Skip to main content

Some new dynamic inequalities for B-monotone functions with respect to time scales nabla calculus

Abstract

Motivated by certain results known from the literature, in this paper we give several new dynamic inequalities for B-monotone functions with respect to time scales nabla calculus. If the time scale represents the set of real numbers, our results reduce to integral inequalities known from the literature. On the other hand, in the setting of positive integers, we obtain new discrete inequalities for B-monotone sequences.

1 Introduction

In [16] Heinig and Maligranda showed that for \(\omega \geq 0 \), which is decreasing on \((\iota ,\varrho )\), and \(\Theta \geq 0 \), which is increasing on \((\iota ,\varrho )\), with \(\Theta (\iota )=0\), \(-\infty \leq \iota <\varrho \leq \infty \), the inequality

$$ \int _{ \iota}^{\varrho} \omega (\varkappa )d\Theta (\varkappa )\leq \left ( \int _{ \iota}^{\varrho} \omega ^{\gamma }(\varkappa )d\left [ \Theta ^{\gamma }(\varkappa )\right ] \right ) ^{\frac{1}{\gamma }}, $$
(1)

holds for every \(\gamma \in (0,1]\), while for \(1\leq \gamma <\infty \) the inequality is reversed. It has been also showed that if ω is increasing on \((\iota ,\varrho )\) and Θ is decreasing on \((\iota ,\varrho )\) with \(\Theta (\varrho )=0\), then the inequality

$$ \int _{ \iota}^{\varrho} \omega (\varkappa )d\left [ -\Theta ( \varkappa )\right ] \leq \left ( \int _{ \iota}^{\varrho} \omega ^{ \gamma }(\varkappa )d\left [ -\Theta ^{\gamma }(\varkappa )\right ] \right ) ^{\frac{1}{\gamma }}, $$
(2)

holds, where \(\gamma \in (0,1]\). In the same paper, Heinig and Maligranda showed that if \(0< p\leq q<\infty \), and u, v are nonnegative functions, then \(\exists D>0\) such that

$$ \left [ \int _{0}^{\infty }u(\varkappa )\omega ^{q}(\varkappa )d \varkappa \right ] ^{\frac{1}{q}}\leq D\left [ \int _{0}^{\infty }v(\varkappa )\omega ^{p}(\varkappa )d \varkappa \right ] ^{\frac{1}{p}}, $$
(3)

for a nonnegative decreasing function ω iff

$$ \left [ \int _{0}^{\aleph}u(\varkappa )d\varkappa \right ] ^{ \frac{1}{q}}\leq D\left [ \int _{0}^{\aleph}v(\varkappa )d\varkappa \right ] ^{\frac{1}{p}}, \quad \forall \aleph >0. $$

In addition, they showed that inequality (3) holds for all nonnegative increasing functions ω and \(0< p\leq q<\infty \) iff

$$ \left [ \int _{\aleph}^{\infty }u(\varkappa )d\varkappa \right ] ^{ \frac{1}{q}}\leq D\left [ \int _{\aleph}^{\infty }v(\varkappa )d \varkappa \right ] ^{\frac{1}{p}}, \quad \forall \aleph >0. $$

In 1997, Pečarić et al. [19] extended the results from [16] to the case of B-monotone functions. Recall that if \(s\leq \aleph \) implies \(\omega (\aleph )\leq B\omega (s)\) for all \(s, \aleph \in [\iota , \varrho ]\), then ω is a B-decreasing function on \([\iota , \varrho ]\). On the other hand, if \(s\leq \aleph \) implies \(\omega (s)\leq B\omega (\aleph )\), \(s, \aleph \in [\iota , \varrho ]\), then ω is B-increasing. Clearly, if \(B=1\), then the notion of B-monotonicity reduces to the usual monotonicity.

Pečarić et al. [19] showed that if \(\varpi :[0,\infty )\rightarrow \mathbb{R}\) is a concave, nonnegative, and differentiable function such that \(\varpi (0)=0\), ω is B-decreasing, \(B\geq 1\), and Θ is increasing on \([\iota , \varrho ]\), such that \(\Theta (\iota )=0\), then the inequality

$$ \varpi \left ( B\int _{ \iota}^{\varrho} \omega (\varkappa )d\Theta ( \varkappa )\right ) \leq B\int _{ \iota}^{\varrho} \varpi ^{\prime } \left [ \omega (\varkappa )\Theta (\varkappa )\right ] \left ( \omega (\varkappa )d\Theta (\varkappa )\right ), $$
(4)

holds. In addition, if ω is B-increasing with \(B\geq 1\) and Θ is increasing on \([\iota , \varrho ]\) such that \(\Theta (\iota )=0\), then the inequality

$$ \varpi \left ( \frac{1}{B}\int _{ \iota}^{\varrho} \omega (\varkappa )d \Theta (\varkappa )\right ) \geq \frac{1}{C}\int _{ \iota}^{\varrho} \varpi ^{\prime }\left [ \omega ( \varkappa )\Theta (\varkappa )\right ] \omega (\varkappa )d\Theta ( \varkappa ), $$
(5)

holds. Analogous results have been derived for the case of a decreasing function Θ. More precisely, if ω is B-increasing, \(B\geq 1\), and Θ is decreasing on \([\iota , \varrho ]\) with \(\Theta (\varrho )=0\), then the inequality

$$ \varpi \left ( B\int _{ \iota}^{\varrho} \omega (\varkappa )d\left [ - \Theta (\varkappa )\right ] \right ) \leq B\int _{ \iota}^{\varrho} \varpi ^{\prime }\left [ \omega (\varkappa )\Theta (\varkappa ) \right ] \omega (\varkappa )d\left [ -\Theta (\varkappa )\right ], $$
(6)

holds, while for a B-decreasing function ω, \(B\geq 1\), and a decreasing function Θ such that \(\Theta (\varrho )=0\), one has the inequality

$$ \varpi \left ( \frac{1}{B}\int _{ \iota}^{\varrho} \omega (\varkappa )d \left [ -\Theta (\varkappa )\right ] \right ) \geq \frac{1}{B}\int _{ \iota}^{\varrho} \varpi ^{\prime }\left [ \omega (\varkappa )\Theta ( \varkappa )\right ] \omega (\varkappa )d\left [ -\Theta (\varkappa ) \right ] . $$
(7)

Hilger in his seminal work [17] introduced the time scale theory and established a new dynamic inequality with a general domain called a time scale \(\mathbb{T}\). For the dynamic inequalities, see monographs [1, 2, 9], as well as papers [3, 58, 1114, 18, 2027].

