1 W60 - ()
8log(6r) —log(6,) 8logy(61) —logyr(6;)
1 001 (01) — p(B2) ¥ (62)
2 log(¢(01)v (61)) — log(¢(62) ¥ (6))
_1e@)+90)  ¢0)-0)  1yO)+¥0)  ¥0) -1 0)
4 2 logp(61) —logp(6) 4 2 log ¥ (61) —log ¥ (6>)

L1 e6)v(6) - 9(62)V(62)
2 log(@(61)¥ (61)) — log(e(62) ¥ (62))

[(6@0)" + (6)" + (46)) + (4(6))’] + 1 [0@ W 61) + €W 6]

=<

oo | =

So, the proof is completed. d

Theorem 3.8 Let ¢,V : I — R be multiplicatively p-convex functions, where 61,6, € I and
61 < 0y. Then

([(=2))

< “M [Lé_l (¢(91),€0(92))]é_1

) 9 1
+ ﬁw[l’%*l(w(el): 1#(92))] P

e"

1

Proof Let ¢ and ¢ be multiplicatively p-convex functions. Then using the inequality

1 1
016, <abf + B0y, o, B>0,a+p=1,
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we have

% [ (e (30) \ P\ B
01 P

1 1
= fo [o((e67 + 1= 065)7 )y ((67 + (1 - 1)65)

ST

)] dt

ST
==

)}

! 1 t 71
< /0 [ (0(00) (0(02) 1 + B[(w ©0) (w(62)) " ]F ) de
) Lot go(el))é 1 1(w(01>>%
- (¢(62) /o<§0(92) at + p(V(62) ./0 ¥ (62) a

o) M)wﬂy 2 (5 (0)} %<w<91>>*
“etoe)® [ (8G) aepwe? [1(755) @
_p WO)F (0O, () - ()

log (61) - log ¢(62) log ¥ (61) — log v/ (62)

_ @0 — (p(:)«
@(61) - ¢(62)

L WO — (¥ ()7
V() — v (6y)

= a[Ly_, (p(62), ()] L[p(1), 0(62)]

< [[letottet + -0y} + (et +a-080)h))

L{@(61), 9(62)]

+B L[y (61), ¥ (62)]

+B[Ly 1 (0060, 0(0)) ™ L[¥ 60, ¥ )]

0 0 1_
Saw[l‘é—l(‘p(gl);ﬁﬁ(%))]a 1

s ﬁlﬂ(el) + Y (62)

2 [Lé—l(W(el):W(ez))]%_l.

This completes the proof. O

Theorem 3.9 Let ¢,V : I — R be increasing multiplicatively p-convex functions, where
61,0, € I and 6, < 6,. Then

. In G(¥ (67),¥(62)) p-InGle(61).¢(02))
6 dsey 2T OLVID)) 0 ds

(/ 2((/)(%)) ) o0 —6F (/‘ 2(¢(%)) ) ob-o?
o, \ AP o \ HP

< 2L[@(61)¥ (62), p(62) ¥ (61) ).

Proof Let ¢ and ¥ be increasing multiplicatively p-convex functions. Then

o((t67 + (1 - 080)7) < (0(60) (0(62)" ™,

U (07 + (1—088) ) < (w(60)" (w(62) ™.

Page 11 of 14
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Using (A1 — A, A3 — Aa) >0, A1, A2, A3, 24 € Rand A; < Ay < A3 < A4, we have
o (187 + 1= 0)60)7) ((6) (v(6) "

s (67 + (1 - 080)7) (0(61)) ((6) ™"

< (67 + (1 - )87 )y (167 + (1 - 1)6})?)

+(0(602)' (062) " (w0)) " (w(62) .
Taking logarithm and integrating above inequalities with respect to ¢ on [0, 1], we have
! 1 -
| mle((eet + - 008)?) (0 00) (v 0) "t
0

1 1
. /0 [y (107 + (1 062)7) (06))' (6(62))" "] dt

S

1 1
< /0 Infp((£67 + (1 067 )yr((t67 + (1 - 060)7)

+ (9(0) (90) " (w(61)) (¥ (62) "] de

Since ¢ and ¢ are increasing, we have

/1n<p((t91’+(1 t)@")llf) /lm[(w(el)) (w(@z))(”]

0
1

1 1
N /0 Iny (6 + (1 0)62)P) dt / [ (0(60)' (¢(62))" ] dt

0
1 1 1
< /0 I (6 + (1= 00)P )y (107 + (1 - 062)7)
+(9(00) (002) "™ (w(00) ((62)) "] e

which means

In G(v(61), v (62)) / Ing((e67 + (1-060)7) dt

0

+InG(p(61), ¢(6:)) / (6] + (- 062)7) e

=

1 1
< /0 Infg (167 + (1= 062)7 )y (167 + (1 = 162)?)
+(p(00) (0(6) "™ (w(61)) (¥(02)) ] at.

Now, taking exponential on both sides, we get the required result

([ (o)) ()
/91 x1P ’ /;1 1P
< 2L[p(01) ¥ (62), p(62)¥ (61) ]. 2)
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4 Concluding remarks

In this paper, we defined and examined the class of multiplicatively p-convex functions.
We established a novel form of Hermite-Hadamard type inequality utilizing multiplica-
tive calculus for convex and multiplicatively p-convex functions. Additionally, we derived
several integral inequalities of Hermite-Hadamard type for the product and quotient of
convex and multiplicatively p-convex functions. Furthermore, we provided upper bounds
for the product of two multiplicatively p-convex functions. As a result, several new inte-
gral inequalities of the Hermite-Hadamard type are established. The findings we proved
are generalizations of the results in the literature. In recent years, Hermite-Hadamard in-
equalities played a crucial role in mathematical analysis, probability theory, optimization,
and other branches of mathematics. So, several studies have been devoted to introducing
novel dimensions to the theory of inequalities. We presume that our newly created class
of functions will be the focus of much research in this fascinating field of inequalities and
analysis.
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