Skip to main content

Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces

Abstract

Let \(\mathbb{S}^{n-1}\) denote unit sphere in \(\mathbb{R}^{n}\) equipped with the normalized Lebesgue measure. Let \(\Phi \in L^{s}(\mathbb{S}^{n-1})\) be a homogeneous function of degree zero such that \(\int _{\mathbb{S}^{n-1}}\Phi (y^{\prime})d \sigma (y^{\prime})=0\), where \(y^{\prime}=y/|y|\) for any \(y\neq 0\). The commutators of variable Marcinkiewicz fractional integral operator is defined as

$$ [b,\mu _{\Phi}]^{m}_{\beta }(f)(x )= \left ( \int \limits _{0} ^{ \infty }\left |\int \limits _{|x -y | \leq s} \frac{\Phi (x -y )[b(x )-b(y )]^{m}}{|x -y |^{n-1-\beta (x )}}f(y )dy \right |^{2} \frac{ds}{s^{3}}\right )^{\frac{1}{2}}. $$

In this paper, we obtain the boundedness of the commutators of the variable Marcinkiewicz fractional integral operator on grand variable Herz spaces \({\dot{K} ^{\alpha (\cdot ), q),\theta}_{ p(\cdot )}(\mathbb{R}^{n})}\).

1 Introduction

It is well known that Beurling [8] and Herz [16] introduced new spaces to characterize certain properties of functions. These spaces are known as Herz spaces, and numerous studies involving them can be found in the literature. One of the main reasons is that the Hardy space theory associated with Herz spaces is very rich. These new Hardy spaces serve as a localized version of the ordinary Hardy spaces and can sometimes be better substitutes when considering, for instance, the boundedness of non-translation invariant singular integral operators.

Nowadays, there is a vast boom of research related to both the study of the Herz spaces themselves and the operator theory in these spaces. This is caused by the influence of some possible applications in modeling with nonstandard local growth (in differential equations, fluid mechanics, elasticity theory; see, for example, [1–4, 7, 23, 25, 26]). There was a vast boom of research in the so-called variable exponent spaces. We refer, for example, to the papers [9, 11–14], see also references therein.

In [20], authors considered variable potential operators \(I ^{\beta (x)}\) to prove a Sobolev-type theorem for the potential operator from the Lebesgue space \(L^{p(\cdot )}\) into the weighted Lebesgue space \(L^{q(\cdot )}_{w}\) in \(\mathbb{R}^{n}\), under the conditions that \(p(x)\) is satisfying the logarithmic condition locally and at infinity. It was not supposed that \(p(x)\) is constant at infinity but also assumed that \(p(x)\) took its minimal value at infinity.

Many studies related to Herz spaces and their variations can be found, including variable Herz spaces, continual Herz spaces, grand variable Herz spaces, grand weighted spaces, and grand weighted Herz–Morrey spaces. For details, see [5, 6, 15, 17, 18, 21, 22, 27, 29–36] and references therein.

Motivated by the above results, in this paper, we prove the boundedness of the commutators of variable Marcinkiewicz fractional integral operator on grand variable Herz spaces \({\dot{K} ^{\alpha (\cdot ), q),\theta}_{ p(\cdot )}(\mathbb{R}^{n})}\).

2 Preliminaries

If H is a measurable set in \(\mathbb{R}^{n}\) and \(q(\cdot )\): \(H \rightarrow [1, \infty )\) is a measurable function, we suppose that

$$ {1\leq q_{-}(H)\leq q(h) \leq q_{+}(H)< \infty ,} $$
(2.1)

where \(q_{-}:=\operatorname{ess} \inf \limits _{h\in H}\;q(h), \;\;\;\;q_{+}:= \operatorname{ess} \sup \limits _{h\in H}\;q(h)\).