In [24], Saker et al. introduced the inequalities (4)–(7) on time scales. More precisely, the time scale variant of (4) asserts that if ω is B-decreasing on \([\iota , \varrho ]_{\mathbb{T}}\), \(B\geq 1\), and Θ is increasing on \([\iota , \varrho ]_{\mathbb{T}}\) with \(\Theta (\iota )=0\), then

$$ \varpi \left ( B\int _{ \iota}^{\varrho} \omega (\varkappa )\Theta ^{ \Delta }(\varkappa )\Delta \varkappa \right ) \leq B\int _{ \iota}^{ \varrho} \omega (\varkappa )\Theta ^{\Delta }(\varkappa )\varpi ^{ \prime }\left [ \omega (\varkappa )\Theta (\varkappa )\right ] \Delta \varkappa , $$
(8)

where \([\iota , \varrho ]_{\mathbb{T}}\) stands for \([\iota , \varrho ]\cap \mathbb{T}\). Similarly, the time scale analogue of (5) asserts that if ω is B-increasing on \([\iota , \varrho ]_{\mathbb{T}}\), \(B\geq 1\), and Θ is increasing on \([\iota , \varrho ]_{\mathbb{T}}\) with \(\Theta (\iota )=0\), then

$$ \varpi \left ( \frac{1}{B}\int _{ \iota}^{\varrho} \omega (\varkappa ) \Theta ^{\Delta }(\varkappa )\Delta x\right ) \geq \frac{1}{B}\int _{ \iota}^{\varrho} \omega (\varkappa )\Theta ^{\Delta }(\varkappa ) \varpi ^{\prime }\left [ \omega ^{\sigma }(\varkappa )\Theta ^{ \sigma }(\varkappa )\right ] \Delta \varkappa . $$
(9)

In [24], one can also find time scale variants of the inequalities (6) and (7).

This paper seeks to extend inequalities (1), (2), and (4)–(7) via the time scales nabla calculus. We will introduce the difference between the results (8) and (9) on delta calculus in [24] and the nabla calculus. In particular, we will employ the corresponding chain rule formula, as well as the basic properties of B-monotone functions. Of course, the results that we will derive contain classical results and the usual monotonicity.

The paper is structured as follows: Sect. 2 involves the basic definitions and properties on time scales that will be important in proving our main results. Section 3 contains the extended inequalities (1), (2), and (4)–(7) via the time scales nabla calculus. It turns out that if \(\mathbb{T}=\mathbb{R}\), our results reduce to inequalities presented in this Introduction, while for \(\mathbb{T}=\mathbb{N} \), the obtained relations are new.

2 Basic lemmas

In this section, we present the basic notions and facts of nabla calculus. For a comprehensive insight of the time scales calculus, the reader is referred to the monographs [9, 10] by Bohner and Peterson.

The product and the quotient of nabla differentiable functions are also nabla differentiable functions. More precisely, if ω, \(\Theta : \mathbb{T\rightarrow R}\) are nabla differentiable at \(\aleph \in \mathbb{T}\), then

$$ (\omega \Theta )^{\nabla }(\aleph )=\omega ^{\nabla }(\aleph )\Theta ( \aleph )+\omega ^{\rho }(\aleph )\Theta ^{\nabla }(\aleph )=\omega ( \aleph )\Theta ^{\nabla }(\aleph )+\omega ^{\nabla }(\aleph )\Theta ^{ \rho }(\aleph ) $$

and

$$ \left ( \frac{\omega }{\Theta }\right ) ^{\nabla }(\aleph )= \frac{\omega ^{\nabla }(\aleph )\Theta (\aleph )-\omega (\aleph )\Theta ^{\nabla }(\aleph )}{\Theta (\aleph )\Theta ^{\rho }(\aleph )} $$

provided that \(\Theta (\aleph )\Theta ^{\rho }(\aleph )\neq 0\). For the proofs of the above properties, the reader is referred to [4]. The function \(\omega :\mathbb{T} \to \mathbb{R}\) is increasing (decreasing) if \(\omega ^{\nabla}(\varkappa )>0\), \(\varkappa \in \mathbb{T}\) (\(\omega ^{\nabla}(\varkappa )<0\), \(\varkappa \in \mathbb{T}\)).

On the other hand, the chain rule for the nabla derivative asserts that if \(\omega :\mathbb{R\rightarrow R}\) is continuously differentiable and \(\Theta : \mathbb{T\rightarrow R}\) is continuous and nabla differentiable, then \(\omega \circ \Theta :\mathbb{T\rightarrow R}\) is nabla differentiable and there exists \(d\in [\rho (\aleph ), \aleph ]\) such that

$$ \left ( \omega \circ \Theta \right ) ^{\nabla }\left ( t\right ) = \omega ^{\prime }\left ( \Theta \left ( d\right ) \right ) \Theta ^{ \nabla }(\aleph ). $$
(10)

Relation (10) has been established in [15].

The properties of integration in nabla calculus state that if ι, ϱ, \(c\in \mathbb{T}\), α, \(\beta \in \mathbb{R}\) and ω, \(\Theta :\mathbb{T\rightarrow R}\) are ld-continuous, then

  1. (i)

    \(\int _{ \iota}^{\varrho} \left [ \alpha \omega (\aleph )+\beta \Theta (\aleph )\right ] \nabla \aleph =\alpha \int _{ \iota}^{\varrho} \omega ( \aleph )\nabla \aleph +\beta \int _{ \iota}^{\varrho} \Theta (\aleph ) \nabla \aleph \),

  2. (ii)

    \(\int _{ \iota}^{\varrho} \omega (\aleph )\nabla \aleph =-\int \nolimits _{\varrho}^{\iota}\omega (\aleph )\nabla \aleph \),

  3. (iii)

    \(\int \nolimits _{\iota}^{c}\omega (\aleph )\nabla \aleph =\int \nolimits _{\iota}^{\varrho}\omega (\aleph )\nabla \aleph +\int \nolimits _{\varrho}^{c}\omega (\aleph )\nabla \aleph \);

see [9, Theorem 8.47]. The properties of integration transformation on time scales to the analogue in continuous and discrete forms state that for \(\iota , \varrho \in \mathbb{T}\) and \(f : \mathbb{T} \to \mathbb{R}\mathbbm{,}\) which is ld-continuous, the following properties hold:

  1. (i)

    If \(\mathbb{T}=\mathbb{R}\), then \(\int _{ \iota}^{\varrho} f(\aleph ) \nabla \aleph =\int _{ \iota}^{ \varrho} f(\aleph ) d\aleph \).

