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1 Introduction
Generalized entropies have been studied by many researchers (we refer the interested
reader to [, ]). Rényi [] and Tsallis [] entropies are well known as one-parameter gen-
eralizations of Shannon’s entropy, being intensively studied not only in the field of classical
statistical physics [–], but also in the field of quantumphysics in relation to the entangle-
ment [–]. The Tsallis entropy is a natural one-parameter extended form of the Shannon
entropy, hence it can be applied to knownmodels which describe systems of great interest
in atomic physics []. However, to our best knowledge, the physical relevance of a param-
eter of the Tsallis entropy was highly debated and it has not been completely clarified yet,
the parameter being considered as a measure of the non-extensivity of the system under
consideration. One of the authors of the present paper studied the Tsallis entropy and the
Tsallis relative entropy from the mathematical point of view. Firstly, fundamental proper-
ties of the Tsallis relative entropy were discussed in []. The uniqueness theorem for the
Tsallis entropy and Tsallis relative entropy was studied in []. Following this result, an ax-
iomatic characterization of a two-parameter extended relative entropy was given in [].
In [], information theoretical properties of the Tsallis entropy and some inequalities for
conditional and joint Tsallis entropies were derived. These entropies are again used in the
present paper, to derive the generalized Han’s inequality. In [], matrix trace inequalities
for the Tsallis entropy were studied. And in [], the maximum entropy principle for the
Tsallis entropy and the minimization of the Fisher information in Tsallis statistics were
studied. Quite recently, we provided mathematical inequalities for some divergences in
[], considering that it is important to study the mathematical inequalities for the de-
velopment of new entropies. In this paper, we define a further generalized entropy based
on Tsallis and Rényi entropies and study mathematical properties by the use of scalar in-
equalities to develop the theory of entropies.
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We start from the weighted quasilinear mean for some continuous and strictly mono-
tonic function ψ : I →R, defined by

Mψ (x,x, . . . ,xn) ≡ ψ–

( n∑
j=

pjψ(xj)

)
, ()

where
∑n

j= pj = , pj > , xj ∈ I for j = , , . . . ,n and n ∈ N. If we take ψ(x) = x,
then Mψ (x,x, . . . ,xn) coincides with the weighted arithmetic mean A(x,x, . . . ,xn) ≡∑n

j= pjxj. If we also take ψ(x) = log(x), thenMψ (x,x, . . . ,xn) coincides with the weighted
geometric mean G(x,x, . . . ,xn) ≡ ∏n

j= x
pj
j .

If ψ(x) = x and xj = lnq 
pj
, thenMψ (x,x, . . . ,xn) is equal to the Tsallis entropy []:

Hq(p,p, . . . ,pn) ≡ –
n∑
j=

pqj lnq pj =
n∑
j=

pj lnq

pj

(q ≥ ,q �= ), ()

where {p,p, . . . ,pn} is a probability distribution with pj >  for all j = , , . . . ,n and the
q-logarithmic function for x >  is defined by lnq(x) ≡ x–q–

–q which uniformly converges
to the usual logarithmic function log(x) in the limit q → . Therefore, the Tsallis entropy
converges to the Shannon entropy in the limit q → :

lim
q→

Hq(p,p, . . . ,pn) =H(p,p, . . . ,pn)≡ –
n∑
j=

pj logpj. ()

Thus, we find that the Tsallis entropy is one of generalizations of the Shannon entropy. It
is known that the Rényi entropy [] is also a generalization of the Shannon entropy. Here,
we review a quasilinear entropy [] as another generalization of the Shannon entropy. For
a continuous and strictly monotonic function φ on (, ], the quasilinear entropy is given
by

Iφ(p,p, . . . ,pn)≡ – logφ–

( n∑
j=

pjφ(pj)

)
. ()

If we take φ(x) = log(x) in (), then we have I log(p,p, . . . ,pn) =H(p,p, . . . ,pn). We may
redefine the quasilinear entropy by

Iψ (p,p, . . . ,pn) ≡ logψ–

( n∑
j=

pjψ
(

pj

))
()

for a continuous and strictly monotonic function ψ on (,∞). If we take ψ(x) = log(x)
in (), we have I log (p,p, . . . ,pn) = H(p,p, . . . ,pn). The case ψ(x) = x–q is also useful
in practice, since we recapture the Rényi entropy, namely Ix–q (p,p, . . . ,pn) = Rq(p,p,
. . . ,pn) where the Rényi entropy [] is defined by

Rq(p,p, . . . ,pn) ≡ 
 – q

log

( n∑
j=

pqj

)
. ()
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From a viewpoint of application on source coding, the relation between the weighted
quasilinear mean and the Rényi entropy has been studied in Chapter  of [] in the follow-
ing way.

