- Research
- Open access
- Published:
Hermite-Hadamard type inequalities for multiplicatively p-convex functions
Journal of Inequalities and Applications volume 2023, Article number: 121 (2023)
Abstract
In this paper, we introduced the concept of multiplicatively p-convex functions and established Hermite-Hadamard type integral inequalities in the setting of multiplicative calculus for this newly created class of functions. We also gave integral inequalities of Hermite-Hadamard type for product and quotient of multiplicatively p-convex functions. Furthermore, we obtained novel multiplicative integral-based inequalities for the product and quotient of convex and multiplicatively p-convex functions. Additionally, we derived certain upper limits for this new class of functions. The findings we proved are generalizations of the results in the literature. The results obtained in this study may inspire further research in various scientific areas.
1 Introduction and preliminaries
The classical or usual convexity is defined as follows:
The function \(\varphi : [ \theta _{1},\theta _{2} ] \subset \mathbb{R} \rightarrow \mathbb{R} \) is said to be convex in the classical sense if
for all \(\varkappa ,y\in [ \theta _{1},\theta _{2} ] \) and \(t\in [ 0,1 ] \). The function φ is said to be concave if −φ is convex.
Many studies have indicated that several inequalities can be derived from convex functions. One of the most renowned inequalities that pertain to the integral mean of a convex function is the Hermite-Hadamard inequality. This double inequality is stated as follows (see, [1–3]).
Theorem 1.1
Let \(\varphi :I= [ \theta _{1},\theta _{2} ] \subset \mathbb{R} \rightarrow \mathbb{R} \) be an integrable convex function. Then
Both inequalities hold in the reversed direction if φ is concave.
The Hermite-Hadamard inequality can be seen as a refinement of the concept of convexity. Numerous researchers have been extensively investigated this concept since it was independently discovered by Hermite in 1883 and Hadamard in 1896. In particular, over the past two decades, many researchers have devoted their efforts to finding new bounds for both the left- and right-hand sides of the Hermite-Hadamard inequality. Several studies have proposed novel approaches to enhance, improve, and extend this inequality.
2 Preliminaries
Now we present basic definitions and results, where I and ℑ are intervals.
In [4], Iscan defined the concept of harmonically convexity and proved the Hermite–Hadamard inequality for harmonically convex functions as following:
Definition 2.1
Let \(I\subseteq \mathbb{R}\setminus \{0\}\) be an interval. A function \(\varphi :I\rightarrow \mathbb{R}\) is said to be harmonically convex function if
for all \(\varkappa ,y\in I\), \(t\in {}[ 0,1]\).
Theorem 2.1
Let \(\varphi :I\subset \mathbb{R}\backslash \{0\}\rightarrow \mathbb{R}\) be a harmonically convex function and \(\theta _{1},\theta _{2}\in I\) with \(\theta _{1}<\theta _{2}\). If \(\varphi \in L[\theta _{1},\theta _{2}]\), then following inequalities hold:
Some recent results for Hermite–Hadamard inequalities for harmonically type convex function can be seen in [5–8].
Definition 2.2
([9])
Let \(I\subset ( 0,\infty ) \) be a real interval and \(p\in \mathbb{R}\setminus \{0\}\). A function \(\varphi :I\rightarrow \mathbb{R}\) is said to be a p-convex function if
for all \(\varkappa ,y\in I\) and \(t\in [ 0,1 ] \).
According to Definition (2.2), it is obvious that for \(p=1\) and \(p=-1\), p-convexity reduces to classical convexity and harmonically convexity of functions defined on \(I\subset ( 0,\infty ) \), respectively.
In Theorem 5 of [10], if we take \(I\subset ( 0,\infty ) \), \(p\in \mathbb{R}\setminus \{0\}\) and \(h ( t ) =t\), then we have the following theorem:
Theorem 2.2
Let \(\varphi :I\subset ( 0,\infty ) \rightarrow \mathbb{R}\) be a p-convex function, \(p\in \mathbb{R}\setminus \{0\}\) and \(\theta _{1},\theta _{2}\in I\) with \(\theta _{1}<\theta _{2}\). If \(\varphi \in L [ \theta _{1},\theta _{2} ] \), then
Definition 2.3
([3])
A function \(\varphi :\Im \rightarrow ( 0,\infty ) \) is said to be log or multiplicatively convex, if
for all \(\varkappa ,y\in \Im \) and \(t\in [ 0,1 ] \).
