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Abstract
Recently, some new sequence spaces �p(Aα ) (0 < p <∞), c0(Aα ), c(Aα ), and �∞(Aα )
have been studied by Yaying et al. (ForumMath., 2024, https://doi.org/10.1515/forum-
2023-0138) as matrix domains of Aα = (aα

n,v), where

aα
m,v =

⎧
⎨

⎩

vα

ρ (α)(m)
, v | m,

0 , v �m,

and ρ (α)(m) := sum of the αth power of the positive divisors ofm ∈ N. They obtained
their duals, matrix transformations and associated compact matrix operators for these
matrix classes.
This article deals with some geometric properties of these sequence spaces.
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1 Introduction
We recall some known arithmetic functions [1, 16]:

d(m) =
∑

v|m
1, (Divisor function)

ρ(m) =
∑

v|m
v, (Divisor sum function)

ρ(α)(m) =
∑

v|m
vα , (Divisor sum function of order α)

μ(m) =

⎧
⎪⎨

⎪⎩

1 , m = 1,
(–1)v , m = p1p2 · · ·pv,

0 , p2|m, for any prime p,
(Möbius function)
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ϕ(m) = m
∑

v|m

μ(v)

v
, (Euler’s totient function)

Jr(m) = m
r
∑

v|m

μ(v)

vr , (Jordan’s totient function),

where m ∈N and pv denote successive prime numbers.

Lemma 1.1 [16] For any m ∈ N , f (m) =
∑

v|m g(v) iff g(m) =
∑

v|m μ(v)g
(
m

v

)
=

∑
v|m μ

(
m

v

)
g(v).

We highlight some of the interesting properties of ρ(α)(m) (see [1]):
(a) ρ(α)(mn) = ρ(α)(m)ρ(α)(n).
(b) By Lemma 1.1,

ρ(α)(m) =
∑

v|m
v iff m

α =
∑

v|m
μ

(m

v

)
ρ(α)(v). (1.1)

(c) For any prime p,

ρ(α)(pv) =

⎧
⎨

⎩

pα(v+1)

pα – 1
, α �= 0,

v + 1 , α = 0.

In general, if m = pk1
1 pk2

2 · · ·pkv
v , then

ρ(α)(m) =
pα(k1+1)

pα – 1
· pα(k2+1)

pα – 1
· · · pα(kv+1)

pα – 1
.

For α = 0, ρ(α)(m) = ρ(0)(m) = d(m). For α = 1, ρ(α)(m) = ρ(1)(m) = ρ(m).
We write ω for the set of all real or complex valued sequeces. We further denote by

�p (1 ≤ p < ∞) the set of all p-absolutely summable sequences, �∞ for all bounded se-
quences, c0 for all convergent to zero sequences), and c for all convergent sequences [14].

Let A = (ars) be an infinite matrix and Ar denotes its rth row. Then, we term the sequence
Ax = {(Ax)r} =

{∑r
s=0 arsxs

}
as the A-transform of the sequence x = (xs). Let X and Y be any

two sequence spaces. We say that A defines a matrix mapping from X to Y if for each x ∈ X,
Ax ∈ Y . We use the notation (X, Y ) to denote the family of all matrix mappings such that
X → Y . Further, for any sequence space X, the set XA that contains all the sequences whose
A-transforms belong to X is called as the domain of A in X, i.e., XA = {x ∈ ω : Ax ∈ X}. For
different matrix domains in classical sequence spaces, one can refer to [2, 8–11, 15].

Recently, Yaying et al. [22] defined the following sequence spaces via ρ(α)(n):

�p(Aα) :=
{
x = (xv) ∈ ω : Aα

x ∈ �p
}

,

c0(Aα) := {x = (xv) ∈ ω : Aα
x ∈ c0} ,

c(Aα) := {x = (xv) ∈ ω : Aα
x ∈ c} ,

�∞(Aα) := {x = (xv) ∈ ω : Aα
x ∈ �∞} ,
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where the matrix Aα = (aα
n,v)n,v∈N is

aα
n,v =

⎧
⎨

⎩

vα

ρ(α)(n)
, v | n,

0 , v � n.