  2. (ii)

    If \(\mathbb{T}=\mathbb{Z}\), then

    $$\begin{aligned} \int _{ \iota}^{\varrho} f(\aleph ) \nabla \aleph = \textstyle\begin{cases} \sum _{t=\iota +1}^{\varrho} f(\aleph ) & \text{if} \ \iota < \varrho , \\ 0 &\text{if} \ \iota =\varrho , \\ -\sum _{t=\varrho +1}^{\iota} f(\aleph ) &\text{if} \ \iota < \varrho ; \end{cases}\displaystyle \end{aligned}$$

see [9, Theorem 8.48].

In addition, the integration by parts formula in nabla calculus asserts that

$$ \int _{ \iota}^{\varrho} \omega (\aleph )\Theta ^{\nabla }(\aleph ) \nabla \aleph =\left . \omega (\aleph )\Theta (\aleph )\right \vert _{ \iota}^{ \varrho}-\int _{ \iota}^{\varrho} \omega ^{\nabla }(\aleph ) \Theta ^{\rho}(\aleph )\nabla \aleph , $$

provided ω, \(\Theta :\mathbb{T\rightarrow R}\) are ld-continuous functions, see [9, Theorem 8.47].

3 Main results

If nothing else is explicitly stated, we assume that all the considered functions are nonnegative, ld-continuous, -differentiable, and locally -integrable on \([\iota ,\infty )_{\mathbb{T}}\). Furthermore, all the considered integrals are well defined.

In addition, throughout this section, \(\varpi :[0,\infty )\rightarrow \mathbb{R}\) is a nonnegative, concave, and differentiable function such that \(\varpi (0)=0\).

Now, we are ready to state and prove our main results. Our first results is an extension of inequalities (1) and (4) in the setting of time scales nabla calculus.

Theorem 1

Let \(\mathbb{T}\) be a time scale with \(\iota , \varrho \in \mathbb{T} \), and let ω be B-decreasing on \([\iota , \varrho ]_{\mathbb{T}}\), where \(B\geq 1\). If Θ is increasing on \([\iota , \varrho ]_{\mathbb{T}}\) and \(\Theta (\iota )=0\), then the following inequality holds:

$$ \varpi \left ( B\int _{ \iota}^{\varrho} \omega (\varkappa )\Theta ^{ \nabla }(\varkappa )\nabla \varkappa \right ) \leq B\int _{ \iota}^{ \varrho} \omega (\varkappa )\Theta ^{\nabla }(\varkappa )\varpi ^{ \prime }\left [ \omega ^{\rho }(\varkappa )\Theta ^{\rho }(\varkappa ) \right ] \nabla \varkappa . $$
(11)

Proof

Denoting

$$ \Upsilon (\aleph ):=\varpi \left ( B \int _{\iota}^{\aleph}\omega ( \varkappa )\Theta ^{\nabla }(\varkappa )\nabla \varkappa \right ) -B \int _{\iota}^{\aleph}\omega (\varkappa )\Theta ^{\nabla }(\varkappa ) \varpi ^{\prime }\left [ \omega ^{\rho }(\varkappa )\Theta ^{\rho }( \varkappa )\right ] \nabla \varkappa $$

and

$$ \beth (\aleph ):=B \int _{\iota}^{\aleph}\omega (\varkappa )\Theta ^{ \nabla }(\varkappa )\nabla \varkappa , $$

we get

$$ \Upsilon (\aleph ):=\varpi \left ( \beth (\aleph )\right ) -B \int _{ \iota}^{\aleph}\omega (\varkappa )\Theta ^{\nabla }(\varkappa ) \varpi ^{\prime }\left [ \omega ^{\rho }(\varkappa )\Theta ^{\rho }( \varkappa )\right ] \nabla \varkappa . $$

Now, since ω is B-decreasing, it follows that \(\omega (\aleph )\leq B\omega (\varkappa )\), for \(\aleph \geq x\). Moreover, taking into account that Θ is increasing and \(\Theta (\iota )=0\), we obtain

$$ \begin{aligned} \beth (\aleph )= \int _{\iota}^{\aleph}B\omega ( \varkappa )\Theta ^{\nabla }(\varkappa )\nabla \varkappa &\geq \int _{ \iota}^{\aleph}\omega (\aleph )\Theta ^{\nabla }(\varkappa )\nabla \varkappa =\omega (\aleph ) \int _{\iota}^{\aleph}\Theta ^{\nabla }( \varkappa )\nabla \varkappa \\ &=\omega (\aleph )\left [ \Theta (\aleph )-\Theta (\iota )\right ] = \omega (\aleph )\Theta (\aleph ). \end{aligned} $$
(12)

On the other hand, applying (10) to \(\varpi \left ( \beth (\aleph )\right ) \), we see that there exists \(\zeta \in \lbrack \rho (\aleph ), \aleph ]\) such that

$$ \varpi ^{\nabla }\left ( \beth (\aleph )\right ) =\varpi ^{\prime } \left ( \beth (\zeta )\right ) \beth ^{\nabla }(\aleph ). $$
(13)

Now, since Θ is an increasing function, the definition of yields the relation

$$ \beth ^{\nabla }(\aleph )=B\omega (\aleph )\Theta ^{\nabla }(\aleph ) \geq 0, $$
(14)

which implies that is increasing on \([\iota , \varrho ]_{\mathbb{T}}\) and, consequently, \(\beth (\zeta )\geq \beth ^{\rho }(\aleph )\), for \(\zeta \geq \rho (\aleph )\). In addition, since ϖ is concave on \([0,\infty )\), it follows that \(\varpi ^{\prime }\) is decreasing on \([0,\infty )\) and so

$$ \varpi ^{\prime }\left ( \beth (\zeta )\right ) \leq \varpi ^{\prime } \left ( \beth ^{\rho }(\aleph )\right ) . $$
(15)

Taking into account (13)–(15), we arrive at the relation

$$ \varpi ^{\nabla }\left ( \beth (\aleph )\right ) \leq B\omega ( \aleph )\Theta ^{\nabla }(\aleph )\varpi ^{\prime }\left ( \beth ^{ \rho }(\aleph )\right ) . $$
(16)

