Skip to main content

On some geometric properties of sequence spaces of generalized arithmetic divisor sum function

Abstract

Recently, some new sequence spaces \(\ell _{p}(\mathfrak{A}^{\alpha })\) \((0< p<\infty )\), \(c_{0}(\mathfrak{A}^{\alpha })\), \(c(\mathfrak{A}^{\alpha })\), and \(\ell _{\infty }(\mathfrak{A}^{\alpha })\) have been studied by Yaying et al. (Forum Math., 2024, https://doi.org/10.1515/forum-2023-0138) as matrix domains of \(\mathfrak{A}^{\alpha }=(a_{n,v}^{\alpha })\), where

$$ a_{\mathfrak{m},v}^{\alpha }=\left \{ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \dfrac{v^{\alpha }}{\rho ^{(\alpha )}(\mathfrak{m})} & , & v\mid \mathfrak{m}, \\ 0 & , & v\nmid \mathfrak{m},\end{array}\displaystyle \right . $$

and \(\rho ^{(\alpha )}(\mathfrak{m}):=\) sum of the \(\alpha ^{\text{th}}\) power of the positive divisors of \(\mathfrak{m}\in \mathbb{N}\). They obtained their duals, matrix transformations and associated compact matrix operators for these matrix classes.

This article deals with some geometric properties of these sequence spaces.

1 Introduction

We recall some known arithmetic functions [1, 16]:

$$\begin{aligned} d(\mathfrak{m}) =&\sum _{\mathfrak{v}\mid \mathfrak{m}}1,\text{(Divisor function)} \\ \rho (\mathfrak{m}) =&\sum _{\mathfrak{v}\mid \mathfrak{m}} \mathfrak{v},\text{(Divisor sum function)} \\ \rho ^{(\alpha )}(\mathfrak{m}) =&\sum _{\mathfrak{v}\mid \mathfrak{m}}v^{\alpha },\text{(Divisor sum function of order $\alpha $)} \\ \mu (\mathfrak{m}) =&\left \{ \textstyle\begin{array}{c@{\quad}c@{\quad}c} 1 & , & \mathfrak{m}=1, \\ (-1)^{\mathfrak{v}} & , & \mathfrak{m}=p_{1}p_{2}\cdots p_{v}, \\ 0 & , & p^{2}|\mathfrak{m,}\text{ for any prime }p,\end{array}\displaystyle \right . \text{ (M\"{o}bius function)} \\ \varphi (\mathfrak{m}) =&\mathfrak{m}\sum _{\mathfrak{v}\mid \mathfrak{m}}\dfrac{\mu (\mathfrak{v})}{\mathfrak{v}}, \text{ (Euler's totient function)} \\ J_{r}(\mathfrak{m}) =&\mathfrak{m}^{r}\sum _{\mathfrak{v}\mid \mathfrak{m}}\dfrac{\mu (\mathfrak{v})}{\mathfrak{v}^{r}},\text{ (Jordan's totient function),} \end{aligned}$$

where \(\mathfrak{m\in }\mathbb{N}\) and \(p_{\mathfrak{v}}\) denote successive prime numbers.

Lemma 1.1

[16] For any \(\mathfrak{m}\in N\), \(f(\mathfrak{m})=\sum _{v\mid \mathfrak{m}}g(v)\) iff \(g(\mathfrak{m})=\sum _{\mathfrak{v}\mid \mathfrak{m}}\mu (v)g\left ( \frac{\mathfrak{m}}{\mathfrak{v}}\right ) = \sum _{\mathfrak{v}\mid \mathfrak{m}}\mu \left ( \frac{\mathfrak{m}}{\mathfrak{v}}\right ) g(\mathfrak{v})\).

We highlight some of the interesting properties of \(\rho ^{(\alpha )}(\mathfrak{m})\) (see [1]):

  1. (a)

    \(\rho ^{(\alpha )}(\mathfrak{m}\mathfrak{n})=\rho ^{(\alpha )}(\mathfrak{m})\rho ^{(\alpha )}(\mathfrak{n})\).

  2. (b)

    By Lemma 1.1,

    $$ \rho ^{(\alpha )}(\mathfrak{m})=\sum _{\mathfrak{v}\mid m} \mathfrak{v}\text{ iff }\mathfrak{m}^{\alpha }=\sum _{v\mid m}\mu \left ( \frac{\mathfrak{m}}{\mathfrak{v}}\right ) \rho ^{(\alpha )}(\mathfrak{v}). $$
    (1.1)
  3. (c)

    For any prime p,

    $$ \rho ^{(\alpha )}(p^{\mathfrak{v}})=\left \{ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \dfrac{p^{\alpha (\mathfrak{v}+1)}}{p^{\alpha }-1} & , & \alpha \neq 0, \\ \mathfrak{v}+1 & , & \alpha =0.\end{array}\displaystyle \right . $$

    In general, if \(\mathfrak{m}=p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{\mathfrak{v}}^{k_{v}}\), then

    $$ \rho ^{(\alpha )}(\mathfrak{m})= \dfrac{p^{\alpha (k_{1}+1)}}{p^{\alpha }-1}\cdot \dfrac{p^{\alpha (k_{2}+1)}}{p^{\alpha }-1}\cdots \dfrac{p^{\alpha (k_{v}+1)}}{p^{\alpha }-1}. $$

For \(\alpha =0\), \(\rho ^{(\alpha )}(\mathfrak{m})=\rho ^{(0)}(\mathfrak{m})=d(\mathfrak{m})\). For \(\alpha =1\), \(\rho ^{(\alpha )}(\mathfrak{m})=\rho ^{(1)}(\mathfrak{m})=\rho ( \mathfrak{m})\).