  1. (a)

    Lebesgue space with variable exponent \(L^{q(\cdot )}(H)\) is defined as

    $$ L^{q(\cdot )}(H)=\left \{ f \; \textit{measurable}: \int _{H}\left ({\frac{|f (y)|}{\gamma}}\right )^{q(y)}dy < \infty {,}\; {{where}}\; \gamma \; \textit{is a constant} \right \}. $$

    Norm in \(L^{q(\cdot )}(H)\) is defined as

    $$ \|f \|_{L^{q(\cdot )}(H)}=\inf \left \{\gamma >0: \int _{H}\left ({\frac{|f (y)|}{\gamma}}\right )^{q(y)}dy\leq 1\right \}. $$
  2. (b)

    The space \(L_{\mathrm{loc}}^{q(\cdot )}(H)\) can be defined as

    $$ L_{\mathrm{loc}}^{q(\cdot )}(H) := \left \{f : f \in L^{q(\cdot )}(K) \; \textit{for all compact subsets} \; K \subset H \right \}. $$

Let us recall the well-known log-Hölder continuity condition (or the Dini–Lipschitz condition) for \(q: H \mapsto (0,\infty )\): there is a positive constant C such that for all \(x,y \in H\) with \(|x-y|\leq \frac{1}{2}\),

$$ |q(x)-q(y)|\leq \frac{C}{-\ln |x-y|}. $$
(2.2)

Further, we say that \(q(\cdot )\) satisfies the decay condition if there exists \(q_{\infty}:=q(\infty )= \lim \limits _{|x|\to \infty} q(x)\), and there is a positive constant \(C_{\infty}>0\) such that

$$ |q(h)-q_{\infty}|\leq \frac{C_{\infty}}{\ln (e+|h|)}. $$
(2.3)

We will also need the log-Hölder continuity condition at 0 for \(q(\cdot )\): there are constants \(C_{0}>0\) such that for all \(|h|\leq \frac{1}{2}\),

$$ |q(h)-q(0)|\leq \frac{C_{0}}{\ln |h|}.\vadjust{\goodbreak} $$
(2.4)

The best possible constant C in (2.2) (resp. \(C_{\infty}\) in (2.3)) is called log-Hölder continuity or log-Dini–Lipschitz constant (resp. decay constant) for the exponent \(q(\cdot )\).

We use these notations in this article:

  1. (i)

    \(B(x,r)\) is the ball of radius r and center at the point x.

  2. (ii)

    \(B_{k}:=B(0,2^{k})=\{x \in \mathbb{R}^{n} : |x| < 2^{k}\}\) for all \(k \in \mathbb{Z}\).

  3. (iii)

    \(R_{t,\tau}:=B_{\tau}\setminus B_{t}=\{x : t<|x|<\tau \}\) is a spherical layer.

  4. (iv)

    \(R_{k}:=B_{k} \setminus B_{k-1}\).

  5. (v)

    \(\chi _{k} :=\chi _{R_{k}}\), \(\chi _{t,\tau} :=\chi _{R_{t,\tau}}\).

  6. (vi)

    Let \(f \in L_{\mathrm{loc}}^{1}(H)\) be a locally integrable function, then the Hardy–Littlewood maximal operator \(\mathcal{M}\) is defined as

    $$ \mathcal{M}f (x):= \sup \limits _{r>0} r^{-n} \int \limits _{B (x,r)} |f (x)|dx, \;\;\;\; (x \in H), $$

    where

    $$ B (x,r):= \{y \in H : |x-y| < r\}. $$
  7. (vii)

    The set \(\mathcal{P}(H)\) consists of all measurable functions \(q(\cdot )\) satisfying \(q_{-}> 1\) and \(q_{+}< \infty \).

  8. (viii)

    \(\mathcal{P}^{\log} = \mathcal{P}^{\log}(H)\) consists of all functions \(q \in \mathcal{P}(H)\) satisfying (2.1) and (2.2).

  9. (ix)

    \(\mathcal{P}_{\infty }(H)\) and \(\mathcal{P}_{0,\infty} (H)\) are the subsets of \(\mathcal{P}(H)\) and values of these subsets lies in \([1, \infty )\), which satisfy condition (2.3) and conditions (2.3) and (2.4), respectively.

  10. (x)

    In what follows, we denote \(\chi _{l} =\chi _{R_{l}},\ R_{l}=B_{l} \setminus B_{l-1},\ B_{l}=B(0,2^{l})= \{x \in \mathbb{R}^{n} : |x| < 2^{l}\}\) for all \(l \in \mathbb{Z}\).