Clearly, relation (12) implies the inequality \(\varpi ^{\prime }\left ( \beth ^{\rho }(\aleph )\right ) \leq \varpi ^{\prime }\left ( \omega ^{\rho }(\aleph )\Theta ^{\rho }( \aleph )\right )\), that is,

$$ B\omega (\aleph )\Theta ^{\nabla }(\aleph )\varpi ^{\prime }\left ( \beth ^{\rho }(\aleph )\right ) \leq B\omega (\aleph )\Theta ^{ \nabla }(\aleph )\varpi ^{\prime }\left ( \omega ^{\rho }(\aleph ) \Theta ^{\rho }(\aleph )\right ), $$

since ω is nonnegative and Θ is increasing. Hence, taking into account (16), we have that

$$ \varpi ^{\nabla }\left ( \beth (\aleph )\right ) \leq B\omega ( \aleph )\Theta ^{\nabla }(\aleph )\varpi ^{\prime }\left ( \omega ^{ \rho }(\aleph )\Theta ^{\rho }(\aleph )\right ). $$
(17)

Taking into account the definition of ϒ, it follows that

$$ \Upsilon ^{\nabla }(\aleph )=\varpi ^{\nabla }\left ( \beth (\aleph ) \right ) -B\omega (\aleph )\Theta ^{\nabla }(\aleph )\varpi ^{\prime } \left [ \omega ^{\rho }(\aleph )\Theta ^{\rho }(\aleph )\right ], $$

which, together with (17), yields \(\Upsilon ^{\nabla }(\aleph )\leq 0\). Consequently, ϒ is decreasing on \([\iota , \varrho ]_{\mathbb{T}}\) and \(\Upsilon (\varrho )\leq \Upsilon (\iota )\), since \(\varrho >\iota \).

Finally, since \(\varpi (0)=0\), we have that \(\Upsilon (\varrho )\leq \Upsilon (\iota )=\varpi (0)=0\), i.e.,

$$ \varpi \left ( B\int _{ \iota}^{\varrho} \omega (\varkappa )\Theta ^{ \nabla }(\varkappa )\nabla \varkappa \right ) \leq B\int _{ \iota}^{ \varrho} \omega (\varkappa )\Theta ^{\nabla }(\varkappa )\varpi ^{ \prime }\left [ \omega ^{\rho }(\varkappa )\Theta ^{\rho }(\varkappa ) \right ] \nabla \varkappa , $$

as claimed. The proof is now complete. □

Remark 1

In particular, if \(\mathbb{T}\mathbbm{=}\mathbb{R}\) and \(\rho (\varkappa )=\varkappa \), our Theorem 1 reduces to the integral inequality (4) proved by Pečarić et al. [19]. Moreover, if \(\mathbb{T}\mathbbm{=}\mathbb{R}\), \(B=1\), \(\varpi (\aleph )=\aleph ^{p}\), \(0< p\leq 1\), our inequality (11) becomes the integral inequality (1) proved by Heinig and Maligranda in [16].

Remark 2

Considering Theorem 1 applied to \(\mathbb{T}\mathbbm{=}\mathbb{N}_{0}\) and \(\iota =0\), we obtain the following discrete inequality:

$$ \varpi \left ( B\sum _{k=1}^{N}\omega _{k}\nabla \Theta _{k}\right ) \leq B\sum _{k=1}^{N}\left ( \omega _{k}\nabla \Theta _{k}\right ) \varpi ^{\prime } \left [ \omega _{k-1}\Theta _{k-1}\right ] . $$

Remark 3

Considering Theorem 1 applied to \(\mathbb{T}=q^{\mathbb{N}_{0}}\) for \(q>1\), we obtain the following discrete inequality:

$$\begin{aligned} &\varpi \left ( B\sum _{\varkappa =q\iota}^{\varrho} \left (1- \frac{1}{q}\right )\varkappa \omega (\varkappa ) \nabla _{q} \Theta ( \varkappa ) \right ) \\ &\quad \leq B \sum _{\varkappa =q\iota}^{\varrho} \left (1-\frac{1}{q}\right )\varkappa \omega (\varkappa ) \nabla _{q} \Theta (\varkappa )\varpi ^{\prime }\left [ \omega (\varkappa /q) \Theta (\varkappa /q)\right ]. \end{aligned}$$

Our next result is a dynamic extension of the integral inequality (5) due to Pečarić et al. [19].

Theorem 2

Let \(\iota , \varrho \in \mathbb{T} \), and let ω be B-increasing on \([\iota , \varrho ]_{\mathbb{T}}\), where \(B\geq 1\). If Θ is increasing on \([\iota , \varrho ]_{\mathbb{T}}\) and \(\Theta (\iota )=0\), then the inequality

$$ \varpi \left ( \frac{1}{B}\int _{ \iota}^{\varrho} \omega (\varkappa ) \Theta ^{\nabla }(\varkappa )\nabla x\right ) \geq \frac{1}{B}\int _{ \iota}^{\varrho} \omega (\varkappa )\Theta ^{\nabla }(\varkappa ) \varpi ^{\prime }\left [ \omega (\varkappa )\Theta (\varkappa ) \right ] \nabla \varkappa , $$
(18)

holds.

Proof

Let

$$ \Upsilon (\aleph ):=\varpi \left ( \frac{1}{B}\int _{\iota}^{\aleph} \omega (\varkappa )\Theta ^{\nabla }(\varkappa )\nabla \varkappa \right ) -\frac{1}{B}\int _{\iota}^{\aleph}\omega (\varkappa )\Theta ^{ \nabla }(\varkappa )\varpi ^{\prime }\left [ \omega (\varkappa ) \Theta (\varkappa )\right ] \nabla \varkappa $$

and

$$ \beth (\aleph ):=\frac{1}{B}\int _{\iota}^{\aleph}\omega (\varkappa ) \Theta ^{\nabla }(\varkappa )\nabla \varkappa , $$

that is,

$$ \Upsilon (\aleph )=\varpi \left ( \beth (\aleph )\right ) - \frac{1}{B}\int _{\iota}^{\aleph}\omega (\varkappa )\Theta ^{\nabla }( \varkappa )\varpi ^{\prime }\left [ \omega (\varkappa )\Theta ( \varkappa )\right ] \nabla \varkappa . $$
(19)

Since ω is B-increasing, we observe that \(\omega (\varkappa )\leq B\omega (\aleph )\), for \(x \leq \aleph \). Furthermore, having in mind that Θ is increasing and \(\Theta (\iota )=0\), it follows that

$$ \begin{aligned} \int _{\iota}^{\aleph}\omega (\varkappa )\Theta ^{ \nabla }(\varkappa )\nabla \varkappa &\leq \int _{\iota}^{\aleph}B \omega (\aleph )\Theta ^{\nabla }(\varkappa )\nabla \varkappa =B \omega (\aleph ) \int _{\iota}^{\aleph}\Theta ^{\nabla }(\varkappa ) \nabla \varkappa \\ &=B\omega (\aleph )\left [ \Theta (\aleph )-\Theta (\iota )\right ] =B \omega (\aleph )\Theta (\aleph ), \end{aligned} $$

which yields the relation

$$ \beth (\aleph )\leq \omega (\aleph )\Theta (\aleph ), $$
(20)

due to the definition of the function .