We write ω for the set of all real or complex valued sequeces. We further denote by \(\ell _{p}~(1\leq p<\infty )\) the set of all p-absolutely summable sequences, \(\ell _{\infty}\) for all bounded sequences, \(c_{0}\) for all convergent to zero sequences), and c for all convergent sequences [14].

Let \(\mathsf{A}=(\mathsf{a}_{rs})\) be an infinite matrix and \(\mathsf{A}_{r}\) denotes its \(r^{\text{th}}\) row. Then, we term the sequence \(\mathsf{A}x=\{(\mathsf{A}x)_{r}\}=\left \{ \sum _{s=0}^{r}\mathsf{a}_{rs}x_{s}\right \} \) as the \(\mathsf{A}\)-transform of the sequence \(x=(x_{s})\). Let X and Y be any two sequence spaces. We say that \(\mathsf{A}\) defines a matrix mapping from X to Y if for each \(x\in X\), \(\mathsf{A}x\in Y\). We use the notation \((X,Y)\) to denote the family of all matrix mappings such that \(X\rightarrow Y\). Further, for any sequence space X, the set \(X_{A}\) that contains all the sequences whose \(\mathsf{A}\)-transforms belong to X is called as the domain of \(\mathsf{A}\) in X, i.e., \(X_{\mathsf{A}}=\{x\in \omega :\mathsf{A}x\in X\}\). For different matrix domains in classical sequence spaces, one can refer to [2, 8–11, 15].

Recently, Yaying et al. [22] defined the following sequence spaces via \(\rho ^{(\alpha )}(\mathfrak{n})\):

$$\begin{aligned} \ell _{p}(\mathfrak{A}^{\alpha }):= &\left \{ \mathfrak{x}=( \mathfrak{x}_{v})\in \omega :\mathfrak{A}^{\alpha }\mathfrak{x}\in \ell _{p} \right \} , \\ c_{0}(\mathfrak{A}^{\alpha }):= &\left \{ \mathfrak{x}=(\mathfrak{x}_{v}) \in \omega :\mathfrak{A}^{\alpha }\mathfrak{x}\in c_{0}\right \} , \\ c(\mathfrak{A}^{\alpha }):= &\left \{ \mathfrak{x}=(\mathfrak{x}_{v}) \in \omega :\mathfrak{A}^{\alpha }\mathfrak{x}\in c\right \} , \\ \ell _{\infty }(\mathfrak{A}^{\alpha }):= &\left \{ \mathfrak{x}=( \mathfrak{x}_{v})\in \omega :\mathfrak{A}^{\alpha }\mathfrak{x}\in \ell _{ \infty }\right \} , \end{aligned}$$

where the matrix \(\mathfrak{A}^{\alpha }=(a_{\mathfrak{n},\mathfrak{v}}^{\alpha })_{\mathfrak{n},\mathfrak{v}\in \mathbb{N}}\) is

$$ a_{\mathfrak{n},v}^{\alpha }=\left \{ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \dfrac{\mathfrak{v}^{\alpha }}{\rho ^{(\alpha )}(\mathfrak{n})} & , & \mathfrak{v}\mid \mathfrak{n}, \\ 0 & , & \mathfrak{v}\nmid \mathfrak{n}.\end{array}\displaystyle \right . $$

That is

$$ \mathfrak{A}^{\alpha }= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots & \\ \dfrac{1^{\alpha }}{1^{\alpha }+2^{\alpha }} & \dfrac{2^{\alpha }}{1^{\alpha }+2^{\alpha }} & 0 & 0 & 0 & \cdots & \\ \dfrac{1^{\alpha }}{1^{\alpha }+3^{\alpha }} & 0 & \dfrac{3^{\alpha }}{1^{\alpha }+3^{\alpha }} & 0 & 0 & \cdots & \\ \dfrac{1^{\alpha }}{1^{\alpha }+2^{\alpha }+4^{\alpha }} & \dfrac{2^{\alpha }}{1^{\alpha }+2^{\alpha }+4^{\alpha }} & 0 & \dfrac{4^{\alpha }}{1^{\alpha }+2^{\alpha }+4^{\alpha }} & 0 & \cdots & \\ \dfrac{1^{\alpha }}{1^{\alpha }+5^{\alpha }} & 0 & 0 & 0 & \dfrac{5^{\alpha }}{1^{\alpha }+5^{\alpha }} & \cdots & \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \end{bmatrix}. $$

Since \(\mathfrak{A}^{\alpha }\) is a triangle, its unique inverse by (1.1) is \(\left ( \mathfrak{A}^{\alpha }\right ) ^{-1}=(a_{\mathfrak{n},\mathfrak{v}}^{-\alpha })\), where

$$ a_{\mathfrak{n},\mathfrak{v}}^{-\alpha }=\left \{ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \dfrac{\mu \big(\frac{\mathfrak{n}}{\mathfrak{v}}\big)\rho ^{(\alpha )}(\mathfrak{v})}{\mathfrak{n}^{\alpha }} & , & \mathfrak{v}\mid \mathfrak{n}, \\ 0 & , & \mathfrak{v}\nmid \mathfrak{n}.\end{array}\displaystyle \right . $$