That is

A
α =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 · · ·
1α

1α + 2α

2α

1α + 2α
0 0 0 · · ·

1α

1α + 3α
0

3α

1α + 3α
0 0 · · ·

1α

1α + 2α + 4α

2α

1α + 2α + 4α
0

4α

1α + 2α + 4α
0 · · ·

1α

1α + 5α
0 0 0

5α

1α + 5α
· · ·

...
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since Aα is a triangle, its unique inverse by (1.1) is (Aα)–1 = (a–α
n,v), where

a–α
n,v =

⎧
⎨

⎩

μ
(
n

v

)
ρ(α)(v)

nα
, v | n,

0 , v � n.

Aα-transform of a sequence x = (xv) is given by η = (ηn)

ηn = (Aα
x)n =

∑

v|n

vα

ρ(α)(n)
xv (n ∈N). (1.2)

The relation (1.2) is represented by

xn =
(
(Aα)–1η

)

n
=

∑

v|n

μ
(
n

v

)
ρ(α)(v)

nα
ηv (n ∈N).

The readers are suggested to consult the papers [18–20] for more insights into sequence
spaces that are constructed by using arithmetic functions. Clearly X(Aα) = XAα , where
X = �p, c0, c, or �∞.

Remark 1.2 For α = 1, �p(Aα), c0(Aα), c(Aα) and �∞(Aα) reduce to the spaces defined in
[21].

Theorem 1.3 We have
(1) c0(Aα), c(Aα), �∞(Aα) are BK -spaces with the norm

‖x‖�∞(Aα ) = ‖Aα
x‖�∞ = sup

n∈N

∣
∣
∣
∣
∣
∣

∑

v|n

vα

ρ(α)(n)
xv

∣
∣
∣
∣
∣
∣
.
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(2) �p(Aα)(1 ≤ p < ∞) is a BK -space with the norm

‖x‖�p(Aα ) = ‖Aα
x‖�p =

⎡

⎣
∞∑

n=0

∣
∣
∣
∣
∣
∣

∑

v|n

vα

ρ(α)(n)
xv

∣
∣
∣
∣
∣
∣

p⎤

⎦

1/p

< ∞.

In this paper, we study some geometric properties of these sequence spaces.

2 Geometric properties
We recall some geometric properties to study in our case. For Banach spaces λ and μ, let
L : λ → μ be a linear operator. We denote B(λ,μ) and C(λ,μ) for the spaces of bounded
linear operators and compact linear operators, respectively.

L is weakly compact [13, Definition 3.5.1] if L(Q) is a relatively weakly compact subset
of μ whenever Q is a bounded subset of λ.

Approximation property [13, Definition 3.4.26] is possesed by λ if the set of finite rank
members of B(μ,λ) is dense in C(μ,λ) for any μ.

A Banach space is said to have the approximation property (AP), if every compact op-
erator is a limit of finite-rank operators.

The approximation property is satisfied by the space �p (1 ≤ p < ∞) (see [13]).
The Dunford–Pettis property (in short, D-P property) is possessed by λ if every con-

tinuous weakly compact operator L : λ → μ transforms weakly compact sets in λ into a
compact sets in μ (such operators are called completely continuous).

Theorem 2.1 [17] Let L0 ∈ B(ν,�∞). Then, the operator L0 may be extended to L ∈
B(λ,�∞) with ‖L0‖ = ‖L‖, where ν is a linear subspace of λ. In this case, �∞ is said to have
Hahn–Banach extension property.

Let

Sλ = {s ∈ λ : ‖s‖ = 1} .

A normed space λ is said to be rotund (or strictly convex) [13, Definition 5.1.1] if for any
s1, s2 ∈ Sλ (s1 �= s2) and 0 < α < 1,

‖αs1 + (1 – α)s2‖ < 1.

A normed space λ is rotund [13] iff

∥
∥
∥

s1 + s2

2

∥
∥
∥ < 1

for any s1, s2 ∈ Sλ (s1 �= s2).

Proposition 2.2 [13, Proposition 5.1.9] Any normed space that is isometrically isomorphic
to a rotund space is also rotund.