On the other hand, using (10) to \(\varpi \left ( \beth (\aleph )\right ) \), it follows that there exists \(\zeta \in \lbrack \rho (\aleph ), \aleph ]\) such that

$$ \varpi ^{\nabla }\left ( \beth (\aleph )\right ) =\varpi ^{\prime }( \beth (\zeta )) \beth ^{\nabla }(\aleph ). $$
(21)

Clearly, since Θ is increasing, we have that

$$ \beth ^{\nabla }(\aleph )=\frac{1}{B}\omega (\aleph )\Theta ^{\nabla }( \aleph )\geq 0, $$
(22)

which means that \(\beth (\aleph )\) is increasing on \([\iota , \varrho ]_{\mathbb{T}}\). Consequently, if \(\zeta \leq \aleph \), then \(\beth (\zeta )\leq \beth (\aleph )\), and so

$$ \varpi ^{\prime }( \beth (\zeta )) \geq \varpi ^{\prime }( \beth ( \aleph )), $$
(23)

due to the concavity of function ϖ. Now, taking into account (21)–(23), we get

$$ \varpi ^{\nabla }( \beth (\aleph )) \geq \frac{1}{B}\omega (\aleph ) \Theta ^{\nabla }(\aleph )\varpi ^{\prime }( \beth (\aleph )). $$
(24)

In addition, by virtue of (20), we have that \(\varpi ^{\prime }( \beth (\aleph )) \geq \varpi ^{\prime }( \omega ( \aleph )\Theta (\aleph ))\), and so (note that ω is nonnegative and Θ is increasing)

$$ \frac{1}{B}\omega (\aleph )\Theta ^{\nabla }(\aleph )\varpi ^{\prime } \left ( \beth (\aleph )\right ) \geq \frac{1}{B}\omega (\aleph ) \Theta ^{\nabla }(\aleph )\varpi ^{\prime }( \omega (\aleph )\Theta ( \aleph )), $$

which, together with (24), yields the relation

$$ \varpi ^{\nabla }( \beth (\aleph )) \geq \frac{1}{B}\omega (\aleph ) \Theta ^{\nabla }(\aleph )\varpi ^{\prime }( \omega (\aleph )\Theta ( \aleph )). $$

Now, taking into account (19), we obtain

$$ \Upsilon ^{\nabla }(\aleph )=\varpi ^{\nabla }( \beth (\aleph )) - \frac{1}{B}\omega (\aleph )\Theta ^{\nabla }(\aleph )\varpi ^{\prime } \left [ \omega (\aleph )\Theta (\aleph )\right ] $$

and, consequently, \(\Upsilon ^{\nabla}(\aleph )\geq 0\), due to the previous inequality.

This means that ϒ is increasing and so \(\Upsilon (\varrho )\geq \Upsilon (\iota )=\varpi (0)=0\), i.e.,

$$ \varpi \left ( \frac{1}{B}\int _{ \iota}^{\varrho} \omega (\varkappa ) \Theta ^{\nabla }(\varkappa )\nabla x\right ) \geq \frac{1}{B}\int _{ \iota}^{\varrho} \omega (\varkappa )\Theta ^{\nabla }(\varkappa ) \varpi ^{\prime }\left [ \omega (\varkappa )\Theta (\varkappa ) \right ] \nabla \varkappa , $$

which represents (18). □

Remark 4

If \(\mathbb{T}\mathbbm{=}\mathbb{R}\mathbbm{,}\) our Theorem 2 reduces to the integral inequality (5) established by Pečarić et al. [19], while for \(\mathbb{T}\mathbbm{=}\mathbb{N}_{0}\) and \(\iota =0\), inequality (18) can be rewritten in the following form:

$$ \varpi \left ( \frac{1}{B}\sum _{k=1}^{N}\omega _{k}\nabla \Theta _{k} \right ) \geq \frac{1}{B}\sum _{k=1}^{N}\left ( \omega _{k}\nabla \Theta _{k}\right ) \varpi ^{\prime }\left [ \omega _{k}\Theta _{k} \right ] . $$

Remark 5

Considering Theorem 2 applied to \(\mathbb{T}=q^{\mathbb{N}_{0}}\) for \(q>1\), we obtain the following discrete inequality:

$$\begin{aligned} &\varpi \left ( \frac{1}{B}\sum _{\varkappa =q\iota}^{\varrho} \left (1- \frac{1}{q}\right )\varkappa \omega (\varkappa ) \nabla _{q} \Theta ( \varkappa ) \right )\\ &\quad \geq \frac{1}{B}\sum _{\varkappa =q\iota}^{ \varrho} \left (1-\frac{1}{q}\right )\varkappa \omega (\varkappa ) \nabla _{q}\Theta (\varkappa )\varpi ^{\prime }[ \omega (\varkappa ) \Theta (\varkappa )]. \end{aligned}$$

In the sequel, we establish time scales versions of the integral inequalities (2) and (6) from the Introduction.

Theorem 3

Let \(\iota , \varrho \in \mathbb{\ T}\), ω be B-increasing on \([\iota , \varrho ]_{\mathbb{T}}\), \(B\geq 1\), and let Θ be decreasing on \([\iota , \varrho ]_{\mathbb{T}}\). If \(\Theta (\varrho )=0\), then the inequality

$$ \varpi \left ( B\int _{ \iota}^{\varrho} \omega (\varkappa )\left [ - \Theta (\varkappa )\right ] ^{\nabla }\nabla \varkappa \right ) \leq B \int _{ \iota}^{\varrho} \omega (\varkappa )\left [ -\Theta ^{\nabla }( \varkappa )\right ] \varpi ^{\prime }\left [ \omega (\varkappa )\Theta ( \varkappa )\right ] \nabla \varkappa , $$
(25)

holds.