\(\mathfrak{A}^{\alpha }\)-transform of a sequence \(\mathfrak{x}=(\mathfrak{x}_{\mathfrak{v}})\) is given by \(\eta =(\eta _{\mathfrak{n}})\)

$$ \eta _{\mathfrak{n}}=(\mathfrak{A}^{\alpha }\mathfrak{x})_{ \mathfrak{n}}=\sum _{\mathfrak{v}\mid \mathfrak{n}} \dfrac{\mathfrak{v}^{\alpha }}{\rho ^{(\alpha )}(\mathfrak{n})} \mathfrak{x}_{v}~(\mathfrak{n}\in \mathbb{N}). $$
(1.2)

The relation (1.2) is represented by

$$ \mathfrak{x}_{\mathfrak{n}}=\left ( (\mathfrak{A}^{\alpha })^{-1} \eta \right ) _{\mathfrak{n}}=\sum _{\mathfrak{v}\mid \mathfrak{n}} \frac{\mu \big(\frac{\mathfrak{n}}{\mathfrak{v}}\big)\rho ^{(\alpha )}(\mathfrak{v})}{\mathfrak{n}^{\alpha }}\eta _{\mathfrak{v}}~(\mathfrak{n}\in \mathbb{N}). $$

The readers are suggested to consult the papers [18–20] for more insights into sequence spaces that are constructed by using arithmetic functions. Clearly \(X(\mathfrak{A}^{\alpha })=X_{\mathfrak{A}^{\alpha }}\), where \(X=\ell _{p},c_{0},c\), or \(\ell _{\infty }\).

Remark 1.2

For \(\alpha =1\), \(\ell _{p}(\mathfrak{A}^{\alpha })\), \(c_{0}(\mathfrak{A}^{\alpha })\), \(c(\mathfrak{A}^{\alpha })\) and \(\ell _{\infty }(\mathfrak{A}^{\alpha })\) reduce to the spaces defined in [21].

Theorem 1.3

We have

  1. (1)

    \(c_{0}(\mathfrak{A}^{\alpha })\), \(c(\mathfrak{A}^{\alpha })\), \(\ell _{ \infty }(\mathfrak{A}^{\alpha })\) are BK-spaces with the norm

    $$ \left \Vert \mathfrak{x}\right \Vert _{\ell _{\infty }(\mathfrak{A}^{ \alpha })}=\left \Vert \mathfrak{A}^{\alpha }\mathfrak{x}\right \Vert _{\ell _{\infty }}=\sup _{\mathfrak{n}\in \mathbb{N}}\left \vert \sum _{\mathfrak{v}\mid \mathfrak{n}} \frac{\mathfrak{v}^{\alpha }}{\rho ^{(\alpha )}(\mathfrak{n})}\mathfrak{x}_{\mathfrak{v}}\right \vert . $$
  2. (2)

    \(\ell _{p}(\mathfrak{A}^{\alpha })(1\leq p<\infty )\) is a BK-space with the norm

    $$ \Vert \mathfrak{x}\Vert _{\ell _{p}(\mathfrak{A}^{\alpha })}=\left \Vert \mathfrak{A}^{\alpha }\mathfrak{x}\right \Vert _{\ell _{p}}= \left [ \sum _{\mathfrak{n}=0}^{\infty }\left \vert \sum _{\mathfrak{v}\mid \mathfrak{n}}\dfrac{v^{\alpha }}{\rho ^{(\alpha )}(\mathfrak{n})}\mathfrak{x}_{ \mathfrak{v}}\right \vert ^{p}\right ] ^{1/p}< \infty . $$

In this paper, we study some geometric properties of these sequence spaces.

2 Geometric properties

We recall some geometric properties to study in our case. For Banach spaces λ and μ, let \(L:\lambda \rightarrow \mu \) be a linear operator. We denote \(B(\lambda ,\mu )\) and \(C(\lambda ,\mu )\) for the spaces of bounded linear operators and compact linear operators, respectively.

L is weakly compact [13, Definition 3.5.1] if \(L(Q)\) is a relatively weakly compact subset of μ whenever Q is a bounded subset of λ.

Approximation property [13, Definition 3.4.26] is possesed by λ if the set of finite rank members of \(B(\mu ,\lambda )\) is dense in \(C(\mu ,\lambda )\) for any μ.

A Banach space is said to have the approximation property (AP), if every compact operator is a limit of finite-rank operators.

The approximation property is satisfied by the space \(\ell _{p}\) \((1\leq p<\infty )\) (see [13]).

The Dunford–Pettis property (in short, D-P property) is possessed by λ if every continuous weakly compact operator \(L:\lambda \rightarrow \mu \) transforms weakly compact sets in λ into a compact sets in μ (such operators are called completely continuous).

Theorem 2.1

[17] Let \(L_{0}\in B(\nu ,\ell _{\infty })\). Then, the operator \(L_{0}\) may be extended to \(L\in B(\lambda ,\ell _{\infty })\) with \(\left \Vert L_{0}\right \Vert =\left \Vert L\right \Vert \), where ν is a linear subspace of λ. In this case, \(\ell _{\infty }\) is said to have Hahn–Banach extension property.

Let

$$ S_{\lambda}=\left \lbrace s\in \lambda : \left \|s \right \|=1 \right \rbrace . $$

A normed space λ is said to be rotund (or strictly convex) [13, Definition 5.1.1] if for any \(s_{1},s_{2}\in S_{\lambda }\) \((s_{1}\neq s_{2})\) and \(0<\alpha <1\),

$$ \left \Vert \alpha s_{1}+(1-\alpha )s_{2}\right \Vert < 1. $$

A normed space λ is rotund [13] iff

$$ \left \Vert \frac{s_{1}+s_{2}}{2}\right \Vert < 1 $$

for any \(s_{1},s_{2}\in S_{\lambda }\) \((s_{1}\neq s_{2})\).