Let X be a Banach space.
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If every bounded sequence (ξr) in X has a subsequence (χr) such that the sequence
{tk(χ)} converges in the norm, then X has the Banach–Saks property [15], where

{ti(χ)} =
1

i + 1
(χ0 + χ1 + · · · ) (i ∈N).

If any weakly null sequence (ξr) in X has a subsequence (χr) such that {ti(χ)} is strongly
convergent to zero, then X has the weak Banach–Saks property.

The following coefficient is provided by Garcia-Falset [4],

R(X) = sup{ lim
r→∞ inf‖ξr – ξ‖ : (ξr) ⊂ D(X), ξr → ξ (w), ξ ∈ D(X)},

where D(X) represents X ′s unit ball.

Remark 2.3 X has weak fixed point characteristics when R(X) < 2 [5].

For 1 < p < ∞, the property (BS)p, also known as Banach–Saks type p, is that if a subse-
quence (ξkl ) of every weakly null sequence (ξk) satisfies

∥
∥
∥
∥

u∑

l=0

ξkl

∥
∥
∥
∥ < Q.(u + 1)

1
p

for each Q > 0 and for all u ∈ N ([12]).
The Gurarii’s modulus of convexity (see [6, 7]) is defined by

βX(ε) = inf

{

1 – inf
0≤δ≤1

||δx + (1 – δ)y||; x, y ∈SX , ||x – y|| = ε

}

,

where 0 ≤ ε ≤ 2, and SX denotes the unit sphere in X.
Most recently such properties are studied in [3].

3 Main results
Here we study such geometric properties for our sequence spaces.

Theorem 3.1 The approximation property is possessed by the space �p(Aα) for 1 ≤ p < ∞.

Proof Let L ∈ C(λ,�p(Aα)) for any Banach space λ. It follows that for each bounded se-
quence s = (sn) ∈ λ, the sequence (Lsn) has a convergent sub-sequence

(
Lsnv

)
in �p(Aα),

i.e.,

∥
∥Lsnu – Lsnv

∥
∥p

�p(Aα ) =
∥
∥L

(
snu – snv

)∥
∥p

�p(Aα ) =
∥
∥(AαL)

(
snu – snv

)∥
∥p

�p
→ 0

as u, v → ∞. Then, AαL ∈ C(λ,�p). Since �p possesses the approximation property, there
exists a sequence Tn ∈ B(λ,�p) of finite rank operators such that

‖AαL – Tn‖ → 0.
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Consequently, the sequence
(
(Aα)–1Tn

) ∈ B(λ,�p(Aα)) is the required sequence of finite
rank. Also

∥
∥L – (Aα)–1Tn

∥
∥ = sup

‖s‖=1

∥
∥
(
L – (Aα)–1Tn

)
s
∥
∥p

�p(Aα )

= sup
‖s‖=1

∥
∥Ls –

(
(Aα)–1Tn

)
s
∥
∥p

�p(Aα )

= sup
‖s‖=1

‖AαLs – Tns‖p
�p

= sup
‖s‖=1

‖(AαL – Tn) s‖p
�p

→ 0 as n → ∞.

This completes the proof. �

Theorem 3.2 The D-P property is possessed by the space �1(Aα).

Proof Suppose that L: �1(Aα) → λ is a weakly compact operator. Then, L{Aα}–1 : �1 → λ is
a bounded linear operator. Let B ⊂ �1 be bounded. Then, it follows that {Aα}–1B ⊂ �1(Aα)

is bounded. It follows that the set

L
({Aα}–1B

)
=

(
L{Aα}–1)B

is relatively weakly compact in λ, since L is weakly compact. Therefore, L{Aα}–1: �1 → λ is
a weakly compact operator. Now, the operator L{Aα}–1 is completely continuous, since the
space �1 has the D-P property. Suppose that Q is a weakly compact subset of �1(Aα). Then,
AαQ is a weakly compact subset of �1. Therefore, L{Aα}–1(Aα)(Q) = L(Q) is a compact
set in μ, since L{Aα}–1 is completely continuous. Hence, L is completely continuous as
required. �

Theorem 3.3 The space �∞(Aα) has the Hahn–Banach extension property.