Theorem A ([]) For all real numbers q >  and integers D > , there exists a code
(x,x, . . . ,xn) such that

Rq(p,p, . . . ,pn)
logD

≤ M
D

–q
q x (x,x, . . . ,xn) <

Rq(p,p, . . . ,pn)
logD

+ , ()

where the exponential function D
–q
q x is defined on [,∞).

By simple calculations, we find that

lim
q→

M
D

–q
q x (x,x, . . . ,xn) =

n∑
j=

pjxj

and

lim
q→

Rq(p,p, . . . ,pn)
logD

= –
n∑
j=

pj logD pj.

Therefore, Theorem A appears as a generalization of the famous Shannon’s source coding
theorem:

–
n∑
j=

pj logD pj ≤
n∑
j=

pjxj < –
n∑
j=

pj logD pj + .

Motivated by the above results and recent advances on the Tsallis entropy theory, we in-
vestigate themathematical results for generalized entropies involving Tsallis entropies and
quasilinear entropies, using some inequalities obtained by improvements of Young’s in-
equality.

Definition . For a continuous and strictly monotonic function ψ on (,∞) and two
probability distributions {p,p, . . . ,pn} and {r, r, . . . , rn} with pj > , rj >  for all j =
, , . . . ,n, the quasilinear relative entropy is defined by

Dψ
 (p,p, . . . ,pn ‖ r, r, . . . , rn) ≡ – logψ–

( n∑
j=

pjψ
(
rj
pj

))
. ()

The quasilinear relative entropy coincides with the Shannon relative entropy if ψ(x) =
log(x), i.e.,

Dlog
 (p,p, . . . ,pn ‖ r, r, . . . , rn) = –

n∑
j=

pj log
rj
pj

=D(p,p, . . . ,pn ‖ r, r, . . . , rn).
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We denote by Rq(p,p, . . . ,pn ‖ r, r, . . . , rn) the Rényi relative entropy [] defined by

Rq(p,p, . . . ,pn ‖ r, r, . . . , rn) ≡ 
q – 

log

( n∑
j=

pqj r
–q
j

)
. ()

This is another particular case of the quasilinear relative entropy, namely for ψ(x) =
x–q we have

Dx–q
 (p,p, . . . ,pn ‖ r, r, . . . , rn) = – log

( n∑
j=

pj
(
rj
pj

)–q
) 

–q

=


q – 
log

( n∑
j=

pqj r
–q
j

)
= Rq(p,p, . . . ,pn ‖ r, r, . . . , rn).

We denote by

Dq(p,p, . . . ,pn ‖ r, r, . . . , rn)≡
n∑
j=

pqj (lnq pj – lnq rj) = –
n∑
j=

pj lnq
rj
pj

()

the Tsallis relative entropy which converges to the usual relative entropy (divergence, K-L
information) in the limit q → :

lim
q→

Dq(p,p, . . . ,pn ‖ r, r, . . . , rn) = D(p,p, . . . ,pn ‖ r, r, . . . , rn)

≡
n∑
j=

pj(logpj – log rj). ()

See [, –, –] and references therein for recent advances and applications on the
Tsallis entropy. We easily find that the Tsallis relative entropy is a special case of Csiszár
f -divergence [–] defined for a convex function f on (,∞) with f () =  by

Df (p,p, . . . ,pn ‖ r, r, . . . , rn) ≡
n∑
j=

rjf
(
pj
rj

)
, ()

since f (x) = –x lnq(/x) is convex on (,∞), vanishes at x =  and

D–x lnq(/x)(p,p, . . . ,pn ‖ r, r, . . . , rn) =Dq(p,p, . . . ,pn ‖ r, r, . . . , rn).