Proposition 2.2

[13, Proposition 5.1.9] Any normed space that is isometrically isomorphic to a rotund space is also rotund.

Let X be a Banach space.

If every bounded sequence \((\xi _{r})\) in X has a subsequence \((\chi _{r})\) such that the sequence \(\{t_{k}(\chi )\}\) converges in the norm, then X has the Banach–Saks property [15], where

$$ \{t_{i}(\chi )\}=\frac{1}{i+1}(\chi _{0}+\chi _{1}+\cdots )~(i\in \mathbb{N}). $$

If any weakly null sequence \((\xi _{r})\) in X has a subsequence \((\chi _{r})\) such that \(\{t_{i}(\chi )\}\) is strongly convergent to zero, then X has the weak Banach–Saks property.

The following coefficient is provided by Garcia-Falset [4],

$$ R(X)=\sup \{\lim _{r\rightarrow \infty }\inf \Vert \xi _{r}-\xi \Vert :(\xi _{r})\subset D(X),\xi _{r}\rightarrow \xi (w),~\xi \in D(X) \}, $$

where \(D(X)\) represents \(X^{\prime }s\) unit ball.

Remark 2.3

X has weak fixed point characteristics when \(R(X)<2\) [5].

For \(1< p<\infty \), the property \((BS)_{p}\), also known as Banach–Saks type p, is that if a subsequence \((\xi _{k_{l}})\) of every weakly null sequence \((\xi _{k})\) satisfies

$$ \bigg\| \sum _{l=0}^{u}\xi _{k_{l}}\bigg\| < Q.(u+1)^{\frac{1}{p}} $$

for each \(Q>0\) and for all \(u\in \mathbb{N}\) ([12]).

The Gurarii’s modulus of convexity (see [6, 7]) is defined by

$$ \beta _{X}{(\epsilon )}=\inf _{{}}{\left \{ 1-\inf _{0\leq \delta \leq 1}{||\delta x+(1-\delta )y||;x,y\in }S_{X},||x-y||=\epsilon \right \} }, $$

where \(0\leq \epsilon \leq 2\), and \(S_{X}\) denotes the unit sphere in X.

Most recently such properties are studied in [3].

3 Main results

Here we study such geometric properties for our sequence spaces.

Theorem 3.1

The approximation property is possessed by the space \(\ell _{p}(\mathfrak{A}^{\alpha })\) for \(1\leq p<\infty \).

Proof

Let \(L\in C(\lambda ,\ell _{p}(\mathfrak{A}^{\alpha }))\) for any Banach space λ. It follows that for each bounded sequence \(s=(s_{n})\in \lambda \), the sequence \(\left ( Ls_{n}\right ) \) has a convergent sub-sequence \(\left ( Ls_{n_{v}}\right ) \) in \(\ell _{p}(\mathfrak{A}^{\alpha })\), i.e.,

$$ \left \Vert Ls_{n_{u}}-Ls_{n_{v}}\right \Vert _{\ell _{p}( \mathfrak{A}^{\alpha })}^{p}=\left \Vert L\left ( s_{n_{u}}-s_{n_{v}} \right ) \right \Vert _{\ell _{p}(\mathfrak{A}^{\alpha })}^{p}=\left \Vert \left ( \mathfrak{A}^{\alpha }L\right ) \left ( s_{n_{u}}-s_{n_{v}} \right ) \right \Vert _{\ell _{p}}^{p}\rightarrow 0 $$

as \(u,v\rightarrow \infty \). Then, \(\mathfrak{A}^{\alpha }L\in C(\lambda ,\ell _{p})\). Since \(\ell _{p}\) possesses the approximation property, there exists a sequence \(T_{n}\in B(\lambda ,\ell _{p})\) of finite rank operators such that

$$ \left \Vert \mathfrak{A}^{\alpha }L-T_{n}\right \Vert \rightarrow 0. $$

Consequently, the sequence \(\left ( {(\mathfrak{A}^{\alpha })}^{-1}T_{n}\right ) \in B(\lambda ,\ell _{p}({\mathfrak{A}^{\alpha }}))\) is the required sequence of finite rank. Also

$$\begin{aligned} \left \Vert L-{(\mathfrak{A}^{\alpha })}^{-1}T_{n}\right \Vert =& \sup _{\left \Vert s\right \Vert =1}\left \Vert \left ( L-{( \mathfrak{A}^{\alpha })}^{-1}T_{n}\right ) s\right \Vert _{\ell _{p}(\mathfrak{A}^{ \alpha })}^{p} \\ =&\sup _{\left \Vert s\right \Vert =1}\left \Vert Ls-\left ( {( \mathfrak{A}^{\alpha })}^{-1}T_{n}\right ) s\right \Vert _{\ell _{p}(\mathfrak{A}^{ \alpha })}^{p} \\ =&\sup _{\left \Vert s\right \Vert =1}\left \Vert \mathfrak{A}^{ \alpha }Ls-T_{n}s\right \Vert _{\ell _{p}}^{p} \\ =&\sup _{\left \Vert s\right \Vert =1}\left \Vert \left ( \mathfrak{A}^{\alpha }L-T_{n}\right ) s\right \Vert _{\ell _{p}}^{p} \\ \rightarrow &0\text{ as $n\rightarrow \infty $}. \end{aligned}$$

This completes the proof. □

Theorem 3.2

The D-P property is possessed by the space \(\ell _{1}(\mathfrak{A}^{\alpha }) \).