2.1 Multiplicative calculus
Recall that the multiplicative integral, which is a type of integral that involves the product of terms raised to certain powers, is represented by \(\int _{\theta _{1}}^{\theta _{2}} ( \varphi ( \varkappa ) ) ^{d\varkappa }\), while the ordinary integral, which is a type of integral that involves the sum of terms, is typically denoted by \(\int _{\theta _{1}}^{\theta _{2}} ( \varphi ( \varkappa ) ) \,d\varkappa \). Using distinct symbols helps to differentiate between these two types of integrals.
There is the following relation between the Riemann integral and the multiplicative integral [11].
Proposition 2.1
If φ is Riemann integrable on \([ \theta _{1},\theta _{2} ] \), then φ is multiplicative integrable on \([ \theta _{1},\theta _{2} ] \), and
In [11], Bashirov et al. show that multiplicative integral has the following results and notations:
Proposition 2.2
If φ is positive and Riemann integrable on \([ \theta _{1},\theta _{2} ] \), then φ is multiplicative integrable on \([ \theta _{1},\theta _{2} ] \) and
-
1
\(\int _{\theta _{1}}^{\theta _{2}} ( ( \varphi ( \varkappa ) ) ^{p} ) ^{d\varkappa }=\int _{ \theta _{1}}^{\theta _{2}} ( ( \varphi ( \varkappa ) ) ^{d\varkappa } ) ^{p}\),
-
2
\(\int _{\theta _{1}}^{\theta _{2}} ( \varphi ( \varkappa ) \psi ( \varkappa ) ) ^{d\varkappa }= \int _{\theta _{1}}^{\theta _{2}} ( \varphi ( \varkappa ) ) ^{d\varkappa }.\int _{\theta _{1}}^{\theta _{2}} ( \psi ( \varkappa ) ) ^{d\varkappa }\),
-
3
\(\int _{\theta _{1}}^{\theta _{2}} ( \frac{\varphi ( \varkappa ) }{\psi ( \varkappa ) } ) ^{d\varkappa }= \frac{\int _{\theta _{1}}^{\theta _{2}} ( \varphi ( \varkappa ) ) ^{d\varkappa }}{\int _{\theta _{1}}^{\theta _{2}} ( \psi ( \varkappa ) ) ^{d\varkappa }}\),
-
4
\(\int _{\theta _{1}}^{\theta _{2}} ( \varphi ( \varkappa ) ) ^{d\varkappa }=\int _{\theta _{1}}^{\mu } ( \varphi ( \varkappa ) ) ^{d\varkappa }.\int _{ \mu }^{\theta _{2}} ( \varphi ( \varkappa ) ) ^{d\varkappa }\), \(\theta _{1}\leq \mu \leq \theta _{2}\).
-
5
\(\int _{\theta _{1}}^{\theta _{1}} ( \varphi ( \varkappa ) ) ^{d\varkappa }=1\) and \(\int _{\theta _{1}}^{\theta _{2}} ( \varphi ( \varkappa ) ) ^{d\varkappa }= ( \int _{\theta _{2}}^{\theta _{1}} ( \varphi ( \varkappa ) ) ^{d\varkappa } ) ^{-1}\).
In [12], Ali et al. established the Hermite–Hadamard inequality for multiplicatively convex functions in the setting of multiplicative calculus as follows:
Theorem 2.3
Let φ be a positive and multiplicatively convex function on \([ \theta _{1},\theta _{2} ] \). Then
where \(G ( \cdot ,\cdot ) \) is the geometric mean.
One of the first studies of multiplicative calculus was made by [13] in the 1970s. Since then, a number of interesting results has been obtained due to its many applications in various fields. For example, in [14], Bashirov and Riza introduced complex multiplicative calculus. In [15] and [16], some properties of stochastic multiplicative calculus have been studied. For some applications and other aspects of this discipline, (see [17–22]) and the references cited therein.
3 Main results
In this section, we give a new definition, called multiplicatively p-convex function, and obtain some Hermite-Hadamard type integral inequalities in the setting of multiplicative calculus for multiplicatively p-convex and convex functions.
Definition 3.1
A nonnegative function \(\varphi :I\rightarrow \mathbb{R} \) is said to be multiplicatively p-convex if
holds for all \(\varkappa ,y\in I\), \(t\in [ 0,1 ] \) and \(p\in \mathbb{R}\setminus \{0\}\).