Proof Let ν be a linear subspace of a Banach space λ and L0 ∈ B(ν,�∞(Aα)). Then, AαL0 ∈
B(ν,�∞). Then the operator AαL0 can be extended to T ∈ B(λ,�∞) with ‖AαL0‖ = ‖T‖,
since by Theorem 2.1 �∞ has the Hahn–Banach extension property. Choose the operator
L = {Aα}–1T . Then, L ∈ B(λ,�∞(Aα)). Also, we observe that

Ls =
({Aα}–1T

)
s = {Aα}–1(Ts) = {Aα}–1 ((AαL0)s) = L0s.

for any s ∈ ν . Additionally

‖L‖ =
∥
∥{Aα}–1T

∥
∥ =

∥
∥{Aα}–1 (AαL0)

∥
∥ = ‖L0‖ ,

as desired. �

Theorem 3.4 The space �p(Aα) (1 < p < ∞) is rotund.

Proof Since �p (1 < p < ∞) is a rotund, using Proposition 2.2 we get the result. �
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Theorem 3.5 The spaces �1(Aα) and �∞(Aα) are not rotund.

Proof Choose av, bv ∈ �1(Aα) given by

av =

⎧
⎪⎨

⎪⎩

μ(v) + (1α + 2α)μ
( v

2
)

vα
, v is even

μ(v)

vα
, v is odd,

and

bv =

⎧
⎪⎨

⎪⎩

μ(v) – (1α + 2α)μ
( v

2
)

vα
, v is even

μ(v)

vα
, v is odd,

for all v ∈ N. Then, Aαa = (1, 1, 0, 0, . . .) ∈ �p and Aαb = (1, –1, 0, 0, . . .) ∈ �p. It follows that
‖a‖�1(Aα ) = 1 and ‖b‖�1(Aα ) = 1. That is a, b ∈ S�1(Aα ).

Let s = a+b
2 . Then, Aαs = {μ(v)

vα
}. Thus,

‖s‖�1(Aα ) = ‖Aαs‖�1 = 1.

Hence, we see that

‖s‖�1(Aα ) ≮ 1.

Therefore, the space �1(Aα) is not rotund. Similarly, non-rotundness of �∞(Aα) can be
proved. �

Theorem 3.6 The space �p(Aα) (1 < p < ∞) has the property (BS)p.

Proof For a positive number sequence (εr) such that
∞∑

r=1

εr ≤ 1
2

and a weakly null sequence

(ξr) ∈ B(�p(Aα)). Put χ0 = ξ0 = 0 and χ1 = ξr1 = ξ1. Therefore, there exists v1 ∈N such that

∥
∥
∥
∥

∞∑

k=v1+1

χ1(k)e(k)

∥
∥
∥
∥

�p(Aα )

< ε1.

There is an r2 ∈N such that

∥
∥
∥
∥

v1∑

k=0

ξr(k)e(k)

∥
∥
∥
∥

�p(Aα )

< ε1,

when r ≥ r2, since (ξr) is a weakly null sequence, then ξr → 0 coordinatewise. Set χ2 = ξr2 .
Therefore there exists an r2 > r1 such that

∥
∥
∥
∥

∞∑

k=v2+1

χ2(k)e(k)

∥
∥
∥
∥

�p(Aα )

< ε2.
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By using ξr → 0 coordinatewise, there exists r3 > r2 such that

∥
∥
∥
∥

v2∑

k=0

ξr(k)e(k)

∥
∥
∥
∥

�p(Aα )

< ε2,

when r ≥ r3.
By following this procedure, two increasing subsequences (vk) and (rk) can be obtained

such that

∥
∥
∥
∥

vα∑

k=0

ξr(k)e(k)

∥
∥
∥
∥

�p(Aα )

< εα ,

for each r ≥ rα+1 and

∥
∥
∥
∥

∞∑

k=vα+1

χj(k)e(k)

∥
∥
∥
∥

�p(Aα )

< εα ,

where χα = ξrα . Thus

∥
∥
∥
∥

r∑

α=0

χα

∥
∥
∥
∥

�p(Aα )

=
∥
∥
∥
∥

r∑

α=0

⎛

⎝
vα–1∑

k=0

χα(k)e(k) +
vj∑

k=vα–1+1

χα(k)e(k) +
∞∑

k=vα+1

χα(k)e(k)

⎞

⎠

∥
∥
∥
∥

�p(Aα )

≤
∥
∥
∥
∥

r∑

α=0

⎛

⎝
vα∑

k=vα–1+1

χα(k)e(k)

⎞

⎠

∥
∥
∥
∥

�p(Aα )

+ 2
r∑

α=0

εα .