Proof

Suppose that L: \(\ell _{1}(\mathfrak{A}^{\alpha })\rightarrow \lambda \) is a weakly compact operator. Then, \(L\{\mathfrak{A}^{\alpha }\}^{-1}:\ell _{1}\rightarrow \lambda \) is a bounded linear operator. Let \(B\subset \ell _{1}\) be bounded. Then, it follows that \(\{\mathfrak{A}^{\alpha }\}^{-1}B\subset \ell _{1}(\mathfrak{A}^{ \alpha })\) is bounded. It follows that the set

$$ L\left ( \{\mathfrak{A}^{\alpha }\}^{-1}B\right ) =\left ( L\{ \mathfrak{A}^{\alpha }\}^{-1}\right ) B $$

is relatively weakly compact in λ, since L is weakly compact. Therefore, \(L\{\mathfrak{A}^{\alpha }\}^{-1}\): \(\ell _{1}\rightarrow \lambda \) is a weakly compact operator. Now, the operator \(L\{\mathfrak{A}^{\alpha }\}^{-1}\) is completely continuous, since the space \(\ell _{1}\) has the D-P property. Suppose that Q is a weakly compact subset of \(\ell _{1}(\mathfrak{A}^{\alpha })\). Then, \(\mathfrak{A}^{\alpha }Q\) is a weakly compact subset of \(\ell _{1}\). Therefore, \(L\{\mathfrak{A}^{\alpha }\}^{-1}({\mathfrak{A}^{\alpha }})(Q)=L(Q)\) is a compact set in μ, since \(L\{\mathfrak{A}^{\alpha }\}^{-1}\) is completely continuous. Hence, L is completely continuous as required. □

Theorem 3.3

The space \(\ell _{\infty }(\mathfrak{A}^{\alpha })\) has the Hahn–Banach extension property.

Proof

Let ν be a linear subspace of a Banach space λ and \(L_{0}\in B(\nu ,\ell _{\infty }(\mathfrak{A}^{\alpha }))\). Then, \(\mathfrak{A}^{\alpha }L_{0}\in B(\nu ,\ell _{\infty })\). Then the operator \(\mathfrak{A}^{\alpha }L_{0}\) can be extended to \(T\in B(\lambda ,\ell _{\infty })\) with \(\left \Vert \mathfrak{A}^{\alpha }L_{0}\right \Vert =\left \Vert T \right \Vert \), since by Theorem 2.1\(\ell _{\infty }\) has the Hahn–Banach extension property. Choose the operator \(L=\{\mathfrak{A}^{\alpha }\}^{-1}T\). Then, \(L\in B(\lambda ,\ell _{\infty }(\mathfrak{A}^{\alpha }))\). Also, we observe that

$$ Ls=\left ( \{\mathfrak{A}^{\alpha }\}^{-1}T\right ) s=\{\mathfrak{A}^{ \alpha }\}^{-1}(Ts)=\{\mathfrak{A}^{\alpha }\}^{-1}\left ( ( \mathfrak{A}^{\alpha }L_{0})s\right ) =L_{0}s. $$

for any \(s\in \nu \). Additionally

$$ \left \Vert L\right \Vert =\left \Vert \{\mathfrak{A}^{\alpha }\}^{-1}T \right \Vert =\left \Vert \{\mathfrak{A}^{\alpha }\}^{-1}\left ( \mathfrak{A}^{\alpha }L_{0}\right ) \right \Vert =\left \Vert L_{0} \right \Vert , $$

as desired. □

Theorem 3.4

The space \(\ell _{p}(\mathfrak{A}^{\alpha })\) \((1< p<\infty )\) is rotund.

Proof

Since \(\ell _{p}\) \((1< p<\infty )\) is a rotund, using Proposition 2.2 we get the result. □

Theorem 3.5

The spaces \(\ell _{1}(\mathfrak{A}^{\alpha })\) and \(\ell _{\infty }(\mathfrak{A}^{\alpha })\) are not rotund.

Proof

Choose \(a_{v},b_{v}\in \ell _{1}(\mathfrak{A}^{\alpha })\) given by

$$\begin{aligned} a_{v}&=\left \{ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \dfrac{\mu (v)+(1^{\alpha }+2^{\alpha })\mu \left ( \frac{v}{2}\right ) }{v^{\alpha }} & , & v\text{ is even} \\ \dfrac{\mu (v)}{v^{\alpha }} & , & v\text{ is odd},\end{array}\displaystyle \right . \quad \text{and} \\ b_{v}&=\left \{ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \dfrac{\mu (v)-(1^{\alpha }+2^{\alpha })\mu \left ( \frac{v}{2}\right ) }{v^{\alpha }} & , & v\text{ is even} \\ \dfrac{\mu (v)}{v^{\alpha }} & , & v\text{ is odd},\end{array}\displaystyle \right . \end{aligned}$$

for all \(v\in \mathbb{N}\). Then, \(\mathfrak{A}^{\alpha }a=(1,1,0,0,\ldots )\in \ell _{p}\) and \(\mathfrak{A}^{\alpha }b=(1,-1,0,0,\ldots )\in \ell _{p} \). It follows that \(\left \Vert a\right \Vert _{\ell _{1}(\mathfrak{A}^{\alpha })}=1\) and \(\left \Vert b\right \Vert _{\ell _{1}(\mathfrak{A}^{\alpha })}=1\). That is \(a,b\in S_{\ell _{1}(\mathfrak{A}^{\alpha })}\).