Theorem 3.1
Let φ be a multiplicatively p-convex function on \([ \theta _{1},\theta _{2} ] \). Then
Proof
Note that
Integrating the above inequality with respect to t on \([ 0,1 ] \), we have
which implies that
Thus, we have
which gives the first inequality. Now, consider the second inequality
So, the proof is completed. □
Remark 3.1
Choosing \(p=1\) in Theorem 3.1, we get Theorem 5 in [12].
Corollary 3.1
Let φ and ψ be multiplicatively p-convex functions on \([ \theta _{1},\theta _{2} ] \). Then
Proof
Since φ and ψ are multiplicatively p-convex functions, then φψ is a multiplicatively p-convex function. Thus, if we apply Theorem 3.1 to the function φψ, we obtain the desired result. □
Remark 3.2
Choosing \(p=1\) in Corollary 3.1, we get Theorem 7 in [12].
Corollary 3.2
Let φ and ψ be multiplicatively p-convex functions on \([ \theta _{1},\theta _{2} ] \). Then
Proof
Since φ and ψ are multiplicatively p-convex functions, then \(\frac{\varphi }{\psi }\) is a multiplicatively p-convex function. Thus, if we apply Theorem 3.1 to the function \(\frac{\varphi }{\psi }\), we obtain the required result. □
Remark 3.3
Choosing \(p=1\) in Corollary 3.2, we get Theorem 9 in [12].
Theorem 3.2
Let φ be a convex function and ψ be a multiplicatively p-convex function. Then
Proof
Note that
So, the proof is completed. □
Remark 3.4
Choosing \(p=1\) in Theorem 3.2, we get Theorem 11 in [12].
Theorem 3.3
Let φ be a multiplicatively p-convex function and ψ be a convex function. Then
Proof
Note that
Hence, the proof is completed. □
Remark 3.5
Choosing \(p=1\) in Theorem 3.3, we get Theorem 12 in [12].
Theorem 3.4
Let φ be a convex function and ψ be a multiplicatively p-convex function. Then
Proof
Note that
This completes the proof. □
Remark 3.6
Choosing \(p=1\) in Theorem 3.4, we get Theorem 13 in [12].
Theorem 3.5
Let \(\varphi :I\rightarrow \mathbb{R} \) be multiplicatively p-convex function, where \(\theta _{1},\theta _{2}\in I\) and \(\theta _{1}<\theta _{2}\). Then
Proof
Note that
This completes the proof. □
Theorem 3.6
Let \(\varphi ,\psi :I\rightarrow \mathbb{R} \) be multiplicatively p-convex functions, where \(\theta _{1},\theta _{2}\in I\) and \(\theta _{1}<\theta _{2}\). Then
where
Proof
Note that
This completes the proof. □
Theorem 3.7
Let \(\varphi ,\psi :I\rightarrow \mathbb{R} \) be multiplicatively p-convex functions, where \(\theta _{1},\theta _{2}\in I\) and \(\theta _{1}<\theta _{2}\). Then
where
and
Proof
Let φ and ψ be multiplicatively p-convex functions. Using the inequality
we have
So, the proof is completed. □
Theorem 3.8
Let \(\varphi ,\psi :I\rightarrow \mathbb{R} \) be multiplicatively p-convex functions, where \(\theta _{1},\theta _{2}\in I\) and \(\theta _{1}<\theta _{2}\). Then
Proof
Let φ and ψ be multiplicatively p-convex functions. Then using the inequality
we have
This completes the proof. □
Theorem 3.9
Let \(\varphi ,\psi :I\rightarrow \mathbb{R} \) be increasing multiplicatively p-convex functions, where \(\theta _{1},\theta _{2}\in I\) and \(\theta _{1}<\theta _{2}\). Then
Proof
Let φ and ψ be increasing multiplicatively p-convex functions. Then
Using \(\langle \lambda _{1}-\lambda _{2},\lambda _{3}-\lambda _{4} \rangle \geq 0\), \(\lambda _{1},\lambda _{2},\lambda _{3}, \lambda _{4}\in \mathbb{R} \) and \(\lambda _{1}<\lambda _{2}<\lambda _{3}<\lambda _{4}\), we have
Taking logarithm and integrating above inequalities with respect to t on \([ 0,1 ] \), we have
Since φ and ψ are increasing, we have
which means
Now, taking exponential on both sides, we get the required result
□
4 Concluding remarks
In this paper, we defined and examined the class of multiplicatively p-convex functions. We established a novel form of Hermite-Hadamard type inequality utilizing multiplicative calculus for convex and multiplicatively p-convex functions. Additionally, we derived several integral inequalities of Hermite-Hadamard type for the product and quotient of convex and multiplicatively p-convex functions. Furthermore, we provided upper bounds for the product of two multiplicatively p-convex functions. As a result, several new integral inequalities of the Hermite-Hadamard type are established. The findings we proved are generalizations of the results in the literature. In recent years, Hermite-Hadamard inequalities played a crucial role in mathematical analysis, probability theory, optimization, and other branches of mathematics. So, several studies have been devoted to introducing novel dimensions to the theory of inequalities. We presume that our newly created class of functions will be the focus of much research in this fascinating field of inequalities and analysis.