Proof

Let

$$ \Upsilon (\aleph )=-\varpi \left ( \beth ^{\ast }(\aleph )\right ) -B \int _{\aleph}^{\varrho}\omega (\varkappa )\Theta ^{\nabla }( \varkappa )\varpi ^{\prime }\left [ \omega (\varkappa )\Theta ( \varkappa )\right ] \nabla \varkappa , $$

where

$$ \beth ^{\ast }(\aleph ):=B \int _{\aleph}^{\varrho}\omega (\varkappa ) \left [ -\Theta (\varkappa )\right ] ^{\nabla }\nabla \varkappa . $$

It is easy to see that

$$ \beth ^{\ast }(\aleph )\geq \omega (\aleph )\Theta (\aleph ). $$
(26)

Namely, since ω is B-increasing and Θ is decreasing with \(\Theta (\varrho )=0\), we have that

$$ \begin{aligned} B \int _{\aleph}^{\varrho}\omega (\varkappa )\left [ - \Theta (\varkappa )\right ] ^{\nabla }\nabla \varkappa &\geq \int _{ \aleph}^{\varrho}\omega (\aleph )\left [ -\Theta (\varkappa )\right ] ^{ \nabla }\nabla \varkappa =\omega (\aleph ) \int _{\aleph}^{\varrho} \left [ -\Theta (\varkappa )\right ] ^{\nabla }\nabla \varkappa \\ &=\omega (\aleph )\left [ \Theta (\aleph )-\Theta (\varrho )\right ] = \omega (\aleph )\Theta (\aleph ), \end{aligned} $$

so assertion (26) holds.

Now, by virtue of the chain rule (10), there exists \(\zeta \in \lbrack \rho (\aleph ), \aleph ]\) such that

$$ \varpi ^{\nabla }( \beth ^{\ast }(\aleph )) =\varpi ^{\prime }( \beth ^{\ast }(\zeta )) \left [ \beth ^{\ast }(\aleph )\right ] ^{ \nabla}. $$
(27)

Clearly, \(\beth ^{\ast }\) is decreasing on \([\iota , \varrho ]_{\mathbb{T}}\) since \(\left [ \beth ^{\ast }(\aleph )\right ] ^{\nabla }=B\omega (\aleph ) \Theta ^{\nabla }(\aleph )\leq 0 \), which, together with the concavity of function ϖ, implies the relation

$$ \varpi ^{\prime }( \beth ^{\ast }(\zeta )) \leq \varpi ^{\prime }( \beth ^{\ast }(\aleph )), $$
(28)

provided that \(\zeta \leq \aleph \). Therefore, relations (27) and (28) imply the inequality

$$ \varpi ^{\nabla }( \beth ^{\ast }(\aleph )) \geq B\omega (\aleph ) \Theta ^{\nabla }(\aleph )\varpi ^{\prime }( \beth ^{\ast }(\aleph )) . $$
(29)

On the other hand, taking into account (26), we have that \(\varpi ^{\prime }( \beth ^{\ast }(\aleph )) \leq \varpi ^{\prime }( \omega (\aleph )\Theta (\aleph ))\), and so

$$ B\omega (\aleph )\Theta ^{\nabla }(\aleph )\varpi ^{\prime }( \beth ^{ \ast }(\aleph )) \geq B\omega (\aleph )\Theta ^{\nabla }(\aleph ) \varpi ^{\prime }( \omega (\aleph )\Theta (\aleph )), $$

that is,

$$ \varpi ^{\nabla }( \beth ^{\ast }(\aleph )) \geq B\omega (\aleph ) \Theta ^{\nabla }(\aleph )\varpi ^{\prime }( \omega (\aleph )\Theta ( \aleph )), $$
(30)

due to (29).

Finally, since \(\Upsilon ^{\nabla }(\aleph )=-\varpi ^{\nabla }( \beth ^{\ast }( \aleph )) +B\omega (\aleph )\Theta ^{\nabla }(\aleph )\varpi ^{ \prime }[ \omega (\aleph )\Theta (\aleph )] \), taking into account (30), it follows that \(\Upsilon ^{\nabla }(\aleph )\leq 0 \), i.e., ϒ is decreasing on \([\iota , \varrho ]_{\mathbb{T}}\). Consequently, we have that \(\Upsilon (\iota )\geq \Upsilon (\varrho )=-\varpi (0)=0\), that is,

$$ \varpi \left ( B\int _{ \iota}^{\varrho} \omega (\varkappa )\left [ - \Theta (\varkappa )\right ] ^{\nabla }\nabla \varkappa \right ) \leq B \int _{ \iota}^{\varrho} \omega (\varkappa )\left [ -\Theta ^{\nabla }( \varkappa )\right ] \varpi ^{\prime }[ \omega (\varkappa )\Theta (\varkappa )] \nabla \varkappa , $$

which represents (25), as claimed. □

Remark 6

If \(\mathbb{T}\mathbbm{=}\mathbb{R}\mathbbm{,}\) our Theorem 3 represents the inequality (6) proved by Pečarić et al. [19]. In addition, if \(B=1\), \(\varpi (\aleph )=\aleph ^{p}\), and \(0< p\leq 1\), we get (2) established by Heinig and Maligranda [16], while for \(\mathbb{T}\mathbbm{=}\mathbb{N}_{0}\) and \(\iota =0\), relation (25) reduces to the following discrete inequality:

$$ \varpi \left ( B\sum _{k=1}^{N}\omega _{k}\nabla \left [ -\Theta _{k} \right ] \right ) \leq B\sum _{k=1}^{N}\left ( \omega _{k}\nabla \left [ -\Theta _{k}\right ] \right ) \varpi ^{\prime }[ \omega _{k}\Theta _{k}] . $$

Remark 7

Considering Theorem 3 applied to \(\mathbb{T}=q^{\mathbb{N}_{0}}\) for \(q>1\), we obtain the following discrete inequality:

$$\begin{aligned} &\varpi \left ( B\sum _{\varkappa =q\iota}^{\varrho} \left (1- \frac{1}{q}\right )\varkappa \omega (\varkappa ) (-\nabla _{q} \Theta (\varkappa )) \right ) \\ &\leq B \sum _{\varkappa =q\iota}^{\varrho} \left (1-\frac{1}{q} \right )\varkappa \omega (\varkappa ) (-\nabla _{q}\Theta (\varkappa )) \varpi ^{\prime }[ \omega (\varkappa )\Theta (\varkappa )]. \end{aligned}$$
(31)

In order to conclude our discussion, it remains to give a dynamic extension of the inequality (7).