However, we see that ‖ξ‖�p(Aα ) ≤ 1. Thus, we have

∥
∥
∥
∥

r∑

α=0

⎛

⎝
vα∑

k=vα–1+1

χα(k)e(k)

⎞

⎠

∥
∥
∥
∥

p

�p(Aα )

≤ (r + 1).

So, we have

∥
∥
∥
∥

r∑

α=0

vα∑

k=vα–1+1

χα(k)e(k)

∥
∥
∥
∥

p

�p(Aα )

≤ (r + 1)
1
p .

By using 1 ≤ (r + 1)
1
p for all r ∈N and 1 < p < ∞, we have

∥
∥
∥
∥

r∑

α=0

χα

∥
∥
∥
∥

�p(Aα )

≤ (r + 1)
1
p + 1 ≤ 2(r + 1)

1
p .

Therefore, �p(Aα) has Banach–Saks type p. �

Remark 3.7 The space �p(Aα) is linearly isomorphic to �p and R(�p(Aα)) = R(�p) = 2
1
p .



Mursaleen and Herawati Journal of Inequalities and Applications        (2024) 2024:128 Page 9 of 10

Theorem 3.8 The space �p(Aα) (1 < p < ∞) has weak fixed-point property.

Proof The proof is straightforward and follows from Remark 2.3 and 3.7. �

Theorem 3.9 The Gurarii’s modulus of convexity for �p(Aα) (p ≥ 1) is

β�p(Aα )(δ) ≤ 1 –
(

1 –
(

δ

2

)p)1/p

,

where 0 ≤ δ ≤ 2.

Proof Let x ∈�p(Aα). Then

‖x‖�p(Aα ) = ‖Aα
x‖�p =

⎡

⎣
∞∑

n=0

∣
∣
∣
∣
∣
∣

∑

v|n

vα

ρ(α)(n)
xv

∣
∣
∣
∣
∣
∣

p⎤

⎦

1/p

.

For 0 ≤ δ ≤ 2, define

x =

(

{Aα}–1
(

1 –
(

δ

2

)p)1/p

, {Aα}–1
(

δ

2

)

, 0, 0, 0, . . .

)

and

y =

(

{Aα}–1
(

1 –
(

δ

2

)p)1/p

, {Aα}–1
(

–
δ

2

)

, 0, 0, 0, . . .

)

.

Then, ‖Aαx‖�p = ‖x‖�p(Aα ) = 1 and
∥
∥Aαy

∥
∥

�p
= ‖y‖�p(Aα ) = 1. That is, x, y ∈ S(�p(Aα)) and

∥
∥Aαx – Aαy

∥
∥

�p
= ‖x – y‖�p(Aα ) = δ. For 0 ≤ δ ≤ 1,

‖αx + (1 – α)y‖p
�p(Aα ) = ‖αAαx + (1 – α)Aαy‖p

�p

= 1 –
(

δ

2

)p

+ [2α – 1]

(
δ

2

)p

.

Hence

inf
0≤δ≤1

‖αx + (1 – α)y‖p
�p(Aα ) = 1 –

(
δ

2

)p

.

That is, for p ≥ 1,

β�p(Aα )(δ) ≤ 1 –
(

1 –
(

δ

2

)p)1/p

.

Hence proved. �

Corollary 3.10 (i) If δ = 2, then β�p(Aα )(δ) = 1. So, �p(Aα) is strictly convex. (ii) If 0 < δ ≤ 2,
then 0 < β�p(Aα )(δ) ≤ 1. So, �p(Aα) is uniformly convex.
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