Furthermore, we define the dual function with respect to a convex function f by

f ∗(t) = tf
(

t

)
()

for t > . Then the function f ∗(t) is also convex on (,∞). In addition, we define the
f -divergence for incomplete probability distributions {a,a, . . . ,an} and {b,b . . . ,bn}
where ai >  and bi > , in the following way:

D̃f ∗ (a,a, . . . ,an ‖ b,b, . . . ,bn)≡
n∑
j=

ajf ∗
(
bj
aj

)
. ()
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On the other hand, the studies on refinements for Young’s inequality have given a great
progress in the papers [–]. In the present paper, we give some inequalities on Tsallis
entropies applying two types of inequalities obtained in [, ]. In addition, we give the
generalized Han’s inequality for the Tsallis entropy in the final section.

2 Tsallis quasilinear entropy and Tsallis quasilinear relative entropy
As an analogy with (), we may define the following entropy.

Definition . For a continuous and strictly monotonic function ψ on (,∞) and q ≥ 
with q �= , the Tsallis quasilinear entropy (q-quasilinear entropy) is defined by

Iψq (p,p, . . . ,pn) ≡ lnq ψ–

( n∑
j=

pjψ
(

pj

))
, ()

where {p,p, . . . ,pn} is a probability distribution with pj >  for all j = , , . . . ,n.

We notice that if ψ does not depend on q, then limq→ Iψq (p,p, . . . ,pn) = Iψ (p,p,
. . . ,pn).
For x >  and q ≥  with q �= , we define the q-exponential function as the inverse

function of the q-logarithmic function by expq(x) ≡ { + ( – q)x}/(–q), if  + ( – q)x >
, otherwise it is undefined. If we take ψ(x) = lnq(x), then we have I lnqq (p,p, . . . ,pn) =
Hq(p,p, . . . ,pn). Furthermore, we have

Ix
–q

q (p,p, . . . ,pn) = lnq

( n∑
j=

pjp
q–
j

) 
–q

= lnq

( n∑
j=

pqj

) 
–q

=
[(
∑n

j= p
q
j )


–q ]–q – 

 – q
=

∑n
j=(p

q
j – pj)

 – q
=Hq(p,p, . . . ,pn).

Proposition . The Tsallis quasilinear entropy is nonnegative:

Iψq (p,p, . . . ,pn) ≥ .

Proof We assume that ψ is an increasing function. Then we have ψ( 
pj
) ≥ ψ() from


pj

≥  for pj >  for all j = , , . . . ,n. Thus, we have
∑n

j= pjψ( 
pj
) ≥ ψ() which implies

ψ–(
∑n

j= pjψ( 
pj
)) ≥ , since ψ– is also increasing. For the case that ψ is a decreasing

function, we can prove it similarly. �

Wenote here that the q-exponential function gives us the following connection between
the Rényi entropy and Tsallis entropy []:

expRq(p,p, . . . ,pn) = expq Hq(p,p, . . . ,pn). ()

We should note here expq Hq(p,p, . . . ,pn) is always defined, since we have

 + ( – q)Hq(p,p, . . . ,pn) =
n∑
j=

pqj > .

From (), we have the following proposition.

http://www.journalofinequalitiesandapplications.com/content/2012/1/226
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Proposition . Let A ≡ {Ai : i = , , . . . ,k} be a partition of {, , . . . ,n} and put pAi ≡∑
j∈Ai

pj. Then we have

n∑
j=

pqj ≥
k∑
j=

(
pAj

)q ( ≤ q ≤ ), ()

n∑
j=

pqj ≤
k∑
j=

(
pAj

)q ( ≤ q). ()

Proof We use the generalized Shannon additivity (which is often called q-additivity) for
the Tsallis entropy (see [] for example):

Hq(x, . . . ,xnmn ) =Hq(x, . . . ,xn) +
n∑
i=

xqi Hq

(
xi
xi

, . . . ,
ximi

xi

)
, ()

where xij ≥ , xi =
∑mi

j= xij (i = , . . . ,n; j = , . . . ,mi). Thus, we have

Hq(p,p, . . . ,pn) ≥ Hq
(
pA ,p

A
 , . . . ,p

A
k

)
, ()

since the second term of the right-hand side in () is nonnegative because of nonnegativ-
ity of the Tsallis entropy. Thus, we have

expRq(p,p, . . . ,pn) = expq Hq(p,p, . . . ,pn)