  11. (xi)

    By \(p^{\prime}(x)=p(x)/(p(x)-1)\), we denote the conjugate exponent of \(p(\cdot )\).

  12. (xii)

    C is a constant, its value varies from line to line and is independent of main parameters involved.

Lemma 2.1

[27] Let \(D>1\) and \(q \in \mathcal{P}_{0,\infty}(\mathbb{R}^{n})\). Then

$$ \frac{1}{c_{0}} r^{\frac{n}{q(0)}} \leq \| \chi _{B(0,Dr)\setminus B(0,r)} \| _{L^{q(\cdot )}} \leq c_{0} r^{\frac{n}{q(0)}}, \; \textit{for} \; 0< r \leq 1 $$
(2.5)

and

$$ \frac{1}{c_{\infty}} r^{\frac{n}{q_{\infty}}} \leq \| \chi _{B(0,Dr) \setminus B(0,r)} \| _{L^{q(\cdot )}} \leq c_{\infty }r^{ \frac{n}{q_{\infty}}}, \;\textit{for} \; r \geq 1, $$
(2.6)

respectively, where \(c_{0} \geq 1\) and \(c_{\infty }\geq 1\) depend on D but do not depend on r.

The Hölder inequality in the variable exponent case has the following form:

$$ \int \limits _{\Omega }\left |f(x) g(x)\right | dx \leq \kappa \| f\|_{ L^{p(\cdot )}} \| g\|_{ L^{p'(\cdot )} }, $$

where \(\kappa = \frac{1}{p_{-}} + \frac{1}{(p')_{-}}\), and Ω is a measurable subset of \(\mathbb{R}^{n}\).

The next statement is the generalized Hölder inequality for variable exponent Lebesgue spaces (see [10]):

Lemma 2.2

Let H be a measurable subset of \(\mathbb{R}^{n}\) and \(p(\cdot )\) be an exponent such that \(1 \leq p_{-}(H) \leq p_{+}(H)< \infty \) and \(q_{-},r_{-}>1\). Then

$$ \| {fg} \| _{L^{r(\cdot )}(H)}\leq 2^{1/r_{-}} \| {f}\|_{L^{p(\cdot )}(H)} \| {g}\| _{L^{q(\cdot )}(H)} $$

holds, where \({f} \in {L^{p(\cdot )}(H)}\), \({g} \in {L^{q(\cdot )}(H)}\) and \(\frac{1}{r(\cdot )}=\frac{1}{p(\cdot )}+\frac{1}{q(\cdot )}\).

Definition 2.3

(BMO space)

A BMO function is a locally integrable function u whose mean oscillation given by \({\frac{1}{|B|}} \int _{B}|u(y)-u_{B}|dy\) is bounded. Mathematically,

$$ \|u\|_{BMO}=\sup \limits _{B}{\frac{1}{|B|}} \int \limits _{B}|u(y)-u_{B}|dy< \infty . $$

Lemma 2.4

([19])

Let \(b \in BMO(\mathbb{R}^{n})\), \(m \in \mathbb{N}\), \(i,j \in \mathbb{Z}\) with \(i< j\). Then, we have

$$\begin{aligned} C^{-1} \| b \| ^{m} _{BMO(\mathbb{R}^{n})} \leq & \sup \limits _{B:ball} \frac{1}{\| \chi _{B} \|}_{L^{q(\cdot )}} \| (b-b_{B})^{m} \chi _{B} \| _{L^{q(\cdot )}} \\ \leq & C \| b \| ^{m} _{BMO(\mathbb{R}^{n})}, \\ \| (b-b_{B_{i}})^{m} \chi _{B_{j}}\|_{L^{q(\cdot )}} \leq & C(j-i)^{m} \|b\|^{m}_{BMO(\mathbb{R}^{n})}\|\chi _{B_{j}}\|_{L^{q(\cdot )}}. \end{aligned}$$