Theorem 4

Let \(\iota , \varrho \in \mathbb{T}\), ω be B-decreasing on \([\iota , \varrho ]_{\mathbb{T}}\), \(B\geq 1\), and let Θ be decreasing on \([\iota , \varrho ]_{\mathbb{T}}\). Then the inequality

$$ \varpi \left ( \frac{1}{B}\int _{ \iota}^{\varrho} \omega (\varkappa ) \left [ -\Theta (\varkappa )\right ] ^{\nabla }\nabla \varkappa \right ) \geq \frac{1}{B}\int _{ \iota}^{\varrho} \omega (\varkappa ) \left [ -\Theta (\varkappa )\right ] ^{\nabla }\varpi ^{\prime }[ \omega ^{\rho }(\varkappa ) \Theta ^{\rho }(\varkappa )] \nabla \varkappa , $$
(32)

holds, provided that \(\Theta (\varrho )=0\).

Proof

Let

$$ \Upsilon (\aleph )=-\varpi \left ( \beth ^{\ast }(\aleph )\right ) + \frac{1}{B} \int _{\aleph}^{\varrho}\omega (\varkappa )\left [ -\Theta (\varkappa )\right ] ^{\nabla }\varpi ^{\prime } \left [ \omega ^{\rho }(\varkappa )\Theta ^{\rho }(\varkappa )\right ] \nabla \varkappa , $$

where

$$ \beth ^{\ast }(\aleph ):=\frac{1}{B} \int _{\aleph}^{\varrho}\omega ( \varkappa )\left [ -\Theta (\varkappa )\right ] ^{\nabla }\nabla \varkappa . $$

Since ω is B-decreasing, we have that

$$ \begin{aligned} \int _{\aleph}^{\varrho}\omega (\varkappa )\left [ - \Theta (\varkappa )\right ] ^{\nabla }\nabla \varkappa &\leq \int _{ \aleph}^{\varrho}B\omega (\aleph )\left [ -\Theta (\varkappa )\right ] ^{\nabla }\nabla \varkappa =B\omega (\aleph ) \int _{\aleph}^{\varrho} \left [ -\Theta (\varkappa )\right ] ^{\nabla }\nabla \varkappa \\ &=B\omega (\aleph )\left [ \Theta (\aleph )-\Theta (\varrho )\right ] =B \omega (\aleph )\Theta (\aleph ), \end{aligned} $$

and so

$$ \beth ^{\ast }(\aleph )\leq \omega (\aleph )\Theta (\aleph ). $$
(33)

Utilizing (10) to \(\varpi \left ( \beth ^{\ast }(\aleph )\right ) \), we conclude that there exists \(d\in \lbrack \rho (\aleph ), \aleph ]\) such that

$$ \varpi ^{\nabla }( \beth ^{\ast }(\aleph )) =\varpi ^{\prime }( \beth ^{\ast }(d)) \left [ \beth ^{\ast }(\aleph )\right ] ^{\nabla}. $$
(34)

It should be noticed here that \(\beth ^{\ast }\) is decreasing on \([\iota , \varrho ]_{\mathbb{T}}\) since

$$ \left [ \beth ^{\ast }(\aleph )\right ] ^{\nabla }=\frac{1}{B}\omega ( \aleph )\Theta ^{\nabla }(\aleph )\leq 0, $$

which, together with the concavity of ϖ, yields the relation

$$ \varpi ^{\prime }( \beth ^{\ast }(d)) \geq \varpi ^{\prime }( \beth ^{ \ast }(\rho (\aleph )). $$
(35)

Therefore, comparing (34) and (35), we get

$$ \varpi ^{\nabla }( \beth ^{\ast }(\aleph )) \leq \frac{1}{B}\omega ( \aleph )\Theta ^{\nabla }(\aleph )\varpi ^{\prime }( \beth ^{\ast }( \rho (\aleph )). $$
(36)

On the other hand, since (33) holds, we have that \(\varpi ^{\prime }( \beth ^{\ast }(\rho (\aleph )) \geq \varpi ^{ \prime }( \omega ^{\rho }(\aleph )\Theta ^{\rho }(\aleph ))\), i.e.,

$$ \frac{1}{B}\omega (\aleph )\Theta ^{\nabla }(\aleph )\varpi ^{\prime }( \beth ^{\ast }(\rho (\aleph ))) \leq \frac{1}{B}\omega (\aleph ) \Theta ^{\nabla }(\aleph )\varpi ^{\prime }( \omega ^{\rho }(\aleph ) \Theta ^{\rho }(\aleph )), $$

that is,

$$ \varpi ^{\nabla }( \beth ^{\ast }(\aleph )) \leq \frac{1}{B}\omega ( \aleph )\Theta ^{\nabla }(\aleph )\varpi ^{\prime }( \omega ^{\rho }( \aleph )\Theta ^{\rho }(\aleph )), $$
(37)

due to (36).

At last, since \(\Upsilon ^{\nabla }(\aleph )=-\varpi ^{\nabla }( \beth ^{\ast }( \aleph )) +\frac{1}{B}\omega (\aleph )\Theta ^{\nabla }(\aleph ) \varpi ^{\prime }[ \omega ^{\rho }(\aleph )\Theta ^{\rho }(\aleph )] \), relation (37) implies that ϒ is increasing on \([\iota , \varrho ]_{\mathbb{T}}\). Consequently, it follows that

$$ \Upsilon (\iota )\leq \Upsilon (\varrho )=-\varpi (0)=0, $$

which can be rewritten as

$$ \varpi \left ( \frac{1}{B}\int _{ \iota}^{\varrho} \omega (\varkappa ) \left [ -\Theta (\varkappa )\right ] ^{\nabla }\nabla \varkappa \right ) \geq \frac{1}{B}\int _{ \iota}^{\varrho} \omega (\varkappa ) \left [ -\Theta (\varkappa )\right ] ^{\nabla }\varpi ^{\prime }[ \omega ^{\rho }(\varkappa )\Theta ^{\rho }(\varkappa )] \nabla \varkappa , $$

i.e., we obtain (32). The proof is now complete. □

Remark 8

By putting \(\mathbb{T}\mathbbm{=}\mathbb{R}\) and \(\rho (\varkappa )=\varkappa \) in (32), we get (7) of Pečarić et al. [19]. Furthermore, if \(\mathbb{T}\mathbbm{=}\mathbb{N}_{0}\), \(\rho (k)=k-1\), and \(\iota =0\), our Theorem 4 provides the following inequality:

$$ \varpi \left ( \frac{1}{B}\sum _{k=1}^{N}\omega _{k}\nabla \left [ - \Theta _{k}\right ] \right ) \geq \frac{1}{B}\sum _{k=1}^{N}\omega _{k}\nabla \left [ -\Theta _{k}\right ] \varpi ^{\prime }[ \omega _{k-1}\Theta _{k-1}] . $$