≥ expq Hq
(
pA ,p

A
 , . . . ,p

A
k

)
= expRq

(
pA ,p

A
 , . . . ,p

A
k

)
,

since expq is a monotone increasing function. Hence, the inequality

Rq(p,p, . . . ,pn) ≥ Rq
(
pA ,p

A
 , . . . ,p

A
k

)
()

holds, which proves the present proposition. �

Definition . For a continuous and strictly monotonic function ψ on (,∞) and two
probability distributions {p,p, . . . ,pn} and {r, r, . . . , rn} with pj > , rj >  for all j =
, , . . . ,n, the Tsallis quasilinear relative entropy is defined by

Dψ
q (p,p, . . . ,pn ‖ r, r, . . . , rn) ≡ – lnq ψ–

( n∑
j=

pjψ
(
rj
pj

))
. ()

For ψ(x) = lnq(x), the Tsallis quasilinear relative entropy becomes Tsallis relative en-
tropy, that is,

Dlnq
q (p,p, . . . ,pn ‖ r, r, . . . , rn) = –

n∑
j=

pj lnq
rj
pj

=Dq(p,p, . . . ,pn ‖ r, r, . . . , rn),

http://www.journalofinequalitiesandapplications.com/content/2012/1/226
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and for ψ(x) = x–q, we have

Dx–q
q (p,p, . . . ,pn ‖ r, r, . . . , rn) = – lnq

( n∑
j=

pj
(
rj
pj

)–q
) 

–q

= – lnq

( n∑
j=

pqj r
–q
j

) 
–q

=
–{[(∑n

j= p
q
j r

–q
j )


–q ]–q – }

 – q
=

∑n
j=(pj – pqj r

–q
j )

 – q
= Dq(p,p, . . . ,pn ‖ r, r, . . . , rn). ()

We give a sufficient condition on nonnegativity of the Tsallis quasilinear relative entropy.

Proposition . Ifψ is a concave increasing function or a convex decreasing function, then
we have nonnegativity of the Tsallis quasilinear relative entropy:

Dψ
q (p,p, . . . ,pn ‖ r, r, . . . , rn) ≥ .

Proof Wefirstly assume thatψ is a concave increasing function. The concavity ofψ shows
thatwe haveψ(

∑n
j= pj

rj
pj
) ≥ ∑n

j= pjψ( rjpj ) which is equivalent toψ()≥ ∑n
j= pjψ( rjpj ). From

the assumption, ψ– is also increasing so that we have  ≥ ψ–(
∑n

j= pjψ( rjpj )). Therefore,

we have – lnq ψ–(
∑n

j= pjψ( rjpj )) ≥ , since lnq x is increasing and lnq() = . For the case
that ψ is a convex decreasing function, we can prove similarly nonnegativity of the Tsallis
quasilinear relative entropy. �

Remark . The following two functions satisfy the sufficient condition in the above
proposition.

(i) ψ(x) = lnq x for q ≥ , q �= .
(ii) ψ(x) = x–q for q ≥ , q �= .

It is notable that the following identity holds:

expRq(p,p, . . . ,pn ‖ r, r, . . . , rn) = exp–q Dq(p,p, . . . ,pn ‖ r, r, . . . , rn). ()

We should note here exp–q Dq(p,p, . . . ,pn ‖ r, r, . . . , rn) is always defined, since we have

 + (q – )Dq(p,p, . . . ,pn ‖ r, r, . . . , rn) =
n∑
j=

pqj r
–q
j > .

We also find that () implies the monotonicity of the Rényi relative entropy.