Definition 2.5

Let \(0< p\leq \infty \), \(q \in \mathcal{P}(\mathbb{R}^{n})\), \(\alpha : \mathbb{R}^{n} \rightarrow \mathbb{R}\) with \(\alpha (\cdot ) \in L^{\infty}(\mathbb{R}^{n})\). The inhomogeneous Herz space \({{K} ^{\alpha (\cdot )}_{p, q(\cdot ) }(\mathbb{R}^{n})} \) consists of all \(f \in L^{q(\cdot )} _{\mathrm{loc}}(\mathbb{R}^{n} \setminus \{0\})\) such that

$$ \| f\|_{{{K} ^{\alpha (\cdot )}_{p, q(\cdot ) }(\mathbb{R}^{n})}}:= \|f \chi _{B_{0}}\|_{L^{q(\cdot )}}+\left ( \sum _{k \geq 1}\left \| 2^{ \alpha (\cdot )} f \chi _{k} \right \|_{L^{q(\cdot )}}^{p}\right )^{1/p} < \infty . $$

The homogeneous Herz space \({\dot{K} ^{\alpha (\cdot )}_{p, q(\cdot ) }(\mathbb{R}^{n})} \) consists of all \(f \in L^{q(\cdot )} _{\mathrm{loc}}(\mathbb{R}^{n} \setminus \{0\})\) such that

$$ \| f\|_{{\dot{K} ^{\alpha (\cdot )}_{p, q(\cdot ) }(\mathbb{R}^{n})}}:= \left ( \sum _{k \in \mathbb{Z}}\left \| 2^{\alpha (\cdot )} f \chi _{k} \right \|_{L^{q(\cdot )}}^{p}\right )^{1/p} < \infty . $$

Next we will define grand variable Herz spaces.

Definition 2.6

Let \(\alpha (\cdot ) \in L^{\infty}(\mathbb{R}^{n})\), \(1\leq p <\infty \), \(\theta >0\) and \(q :\mathbb{R}^{n} \rightarrow [1,\infty )\), \(\theta >0\). Then the grand variable Herz space \({\dot{K} ^{\alpha (\cdot ), p),\theta}_{ q(\cdot )}(\mathbb{R}^{n})} \) is defined by

$$ {\dot{K} ^{\alpha (\cdot ), p),\theta}_{ q(\cdot )}}=\left \{ f \in L^{q( \cdot )} _{\mathrm{loc}}(\mathbb{R}^{n} \setminus \{0\}): \| f \| _{{ \dot{K} ^{\alpha (\cdot ), p),\theta}_{ q(\cdot )}(\mathbb{R}^{n})}} < \infty \right \}, $$

where

$$\begin{aligned} \| f \| _{{\dot{K} ^{\alpha (\cdot ), p),\theta}_{ q(\cdot )}( \mathbb{R}^{n})}} &=\sup \limits _{\psi >0} \left ( \psi ^{\theta } \sum \limits _{{k \in \mathbb{Z}}} \| 2^{k \alpha (\cdot ) } f \chi _{k} \| ^{p(1+\psi )}_{L^{q(\cdot )}}\right )^{\frac{1}{p(1+\psi )}} \\ =& \sup \limits _{\psi >0} \psi ^{\frac{\theta}{p(1+\psi )}} \|f \| _{ \dot{K} ^{\alpha (\cdot ), p(1+\psi )}_{p(\cdot )}(\mathbb{R}^{n})}. \end{aligned}$$

The next proposition is the generalization of variable exponents Herz spaces in [6]. We omit the proof of proposition 2.6 since it is essentially similar to the proof given in [6], and with slight modification, we can obtain the following result in grand variable Herz spaces.

Proposition 2.7

Let \(\alpha , p, q\) be as defined in definition 2.5, then

$$\begin{aligned} \| f \|_{\dot{K} ^{\alpha (\cdot ), p),\theta}_{ q(\cdot )}( \mathbb{R}^{n})}= & \sup \limits _{\psi >0} \left ( \psi ^{\theta } \sum _{k \in \mathbb{Z} } \|2^{k \alpha (\cdot ) }f \chi _{k} \| ^{p(1+ \psi )}_{L^{q(\cdot )}}\right )^{\frac{1}{p(1+\psi )}} \\ \approx & \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k=- \infty}^{-1} 2^{k \alpha (0) p(1+\psi )} \|f \chi _{k} \| ^{p(1+\psi )}_{L^{q( \cdot )}}\right )^{\frac{1}{p(1+\psi )}} \\ + & \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k=0}^{ \infty }2^{k\alpha _{\infty }p(1+\psi )} \|f \chi _{k} \| ^{p(1+\psi )}_{L^{q( \cdot )}}\right )^{\frac{1}{p(1+\psi )}} . \end{aligned}$$