Let \(s=\frac{a+b}{2}\). Then, \(\mathfrak{A}^{\alpha }s=\{\dfrac{\mu (v)}{v^{\alpha }}\}\). Thus,

$$ \left \Vert s\right \Vert _{\ell _{1}(\mathfrak{A}^{\alpha })}=\left \Vert \mathfrak{A}^{\alpha }s\right \Vert _{\ell _{1}}=1. $$

Hence, we see that

$$ \left \Vert s\right \Vert _{\ell _{1}(\mathfrak{A}^{\alpha })}\nless 1. $$

Therefore, the space \(\ell _{1}(\mathfrak{A}^{\alpha })\) is not rotund. Similarly, non-rotundness of \(\ell _{\infty }(\mathfrak{A}^{\alpha })\) can be proved. □

Theorem 3.6

The space \(\ell _{p}(\mathfrak{A}^{\alpha })\) \((1< p<\infty )\) has the property \((BS)_{p}\).

Proof

For a positive number sequence \((\epsilon _{r})\) such that \(\displaystyle \sum _{r=1}^{\infty }\epsilon _{r}\leq \frac{1}{2}\) and a weakly null sequence \((\xi _{r})\in B(\ell _{p}(\mathfrak{A}^{\alpha }))\). Put \(\chi _{0}=\xi _{0}=0\) and \(\chi _{1}=\xi _{r_{1}}=\xi _{1}\). Therefore, there exists \(v_{1}\in \mathbb{N}\) such that

$$ \bigg\| \sum _{k=v_{1}+1}^{\infty }\chi _{1}(k)e^{(k)}\bigg\| _{\ell _{p}(\mathfrak{A}^{\alpha })}< \epsilon _{1}. $$

There is an \(r_{2}\in \mathbb{N}\) such that

$$ \bigg\| \sum _{k=0}^{v_{1}}\xi _{r}(k)e^{(k)}\bigg\| _{\ell _{p}( \mathfrak{A}^{\alpha })}< \epsilon _{1}, $$

when \(r\geq r_{2}\), since \((\xi _{r})\) is a weakly null sequence, then \(\xi _{r}\rightarrow 0\) coordinatewise. Set \(\chi _{2}=\xi _{r_{2}}\). Therefore there exists an \(r_{2}>r_{1}\) such that

$$ \bigg\| \sum _{k=v_{2}+1}^{\infty }\chi _{2}(k)e^{(k)}\bigg\| _{\ell _{p}(\mathfrak{A}^{\alpha })}< \epsilon _{2}. $$

By using \(\xi _{r}\rightarrow 0\) coordinatewise, there exists \(r_{3}>r_{2}\) such that

$$ \bigg\| \sum _{k=0}^{v_{2}}\xi _{r}(k)e^{(k)}\bigg\| _{\ell _{p}( \mathfrak{A}^{\alpha })}< \epsilon _{2}, $$

when \(r\geq r_{3}\).

By following this procedure, two increasing subsequences \((v_{k})\) and \((r_{k})\) can be obtained such that

$$ \bigg\| \sum _{k=0}^{v_{\alpha }}\xi _{r}(k)e^{(k)}\bigg\| _{\ell _{p}(\mathfrak{A}^{\alpha })}< \epsilon _{\alpha }, $$

for each \(r\geq r_{\alpha +1}\) and

$$ \bigg\| \sum _{k=v_{\alpha }+1}^{\infty }\chi _{j}(k)e^{(k)}\bigg\| _{ \ell _{p}(\mathfrak{A}^{\alpha })}< \epsilon _{\alpha }, $$

where \(\chi _{\alpha }=\xi _{r_{\alpha }}\). Thus

$$\begin{aligned} &\displaystyle \bigg\| \sum _{\alpha =0}^{r}\chi _{\alpha }\bigg\| _{ \ell _{p}(\mathfrak{A}^{\alpha })} \\ &\quad =\bigg\| \sum _{\alpha =0}^{r}\left ( \sum _{k=0}^{v_{\alpha -1}} \chi _{\alpha }(k)e^{(k)}+\sum _{k=v_{\alpha -1}+1}^{v_{j}}\chi _{ \alpha }(k)e^{(k)}+\sum _{k=v_{\alpha }+1}^{\infty }\chi _{\alpha }(k)e^{(k)} \right ) \bigg\| _{\ell _{p}(\mathfrak{A}^{\alpha })} \\ &\quad \leq \bigg\| \sum _{\alpha =0}^{r}\left ( \sum _{k=v_{\alpha -1}+1}^{v_{ \alpha }}\chi _{\alpha }(k)e^{(k)}\right ) \bigg\| _{\ell _{p}( \mathfrak{A}^{\alpha })}+2\sum _{\alpha =0}^{r}\epsilon _{\alpha }. \end{aligned}$$

However, we see that \(\Vert \xi \Vert _{\ell _{p}(\mathfrak{A}^{\alpha })}\leq 1\). Thus, we have

$$ \bigg\| \sum _{\alpha =0}^{r}\left ( \sum _{k=v_{\alpha -1}+1}^{v_{ \alpha }}\chi _{\alpha }(k)e^{(k)}\right ) \bigg\| _{\ell _{p}( \mathfrak{A}^{\alpha })}^{p}\leq (r+1). $$