Proposition . Under the same assumptions as in Proposition . and rAi ≡ ∑
j∈Ai

rj,we
have

Rq(p,p, . . . ,pn ‖ r, r, . . . , rn) ≥ Rq
(
pA ,p

A
 , . . . ,p

A
k ‖ rA , rA , . . . , rAk

)
. ()

Proof We recall that the Tsallis relative entropy is a special case of f -divergence so that it
has the same properties with f -divergence. Since exp–q is amonotone increasing function

http://www.journalofinequalitiesandapplications.com/content/2012/1/226
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for  ≤ q ≤  and f -divergence has a monotonicity [, ], we have

expRq(p,p, . . . ,pn ‖ r, r, . . . , rn) = exp–q Dq(p,p, . . . ,pn ‖ r, r, . . . , rn)
≥ exp–q Dq

(
pA ,p

A
 , . . . ,p

A
k ‖ rA , rA , . . . , rAk

)
= expRq

(
pA ,p

A
 , . . . ,p

A
k ‖ rA , rA , . . . , rAk

)
,

which proves the statement. �

3 Inequalities for Tsallis quasilinear entropy and f -divergence
In this section, we give inequalities for the Tsallis quasilinear entropy and f -divergence.
For this purpose, we review the results obtained in [] as one of generalizations of refined
Young’s inequality.

Proposition . ([]) For two probability vectors p = {p,p, . . . ,pn} and r = {r, r, . . . , rn}
such that pj > , rj > ,

∑n
j= pj =

∑n
j= rj =  and x = {x,x, . . . ,xn} such that xi ≥ ,we have

min
≤i≤n

{
ri
pi

}
T(f ,x,p)≤ T(f ,x, r)≤ max

≤i≤n

{
ri
pi

}
T(f ,x,p), ()

where

T(f ,x,p)≡
n∑
j=

pjf (xj) – f

(
ψ–

( n∑
j=

pjψ(xj)

))
, ()

for a continuous increasing function ψ : I → I and a function f : I → J such that

f
(
ψ–(( – λ)ψ(a) + λψ(b)

)) ≤ ( – λ)f (a) + λf (b) ()

for any a,b ∈ I and any λ ∈ [, ].

We have the following inequalities on the Tsallis quasilinear entropy and Tsallis entropy.

Theorem . For q ≥ , a continuous and strictly monotonic function ψ on (,∞) and a
probability distribution {r, r, . . . , rn} with rj >  for all j = , , . . . ,n, we have

 ≤ n min
≤i≤n

{ri}
{
lnq

(
ψ–

(

n

n∑
j=

ψ

(

rj

)))
–

n

n∑
j=

lnq

rj

}

≤ Iψq (r, r, . . . , rn) –Hq(r, r, . . . , rn)

≤ n max
≤i≤n

{ri}
{
lnq

(
ψ–

(

n

n∑
j=

ψ

(

rj

)))
–

n

n∑
j=

lnq

rj

}
.

Proof If we take the uniform distribution p = { 
n , . . . ,


n } ≡ u in Proposition ., then we

have

n min
≤i≤n

{ri}Tn(f ,x,u) ≤ Tn(f ,x, r) ≤ n max
≤i≤n

{ri}Tn(f ,x,u) ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/226
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(which coincides with Theorem . in []). In the inequalities (), we put f (x) = – lnq(x)
and xj = 

rj
for any j = , , . . . ,n, then we obtain the statement. �

Corollary . For q ≥  and a probability distribution {r, r, . . . , rn} with rj >  for all
j = , , . . . ,n, we have

 ≤ n min
≤i≤n

{ri}
{
lnq

(

n

n∑
j=


rj

)
–

n

n∑
j=

lnq

rj

}
≤ lnq n –Hq(r, r, . . . , rn)

≤ n max
≤i≤n

{ri}
{
lnq

(

n

n∑
j=


rj

)
–

n

n∑
j=

lnq

rj

}
. ()

Proof Put ψ(x) = x in Theorem .. �

Remark . Corollary . improves the well-known inequalities  ≤ Hq(r, r, . . . , rn) ≤
lnq n. If we take the limit q → , the inequalities () recover Proposition  in [].

We also have the following inequalities.