The Riesz-type potential operator of variable order \(\beta (x)\) is defined by

$$ I ^{\beta (x )} f(x )= \int _{\mathbb{R}^{n}} \frac{f(y )}{|x -y |^{n-\beta (x )}} dy ,\;\;\;\;\; 0 < \beta (x ) < n. $$
(2.7)

Note that the \(\beta (x )\) is the order of the Riesz potential operator, which is variable.

We are assuming that the order of Riesz potential operator \(\beta (x)\) is not continuous rather, we are assuming that it is a measurable function in \(\mathbb{R}^{n}\) satisfying the following conditions:

$$\begin{aligned} \beta _{0}:=\mathrm{ess}\inf _{x \in \mathbb{R}^{n}}\beta (x)>0, \end{aligned}$$
(2.8)
$$\begin{aligned} \mathrm{ess}\sup _{x \in \mathbb{R}^{n}}p(x)\beta (x)< n, \end{aligned}$$
(2.9)
$$\begin{aligned} \mathrm{ess}\sup _{x \in \mathbb{R}^{n}}p(\infty )\beta (x)< n. \end{aligned}$$
(2.10)

The following proposition is one of the main requirements for proving our main results. The given proposition was proved in [20] and is commonly known as a Sobolev theorem for the Riesz potential operator in Lebesgue spaces.

Proposition 2.8

Suppose that \(p(\cdot ) \in \mathcal{P}^{\log}(\mathbb{R}^{n}) \cap \mathcal{P}_{0, \infty}(\mathbb{R}^{n})\cap \mathcal{P}(\mathbb{R}^{n})\), and assume that

$$ 1 < p(\infty ) \leq p(x)\leq p_{+}< \infty . $$

Let \(\beta (x)\) satisfy the above conditions (2.8), (2.9), and (2.10). Then, we have the following weighted Sobolev-type estimate for the operator \(I^{\beta (z)}\),

$$ \|(1+ |x|)^{-\lambda (z)} I^{\beta (z)}(f)\|_{L^{q(\cdot )}( \mathbb{R}^{n})}\leq C\|f\|_{L^{p(\cdot )}(\mathbb{R}^{n})}, $$

where

$$ {\frac{1}{q(x)}}= {\frac{1}{p(x)}}- {\frac{\beta (x)}{n}} $$

is the Sobolev exponent.

$$ \lambda (z)= C _{\infty}\beta (x) \left (1-{\frac{\beta (x)}{n}}\right ) \leq C _{\infty}{\frac{n}{4}}, $$

where \(C_{\infty}\) denotes the Dini–Lipschitz constant from inequality (2.3) in which \(a(\cdot )\) is replaced by \(p(\cdot )\).

Let \(\mathbb{S}^{n-1}\) denote the unit sphere in \(\mathbb{R}^{n}\) (\(n \geq 2\)) with the normalized Lebesgue measure. Let \(\Phi \in L^{r}(\mathbb{S}^{n-1})\) be a homogeneous function of degree zero such that

$$ \int \limits _{\mathbb{S}^{n-1}} \Phi (y^{\prime}) d \Phi (y^{\prime})=0, $$
(2.11)

where \(y^{\prime}=y/|y|\), and y is not zero. The Marcinkiewicz integral was introduced by Stein [28] in connection with Littlewood–Paley g-function on \(\mathbb{R}^{n}\) as:

$$ \mu _{\Phi} (f)(x)= \left ( \int \limits _{0} ^{\infty }|R_{\Phi , s}(f)(x)|^{2} \frac{ds}{s^{3}}\right )^{\frac{1}{2}}, $$

where

$$ R_{\Phi , s}(f)(x)= \int \limits _{|x-y| \leq s} \frac{\Phi (x-y)}{|x-y|^{n-\beta (x)-1}}f(y)d y. $$