So, we have

$$ \bigg\| \sum _{\alpha =0}^{r}\sum _{k=v_{\alpha -1}+1}^{v_{\alpha }} \chi _{\alpha }(k)e^{(k)}\bigg\| _{\ell _{p}(\mathfrak{A}^{\alpha })}^{p} \leq (r+1)^{\frac{1}{p}}. $$

By using \(1\leq (r+1)^{\frac{1}{p}}\) for all \(r\in \mathbb{N}\) and \(1< p<\infty \), we have

$$ \bigg\| \sum _{\alpha =0}^{r}\chi _{\alpha }\bigg\| _{\ell _{p}( \mathfrak{A}^{\alpha })}\leq (r+1)^{\frac{1}{p}}+1\leq 2(r+1)^{\frac{1}{p}}. $$

Therefore, \(\ell _{p}(\mathfrak{A}^{\alpha })\) has Banach–Saks type p. □

Remark 3.7

The space \(\ell _{p}(\mathfrak{A}^{\alpha })\) is linearly isomorphic to \(\ell _{p}\) and \(R(\ell _{p}(\mathfrak{A}^{\alpha }))=R(\ell _{p})=2^{\frac{1}{p}}\).

Theorem 3.8

The space \(\ell _{p}(\mathfrak{A}^{\alpha })\) \((1< p<\infty )\) has weak fixed-point property.

Proof

The proof is straightforward and follows from Remark 2.3 and 3.7. □

Theorem 3.9

The Gurarii’s modulus of convexity for \(\ell _{p}(\mathfrak{A}^{\alpha })\) \((p\geq 1)\) is

$$ \beta _{\ell _{p}(\mathfrak{A}^{\alpha })}{(\delta )}\leq 1-\left ( 1- \left ( \frac{{\delta }}{2}\right ) ^{p}\right ) ^{1/p}, $$

where \(0\leq {\delta }\leq 2\).

Proof

Let \(\mathfrak{x\in }\ell _{p}(\mathfrak{A}^{\alpha })\). Then

$$ \Vert \mathfrak{x}\Vert _{\ell _{p}(\mathfrak{A}^{\alpha })}=\left \Vert \mathfrak{A}^{\alpha }\mathfrak{x}\right \Vert _{\ell _{p}}= \left [ \sum _{\mathfrak{n}=0}^{\infty }\left \vert \sum _{\mathfrak{v}\mid \mathfrak{n}}\dfrac{v^{\alpha }}{\rho ^{(\alpha )}(\mathfrak{n})}\mathfrak{x}_{ \mathfrak{v}}\right \vert ^{p}\right ] ^{1/p}. $$

For \(0\leq {\delta }\leq 2\), define

$$ x=\left ( \{\mathfrak{A}^{\alpha }\}^{-1}\left ( 1-\left ( \frac{{\delta }}{2}\right ) ^{p}\right ) ^{1/p},\{\mathfrak{A}^{\alpha }\}^{-1}\left ( \frac{{\delta }}{2}\right ) ,0,0,0,\ldots\right ) $$

and

$$ y=\left ( \{\mathfrak{A}^{\alpha }\}^{-1}\left ( 1-\left ( \frac{{\delta }}{2}\right ) ^{p}\right ) ^{1/p},\{\mathfrak{A}^{\alpha }\}^{-1}\left ( - \frac{{\delta }}{2}\right ) ,0,0,0,\ldots\right ) . $$

Then, \(\left \Vert \mathfrak{A}^{\alpha }x\right \Vert _{\ell _{p}}=\Vert x \Vert _{\ell _{p}(\mathfrak{A}^{\alpha })}=1\) and \(\left \Vert \mathfrak{A}^{\alpha }y\right \Vert _{\ell _{p}}=\Vert y\Vert _{\ell _{p}( \mathfrak{A}^{\alpha })}=1\). That is, \(x,y\in S(\ell _{p}(\mathfrak{A}^{\alpha }))\) and \(\left \Vert \mathfrak{A}^{\alpha }x-\mathfrak{A}^{\alpha }y\right \Vert _{\ell _{p}}=\Vert x-y\Vert _{\ell _{p}(\mathfrak{A}^{\alpha })}={ \delta }\). For \(0\leq {\delta }\leq 1\),

$$\begin{aligned}& \Vert \alpha x+(1-\alpha )y\Vert _{\ell _{p}(\mathfrak{A}^{\alpha })}^{p}= \Vert \alpha \mathfrak{A}^{\alpha }x+(1-\alpha )\mathfrak{A}^{\alpha }y \Vert _{\ell _{p}}^{p}\\& =1-\left ( \frac{{\delta }}{2}\right ) ^{p}+[2\alpha -1]\left ( \frac{{\delta }}{2}\right ) ^{p}. \end{aligned}$$

Hence

$$ \inf _{0\leq {\delta }\leq 1}\Vert \alpha x+(1-\alpha )y\Vert _{\ell _{p}(\mathfrak{A}^{\alpha })}^{p}=1-\left ( \frac{{\delta }}{2}\right ) ^{p}. $$

That is, for \(p\geq 1\),

$$ \beta _{\ell _{p}(\mathfrak{A}^{\alpha })}{(\delta )}\leq 1-\left ( 1- \left ( \frac{{\delta }}{2}\right ) ^{p}\right ) ^{1/p}. $$