Theorem . For two probability distributions p = {p,p, . . . ,pn} and r = {r, r, . . . , rn},
and an incomplete probability distribution t = {t, t, . . . , tn} with tj ≡ pj

rj
, we have

 ≤ min
≤i≤n

{
ri
pi

}(
D̃f ∗ (t ‖ p) – f

( n∑
j=

tj

))

≤ Df (p ‖ r) ≤ max
≤i≤n

{
ri
pi

}(
D̃f ∗ (t ‖ p) – f

( n∑
j=

tj

))
. ()

Proof Put xj =
pj
rj
in Proposition . with ψ(x) = x. Since we have the relation

n∑
j=

pjf
(
pj
rj

)
=

n∑
j=

pj
pj
rj
f ∗

(
rj
pj

)
=

n∑
j=

tjf ∗
(
pj
tj

)
,

we have the statement. �

Corollary . ([]) Under the same assumption as in Theorem ., we have

 ≤ min
≤i≤n

{
ri
pi

}(
log

( n∑
j=

tj

)
–D(p ‖ r)

)

≤ D(r ‖ p) ≤ max
≤i≤n

{
ri
pi

}(
log

( n∑
j=

tj

)
–D(p ‖ r)

)
.

Proof If we take f (x) = – log(x) in Theorem ., then we have

Df (p ‖ r) = –
n∑
j=

rj log
pj
rj

=
n∑
j=

rj log
rj
pj

=D(r ‖ p).
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Since f ∗(x) = x log(x) and tj =
pj
rj
, we also have

D̃f ∗ (t ‖ p) – f

( n∑
j=

tj

)
=

n∑
j=

tj
pj
tj
log

pj
tj
+ log

( n∑
j=

tj

)

=
n∑
j=

pj log
rj
pj

+ log

( n∑
j=

tj

)

= –
n∑
j=

pj log
pj
rj

+ log

( n∑
j=

tj

)
= log

( n∑
j=

tj

)
–D(p ‖ r).

�

4 Inequalities for Tsallis entropy
We firstly give Lagrange’s identity [], to establish an alternative generalization of refined
Young’s inequality.

Lemma . (Lagrange’s identity) For two vectors {a,a, . . . ,an} and {b,b, . . . ,bn}, we
have( n∑

k=

ak

)( n∑
k=

bk

)
–

( n∑
k=

akbk

)

=



n∑
i=

n∑
j=

(aibj – ajbi)

=
∑

≤i<j≤n

(aibj – ajbi). ()

Theorem . Let f : I → R be a twice differentiable function such that there exist real
constants m and M so that  ≤ m≤ f ′′(x)≤ M for any x ∈ I . Then we have

m


∑
≤i<j≤n

pipj(xj – xi) ≤
n∑
j=

pjf (xj) – f

( n∑
j=

pjxj

)

≤ M


∑
≤i<j≤n

pipj(xj – xi), ()

where pj >  with
∑n

j= pj =  and xj ∈ I for all j = , , . . . ,n.

Proof We consider the function g : I → R defined by g(x) ≡ f (x) – m
 x

. Since we have
g ′′(x) = f ′′(x) –m ≥ , g is a convex function. Applying Jensen’s inequality, we thus have

n∑
j=

pjg(xj) ≥ g

( n∑
j=

pjxj

)
, ()

where pj >  with
∑n

j= pj =  and xj ∈ I for all j = , , . . . ,n. From the inequality (), we
have

n∑
j=

pjf (xj) – f

( n∑
j=

pjxj

)
≥ m



{ n∑
j=

pjxj –

( n∑
j=

pjxj

)}

=
m


{( n∑
j=

pj

)( n∑
j=

pjxj

)
–

( n∑
j=

pjxj

)}
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=
m


∑
≤i<j≤n

(
√
pi

√pjxj –
√pj

√
pixi)

=
m


∑
≤i<j≤n

pipj(xj – xi).

In the above calculations, we used Lemma .. Thus, we proved the first part of the in-
equalities. Similarly, one can prove the second part of the inequalities putting the function
h : I → R defined by h(x) ≡ M

 x
 – f (x). We omit the details. �

Lemma . For {p,p, . . . ,pn} with pj >  and
∑n

j= pj = , and {x,x, . . . ,xn} with xj > ,
we have

∑
≤i<j≤n

pipj(xj – xi) =
n∑
j=

pj

(
xj –

n∑
i=

pixi

)

. ()

Proof We denote

x̄ =
n∑
i=

pixi.