Remark 9

Considering Theorem 4 applied to \(\mathbb{T}=q^{\mathbb{N}_{0}}\) for \(q>1\), we obtain the following discrete inequality:

$$\begin{aligned} &\varpi \left ( \frac{1}{B}\sum _{\varkappa =q\iota}^{\varrho} \left (1- \frac{1}{q}\right )\varkappa \omega (\varkappa ) (-\nabla _{q}\Theta ( \varkappa )) \right ) \\ &\geq \frac{1}{B}\sum _{\varkappa =q\iota}^{\varrho} \left (1- \frac{1}{q}\right )\varkappa \omega (\varkappa ) (-\nabla _{q}\Theta ( \varkappa ))\varpi ^{\prime }[ \omega (\varkappa /q)\Theta ( \varkappa /q)]. \end{aligned}$$

4 Conclusion and future work

This paper presents several new dynamic inequalities for B-monotone functions in time scales nabla calculus and also several different inequalities in discrete calculus. In the future, we will establish their analogues in diamond alpha calculus.

Availability of data and materials

Not applicable.

References

  1. Agarwal, R.P., O’Regan, D., Saker, S.H.: Dynamic Inequalities on Time Scales. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  2. Agarwal, R.P., O’Regan, D., Saker, S.H.: Hardy Type Inequalities on Time Scales. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  3. Ahammad, N.A., Rasheed, H.U., El-Deeb, A.A., Almarri, B., Shah, N.A.: A numerical intuition of activation energy in transient micropolar nanofluid flow configured by an exponentially extended plat surface with thermal radiation effects. Mathematics 10(21), 1–20 (2022). 4046

    Google Scholar 

  4. Anderson, D., Bullock, J., Erbe, L., Peterson, A., Tran, H.: Nabla dynamic equations on time scales. Panam. Math. J. 13(1), 1–47 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Awwad, E., Saied, A.: Some weighted dynamic inequalities of Hardy type with kernels on time scales nabla calculus. J. Math. Inequal. 18, 457–475 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  6. Awwad, E., Saied, A.I.: Some new multidimensional Hardy-type inequalities with general kernels on time scales. J. Math. Inequal. 16(1), 393–412 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bibi, R., Bohner, M., Pečarić, J., Varošanec, S.: Minkowski and Beckenbach–Dresher inequalities and functionals on time scales. J. Math. Inequal. 7(3), 299–312 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bohner, M., Georgiev, S.G.: Multiple Integration on Time Scales. Multivariable Dynamic Calculus on Time Scales. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  9. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  10. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Springer, Berlin (2002)

    MATH  Google Scholar 

  11. El-Deeb, A.A., El-Sennary, H.A., Khan, Z.A.: Some reverse inequalities of Hardy type on time scales. Adv. Differ. Equ. 2020, 402 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. El-Deeb, A.A., Elsennary, H.A., Baleanu, D.: Some new Hardy-type inequalities on time scales. Adv. Differ. Equ. 2020, 441 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. El-Deeb, A.A., Rashid, S.: On some new double dynamic inequalities associated with Leibniz integral rule on time scales. Adv. Differ. Equ. 2021, 125 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. El-Deeb, A.A., Xu, H., Abdeldaim, A., Wang, G.: Some dynamic inequalities on time scales and their applications. Adv. Differ. Equ. 2019(1), 130 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Güvenilir, A.F., Kaymakçalan, B., Pelen, N.N.: Constantin’s inequality for nabla and diamond-alpha derivative. J. Inequal. Appl. 2015(167), 167 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Heinig, H., Maligranda, L.: Weighted inequalities for monotone and concave functions. Stud. Math. 116(2), 133–165 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math. 18(1), 18–56 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oguntuase, J.A., Persson, L.E.: Time scales Hardy-type inequalities via superquadracity. Ann. Funct. Anal. 5(2), 61–73 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pečarić, J., Perić, I., Persson, L.E.: Integral inequalities for monotone functions. J. Math. Anal. Appl. 215(1), 235–251 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Řehak, P.: Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 2005(5), 495–507 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rezk, H.M., Albalawi, W., Abd El-Hamid, H.A., Saied, A.I., Bazighifan, O., Mohamed, M.S., Zakarya, M.: Hardy–Leindler-type inequalities via conformable delta fractional calculus. J. Funct. Spaces 2022, 1–10 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rezk, H.M., Saied, A.I., AlNemer, G., Zakarya, M.: On Hardy–Knopp type inequalities with kernels via time scale calculus. J. Math. 2022, 1–13 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saker, S.H., Alzabut, J., Saied, A.I., O’Regan, D.: New characterizations of weights on dynamic inequalities involving a Hardy operator. J. Inequal. Appl. 2021(1), 73 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saker, S.H., Awwad, E., Saied, A.I.: Some new dynamic inequalities involving monotonic functions on time scales. J. Funct. Spaces 2019, 1–11 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Saker, S.H., Saied, A.I., Anderson, D.R.: Some new characterizations of weights in dynamic inequalities involving monotonic functions. Qual. Theory Dyn. Syst. 20(2), 1–22 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saker, S.H., Saied, A.I., Krnić, M.: Some new dynamic Hardy-type inequalities with kernels involving monotone functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114, 1–16 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Saker, S.H., Saied, A.I., Krnić, M.: Some new weighted dynamic inequalities for monotone functions involving kernels. Mediterr. J. Math. 17(2), 1–18 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this paper.

Corresponding author

Correspondence to Nizar Kh. Al-Oushoush.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Oushoush, N.K., Azar, L.E., Awwad, E. et al. Some new dynamic inequalities for B-monotone functions with respect to time scales nabla calculus. J Inequal Appl 2024, 122 (2024). https://doi.org/10.1186/s13660-024-03202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-024-03202-5

Mathematics Subject Classification

Keywords