Hence proved. □

Corollary 3.10

(i) If \({\delta }=2\), then \(\beta _{\ell _{p}(\mathfrak{A}^{\alpha })}{(\delta )=1}\). So, \(\ell _{p}(\mathfrak{A}^{\alpha })\) is strictly convex. (ii) If \(0<{\delta }\leq 2\), then \(0<\beta _{\ell _{p}(\mathfrak{A}^{\alpha })}{(\delta )\leq 1.}\) So, \(\ell _{p}(\mathfrak{A}^{\alpha })\) is uniformly convex.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)

    Book  Google Scholar 

  2. Ayman Mursaleen, M.: A note on matrix domains of Copson matrix of order α and compact operators. Asian-Eur. J. Math. 15(7), 2250140 (2022)

    Article  MathSciNet  Google Scholar 

  3. Braha, N., Yaying, T., Mursaleen, M.: Sequence spaces derived by \(q^{\lambda}\) operators in \(\ell _{p}\) spaces and their geometric properties. J. Inequal. Appl. 2024, 74 (2024)

    Article  MathSciNet  Google Scholar 

  4. García-Falset, J.: Stability and fixed points for nonexpansive mappings. Houst. J. Math. 20(3), 495–506 (1994)

    MathSciNet  Google Scholar 

  5. García-Falset, J.: The fixed point property in Banach spaces with the NUS-property. J. Math. Anal. Appl. 215(2), 532–542 (1997)

    Article  MathSciNet  Google Scholar 

  6. Gurarii, V.I.: Differential properties of the convexity moduli of Banach spaces. Mat. Issled. 2, 141–148 (1967) (Russian)

    MathSciNet  Google Scholar 

  7. Hudzik, H., Karakaya, V., Mursaleen, M., Simsek, N.: Banach-Saks type and Gurariı̌ modulus of convexity of some Banach sequence spaces. Abstr. Appl. Anal. 2014, 427382 (2014)

    Article  Google Scholar 

  8. İlkhan, M.: Matrix domain of a regular matrix derived by Euler totient function in the spaces \(c_{0}\) and c. Mediterr. J. Math. 17, 27 (2020)

    Article  MathSciNet  Google Scholar 

  9. İlkhan, M., Kara, E.E.: A new Banach space defined by Euler totient matrix operator. Oper. Matrices 13(2), 527–544 (2019)

    Article  MathSciNet  Google Scholar 

  10. İlkhan, M., Kara, E.E., Usta, F.: Compact operators on the Jordan totient sequence spaces. Math. Methods Appl. Sci. 44, 7666–7675 (2021)

    Article  MathSciNet  Google Scholar 

  11. İlkhan, M., Şimşek, N., Kara, E.E.: A new regular infinite matrix defined by Jordan totient function and its matrix domain in \(\ell _{p}\). Math. Methods Appl. Sci. 44, 7622–7633 (2021)

    Article  MathSciNet  Google Scholar 

  12. Knaust, H.: Orlicz sequence spaces of Banach-Saks type. Arch. Math. (Basel) 59(6), 562–565 (1992)

    Article  MathSciNet  Google Scholar 

  13. Megginson, R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)

    Book  Google Scholar 

  14. Mursaleen, M., BaÅŸar, F.: Sequence Spaces: Topics in Modern Summability Theory. Mathematics and Its Applications. CRC Press, Boca Raton (2020)

    Book  Google Scholar 

  15. Mursaleen, M., Başar, F., Altay, B.: On the Euler sequence spaces which include the spaces \(l_{p}\) and \(l_{\infty }\). Nonlinear Anal. 65(3), 707–717 (2006)

    Article  MathSciNet  Google Scholar 

  16. Niven, I., Zuckerman, H.S., Montgomery, H.L.: An Introduction to the Theory of Numbers. Wiley, New York (1991)

    Google Scholar 

  17. Phillips, R.S.: On linear transformations. Trans. Am. Math. Soc. 48, 516–541 (1940)

    Article  Google Scholar 

  18. Yaying, T.: Arithmetic continuity in cone metric space. Dera Natung Gov. Coll. Res. J. 5(1), 55–62 (2020)

    Article  Google Scholar 

  19. Yaying, T., Hazarika, B.: On arithmetical summability and multiplier sequences. Nat. Acad. Sci. Lett. 40, 43–46 (2017)

    Article  MathSciNet  Google Scholar 

  20. Yaying, T., Hazarika, B.: Lacunary arithmetic statistical convergence. Nat. Acad. Sci. Lett. 43, 547–551 (2020)

    Article  MathSciNet  Google Scholar 

  21. Yaying, T., Saikia, N.: On sequence spaces defined by arithmetic function and Hausdorff measure of non-compactness. Rocky Mt. J. Math. 52(5), 1867–1885 (2022)

    Article  Google Scholar 

  22. Yaying, T., Saikia, N., Mursaleen, M.: New sequence spaces derived by using generalized arithmetic divisor sum function and compact operators. Forum Math. (2024). https://doi.org/10.1515/forum-2023-0138

    Article  Google Scholar 

Download references

Acknowledgements

This paper was prepared when the first author (MM) visited Universitas Sumatera Utara as an Adjunct Professor during May 02–20, 2024.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

M.M. wrote the main manuscript text and E.H. prepared the final version. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mohammad Mursaleen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mursaleen, M., Herawati, E. On some geometric properties of sequence spaces of generalized arithmetic divisor sum function. J Inequal Appl 2024, 128 (2024). https://doi.org/10.1186/s13660-024-03208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-024-03208-z

Mathematics Subject Classification

Keywords