The left-side term becomes

∑
≤i<j≤n

pipj(xj – xi) =



n∑
i=

n∑
j=

pipj(xj – xi)

=



n∑
i=

n∑
j=

pipj
(
xj + xi – xjxi

)

=



n∑
i=

n∑
j=

pipjxj +



n∑
i=

n∑
j=

pipjxi –
n∑
i=

n∑
j=

pipjxjxi

=



n∑
i=

pi
n∑
j=

pjxj +



n∑
i=

pixi
n∑
j=

pj –
n∑
i=

pixi
n∑
j=

pjxj

=
n∑
j=

pjxj – x̄.

Similarly, a straightforward computation yields

n∑
j=

pj

(
xj –

n∑
i=

pixi

)

=
n∑
j=

pj
(
xj – xjx̄ + x̄

)

=
n∑
j=

pjxj – x̄ + x̄

=
n∑
j=

pjxj – x̄.

This concludes the proof. �
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Corollary . Under the assumptions of Theorem ., we have

m


n∑
j=

pj

(
xj –

n∑
i=

pixi

)

≤
n∑
j=

pjf (xj) – f

( n∑
j=

pjxj

)

≤ M


n∑
j=

pj

(
xj –

n∑
i=

pixi

)

. ()

Remark . Corollary . gives a similar form with Cartwright-Field’s inequality []:


M′

n∑
j=

pj

(
xj –

n∑
i=

pixi

)

≤
n∑
j=

pjxj –
n∏
j=

xpjj

≤ 
m′

n∑
j=

pj

(
xj –

n∑
i=

pixi

)

, ()

where pj >  for all j = , , . . . ,n and
∑n

j= pj = , m′ ≡ min{x,x, . . . ,xn} >  and M′ ≡
max{x,x, . . . ,xn}.

We also have the following inequalities for the Tsallis entropy.

Theorem . For two probability distributions {p,p, . . . ,pn} and {r, r, . . . , rn} with pj >
, rj >  and

∑n
j= pj =

∑n
j= rj = , we have

lnq

( n∑
j=

pj
rj

)
– lnq n +

mq


∑

≤i<j≤n

pipj
(

pj

–

pi

)

–
Mq


∑

≤i<j≤n

pipj
(

rj
–


ri

)

≤
n∑
j=

pj lnq

rj
–

n∑
j=

pj lnq

pj

≤ lnq

( n∑
j=

pj
rj

)
– lnq n +

Mq


∑

≤i<j≤n

pipj
(

pj

–

pi

)

–
mq


∑

≤i<j≤n

pipj
(

rj
–


ri

)

, ()

where mq and Mq are positive numbers depending on the parameter q ≥  and satisfying
mq ≤ qr–q–j ≤ Mq and mq ≤ qp–q–j ≤ Mq for all j = , , . . . ,n.

Proof Applying Theorem . for the convex function – lnq(x) and xj = 
rj
, we have

mq


∑

≤i<j≤n

pipj
(

rj
–


ri

)

≤ –
n∑
j=

pj lnq

rj
+ lnq

( n∑
j=

pj
rj

)

≤ Mq


∑

≤i<j≤n

pipj
(

rj
–


ri

)

, ()
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since the second derivative of – lnq(x) is qx–q–. Putting rj = pj for all j = , , . . . ,n in the
inequalities (), it follows

mq


∑

≤i<j≤n

pipj
(

pj

–

pi

)

≤ –
n∑
j=

pj lnq

pj

+ lnq n

≤ Mq


∑

≤i<j≤n

pipj
(

pj

–

pi

)

. ()

From the inequalities () and (), we have the statement. �

Remark . The first part of the inequalities () gives another improvement of the well-
known inequalities  ≤ Hq(r, r, . . . , rn)≤ lnq n.

Corollary . For two probability distributions {p,p, . . . ,pn} and {r, r, . . . , rn} with pj >
, rj >  and

∑n
j= pj =

∑n
j= rj = , we have

log

( n∑
j=

pj
rj

)
– logn +

m


∑

≤i<j≤n

pipj
(

pj

–

pi

)

–
M


∑

≤i<j≤n

pipj
(

rj
–


ri

)

≤
n∑
j=

pj log

rj
–

n∑
j=

pj log

pj

≤ log

( n∑
j=

pj
rj

)
– logn +

M


∑

≤i<j≤n

pipj
(

pj

–

pi

)

–
m


∑

≤i<j≤n

pipj
(

rj
–


ri

)

, ()

where m and M are positive numbers satisfying m ≤ r–j ≤ M and m ≤ p–j ≤ M for
all j = , , . . . ,n.