Availability of data and materials
Not applicable.
References
Dragomir, S.S., Pearce, C.E.M.: Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs. Victoria University (2000)
Hadamard, J.: Etude sur les proprietes des fonctions entieres en particulier d’une fonction consideree par riemann. J. Math. Pures Appl. 58, 171–215 (1893)
Pecaric, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, Boston (1992)
Íşcan, I.: Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 43(6), 935–942 (2014)
Butt, S.I., Yousaf, S., Khan, K.A., Mabela, R.M., Alsharif, A.M.: Fejer–Pachpatte–Mercer type inequalities for harmonically convex functions involving exponential function in kernel. Math. Probl. Eng. 2022, 1–19 (2022)
Butt, S.I., Akdemir, A.O., Nadeem, M., Mlaiki, N., Íşcan, I., Abdeljawad, T.: \((m,n)\)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Math. 6(5), 4677–4691 (2021)
Latif, M.A., Du, T.: Hermite-Hadamard type inequalities for harmonically-convex functions using fuzzy integrals. Filomat 36(12), 4099–4110 (2022)
Özcan, S.: Some integral inequalities for harmonically \((\alpha ,s)\)-convex functions. J. Funct. Spaces 2019, 1–8 (2019)
Íşcan, I.: Ostrowski type inequalities for p-convex functions. New Trends Math. Sci. 4(3), 140–150 (2016)
Fang, Z.B., Shi, R.: On the \((p; h)\)-convex function and some integral inequalities. J. Inequal. Appl. 2014, 45, 1–16 (2014)
Bashirov, A.E., Kurpınar, E., Özyapıcı, A.: Multiplicative calculus and applications. J. Math. Anal. Appl. 337(1), 36–48 (2008)
Ali, M.A., Abbas, M., Zhang, Z., Sial, I.B., Arif, R.: On integral inequalities for product and quotient of two multiplicatively convex functions. Asian Res. J. Math. 12(3), 1–11 (2019)
Grossman, M., Katz, R.: Non-Newtonian Calculus. Lee Press, Pigeon Cove (1972)
Bashirov, A.E., Rıza, M.: On complex multiplicative differentiation. TWMS J. Appl. Eng. Math. 1(1), 75–85 (2011)
Daletskii, Y.L., Teterina, N.I.: Multiplicative stochastic integrals. Usp. Mat. Nauk 27(2:164), 167–168 (1972)
Karandikar, R.L.: Multiplicative decomposition of non-singular matrix valued continuous semimartingales. Ann. Probab. 10(4), 1088–1091 (1982)
Ali, M.A., Abbas, M., Zafer, A.A.: On some Hermite-Hadamard integral inequalities in multiplicative calculus. J. Inequal. Spec. Funct. 10(1), 111–122 (2019)
Ali, M.A., Budak, H., Sarıkaya, M.Z., Zhang, Z.: Ostrowski and Simpson type inequalities for multiplicative integrals. Proyecciones 40(3), 743–763 (2021)
Kadakal, M.: Hermite-Hadamard and Simpson type inequalities for multiplicatively harmonically p-functions. Sigma J. Eng. Nat. Sci. 37(4), 1315–1324 (2019)
Özcan, S.: Hermite-Hadamard inequalities for multiplicatively h-convex functions. Konuralp J. Math. 8(1), 158–164 (2020)
Özcan, S.: Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. AIMS Math. 5(2), 1505–1518 (2020)
Rıza, M., Özyapıcı, A., Kurpınar, E.: Multiplicative finite difference methods. Q. Appl. Math. 67(4), 745–754 (2009)
Acknowledgements
Author is thankful to editor and anonymous referees for their valuable comments and suggestions.
Funding
There is no funding for this research article.
Author information
Authors and Affiliations
Contributions
The author has read and approved the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Özcan, S. Hermite-Hadamard type inequalities for multiplicatively p-convex functions. J Inequal Appl 2023, 121 (2023). https://doi.org/10.1186/s13660-023-03032-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-023-03032-x