Let b be a locally integrable function on \(\mathbb{R}^{n}\). The commutators on the variable Marcinkiewicz fractional integral operator are defined by

$$ {[b,\mu _{\Phi}]^{m}_{\beta }(f)(x )= \left ( \int \limits _{0} ^{ \infty }\left |\int \limits _{|x -y | \leq s} \frac{\Phi (x -y )[b(x )-b(y )]^{m}}{|x -y |^{n-1-\beta (x )}}f(y )dy \right |^{2} \frac{ds}{s^{3}}\right )^{\frac{1}{2}}.} $$

Lemma 2.9

([24])

If \(a > 0\), \(s \in [1, \infty ]\), \(0 < d \leq s\) and \(-m+ (m-1)ds < u < \infty \), then

$$ \left ( \int \limits _{|y |\leq a|x |} |y |^{u}| \Phi (x -y ) |^{d} dy \right )^{1/d} \leq |x |^{(u+m)/d}\| \Phi \| _{L^{s}(\mathbb{S}^{m-1})}. $$

3 The commutators of variable Marcinkiewicz fractional integral operator on grand variable Herz spaces

Theorem 3.1

Let \(0 < v \leq 1 \), \(\alpha (\cdot ), q(\cdot ) \in \mathcal{P}_{0, \infty}(\mathbb{R}^{n})\) with \(1 < q^{-} \leq q^{+} < \infty \), \(1 \leq p < \infty \) and \(b \in BMO(\mathbb{R}^{n})\). Let Φ be homogeneous of degree zero and \(\Phi \in L^{s}(\mathbb{S}^{n-1})\), \(s> q^{\prime \,-}\). Let α be such that:

  1. (i)

    \(- \frac{n}{q_{1}(0)} -v - \frac{n}{s}< \alpha (0) < \frac{n}{q_{1}'(0)}-v-\frac{n}{s}\)

  2. (ii)

    \(- \frac{n}{q_{1\infty}}-v-\frac{n}{s} < \alpha _{\infty }< \frac{n}{q'_{1\infty} }-v-\frac{n}{s}\).

Then

$$ \|(1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{\beta }(g)\|_{ \dot{K} ^{\alpha (\cdot ),p),\theta}_{ q_{2}(\cdot )}(\mathbb{R}^{n})} \leq C\|b\|_{BMO(\mathbb{R}^{n})}^{m}\|g\|_{\dot{K} ^{\alpha (\cdot ),p), \theta}_{ q_{1}(\cdot )}(\mathbb{R}^{n})}. $$

Proof

Let \(g \in \dot{K} ^{\alpha (\cdot ),p),\theta}_{ q_{2}(\cdot )}\), and \(g(x )= \sum _{l=-\infty}^{\infty }g(x ) \chi _{l}(x )= \sum _{l=- \infty}^{\infty }g_{l}(x )\), we have,

$$\begin{aligned} & \|(1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{\beta }(g)\|_{ \dot{K} ^{\alpha (\cdot ),p),\theta}_{ q_{2}(\cdot )}(\mathbb{R}^{n})} \\ &= \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k=-\infty}^{ \infty} \|2^{k \alpha (\cdot ) } \chi _{k} (1+ |x |)^{-\lambda (x )} [b, \mu _{\Phi}]^{m}_{\beta }(g) \| ^{p(1+\psi )}_{L^{q_{2}(\cdot )}} \right )^{\frac{1}{p(1+\psi )}} \\ & \leq \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k=- \infty}^{\infty} \left (\sum _{l= -\infty} ^{\infty}\|2^{k \alpha ( \cdot )} \chi _{k}(1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{ \beta }(g_{l} ) \| ^{p(1+\psi )}_{L^{q_{2}(\cdot )}}\right )\right )^{ \frac{1}{p(1+\psi )}} \\ & \leq \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k=- \infty}^{\infty} \left (\sum \limits _{l = -\infty} ^{k }\|2^{k \alpha (\cdot ) } \chi _{k} (1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{ \beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}}\right )^{p(1+\psi )}\right )^{ \frac{1}{p(1+\psi )}} \\ & + \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k=-\infty}^{ \infty} \left (\sum \limits _{l=k +1} ^{\infty}\|2^{k \alpha (\cdot ) } \chi _{k} (1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{\beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}}\right )^{p(1+\psi )}\right )^{ \frac{1}{p(1+\psi )}} \\ &{=: E_{1}+ E_{2}.} \end{aligned}$$