Proof Take the limit q →  in Theorem .. �

Remark . The second part of the inequalities () gives the reverse inequality for the
so-called information inequality [, Theorem ..]

 ≤
n∑
j=

pj log

rj
–

n∑
j=

pj log

pj

()

which is equivalent to the non-negativity of the relative entropy

D(p,p, . . . ,pn ‖ r, r, . . . , rn) ≥ .

Using the inequality (), we derive the following result.
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Proposition . For two probability distributions {p,p, . . . ,pn} and {r, r, . . . , rn} with
 < pj < ,  < rj <  and

∑n
j= pj =

∑n
j= rj = , we have

n∑
j=

( – pj) log


 – pj
≤

n∑
j=

( – pj) log


 – rj
. ()

Proof In the inequality (), we put pj =
–pj
n– and rj =

–rj
n– which satisfy

∑n
j=

–pj
n– =∑n

j=
–rj
n– = . Then we have the present proposition. �

5 A generalized Han’s inequality
In order to state our result, we give the definitions of the Tsallis conditional entropy and
the Tsallis joint entropy.

Definition . ([, ]) For the conditional probability p(xi|yj) and the joint probability
p(xi, yj), we define the Tsallis conditional entropy and the Tsallis joint entropy by

Hq(x|y) ≡ –
∑
i,j

p(xi, yj)q lnq p(xi|yj) (q ≥ ,q �= ) ()

and

Hq(x,y) ≡ –
∑
i,j

p(xi, yj)q lnq p(xi, yj) (q ≥ ,q �= ). ()

We summarize briefly the following chain rules representing relations between the Tsal-
lis conditional entropy and the Tsallis joint entropy.

Proposition . ([, ]) Assume that x,y are random variables. Then

Hq(x,y) =Hq(x) +Hq
(
y|x). ()

Proposition . implied the following propositions.

Proposition . ([]) Suppose x,x, . . . ,xn are random variables. Then

Hq(x,x, . . . ,xn) =
n∑
i=

Hq
(
xi|xi–, . . . ,x

)
. ()

Proposition . ([, ]) For q ≥ , two random variables x and y, we have the following
inequality:

Hq(x|y) ≤ Hq(x). ()

Consequently, we have the following self-bounding property of the Tsallis joint entropy.

Theorem . (Generalized Han’s inequality) Let x,x, . . . ,xn be random variables. Then
for q ≥ , we have the following inequality:

Hq(x, . . . ,xn) ≤ 
n – 

n∑
i=

Hq(x, . . . ,xi–,xi+, . . . ,xn).
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Proof Since the Tsallis joint entropy has a symmetry Hq(x,y) =Hq(y,x), we have

Hq(x, . . . ,xn) = Hq(x, . . . ,xi–,xi+, . . . ,xn) +Hq(xi|x, . . . ,xi–,xi+, . . . ,xn)
≤ Hq(x, . . . ,xi–,xi+, . . . ,xn) +Hq(xi|x, . . . ,xi–)

by the use of Proposition . and Proposition .. Summing both sides on i from  to n,
we have

nHq(x, . . . ,xn) =
n∑
i=

Hq(x, . . . ,xi–,xi+, . . . ,xn) +
n∑
i=

Hq(xi|x, . . . ,xi–,xi+, . . . ,xn)

≤
n∑
i=

Hq(x, . . . ,xi–,xi+, . . . ,xn) +Hq(x, . . . ,xn),

due to Proposition .. Therefore, we have the present proposition. �

Remark . Theorem . recovers the original Han’s inequality [, ] if we take the
limit as q → .

6 Conclusion
We gave an improvement of Young’s inequalities for scalar numbers. Using this result,
we gave several inequalities on generalized entropies involving Tsallis entropies. We also
provided a generalized Han’s inequality, based on the conditional Tsallis entropy and the
joint Tsallis entropy.
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