For \(E_{1}\), splitting \(E_{1}\) using Minkowski’s inequality, we have

$$\begin{aligned} E_{1} \leq & \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k=- \infty}^{-1} \left (\sum \limits _{l = -\infty} ^{k }\|2^{k \alpha ( \cdot )} \chi _{k} (1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{ \beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}}\right )^{p(1+\psi )}\right )^{ \frac{1}{p(1+\psi )}} \\ + & \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k =0}^{ \infty} \left (\sum \limits _{l = -\infty} ^{k }\| 2^{k \alpha ( \cdot )}\chi _{k} (1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{ \beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}}\right )^{p(1+\psi )}\right )^{ \frac{1}{p(1+\psi )}} \\ =: & E_{11}+E_{12}. \end{aligned}$$

For estimating \(E_{11}\), we use the facts that, for each \(k \in \mathbb{Z}\) and \(l \leq k\) and a.e. \(x \in R_{k}\), \(y \in R_{l}\), we know that \(|x -y | \approx |x | \approx 2^{k}\),

$$\begin{aligned} { \left |[b,\mu _{\Phi}]^{m}_{\beta }(g_{l} )(x )\right |} & \leq \left ( \int \limits _{o}^{|x |} \left | \int \limits _{|x -y |\leq t} \frac{ \Phi (x -y )[b(x )-b(y )]^{m}}{|x -y |^{n-1-\beta (x )}}g_{l} (y ) dy \right |^{2}\frac{dt}{t^{3}} \right )^{1/2} \\ & + \left ( \int \limits _{|x |}^{\infty} \left | \int \limits _{|x -y |\leq t} \frac{ \Phi (x -y )[b(x )-b(y )]^{m}}{|x -y |^{n-1-\beta (x )}}g_{l} (y ) dy \right |^{2}\frac{dt}{t^{3}} \right )^{1/2} \\ &=: I_{11}+I_{12}. \end{aligned}$$

By the virtue of the mean value theorem we obtain,

$$ \left | \frac{1}{|x -y |^{2}}-\frac{1}{|x |^{2}} \right | \leq \frac{|y |}{|x -y |^{3}}. $$
(3.1)

For \(I_{11}\), using Minkowski’s inequality, generalized Hölder’s inequality, and inequality (3.1), we have

$$\begin{aligned} I_{11} \leq & \int \limits _{\mathbb{R}^{n}} \frac{ |\Phi (x -y )|[b(x )-b(y )]^{m}}{|x -y |^{n-1-\beta (x )}}|g_{l} (y )|\left ( \int \limits _{|x -y |}^{|x |}\frac{dt}{t^{3}} \right )^{1/2}dy \\ \leq & \int \limits _{\mathbb{R}^{n}} \frac{ |\Phi (x -y )|[b(x )-b(y )]^{m}}{|x -y |^{n-1-\beta (x )}}|g_{l} (y )| \left | \frac{1}{|x -y |^{2}}-\frac{1}{|x |^{2}} \right |^{1/2}dy \\ \leq & {\int \limits _{\mathbb{R}^{n}} \frac{ |\Phi (x -y )||[b(x )-b(y )]^{m}}{|x -y |^{n-1-\beta (x )}}|g_{l} (y )| \left | \frac{|y |}{|x -y |^{3}} \right |^{1/2}dy} \\ \leq & \frac{2^{l/2}}{|x |^{n+{\frac{1}{2}}}.|x |^{-\beta (x )}} \int \limits _{R_{l}} |\Phi (x -y )| [b(x )-b(y )]^{m}|g(y )| dy \\ \leq & 2^{(l-k)/2}2^{-kn}|x |^{\beta (x )}\|g_{l} \|_{L^{q_{1}(\cdot )}} \|\Phi (x -\cdot )\chi _{l}(\cdot )\| _{L^{q_{1}'(\cdot )}}. \\ \leq & 2^{(l-k)/2}2^{-kn}|x |^{\beta (x )} \biggr\{ |b(x )-b_{B_{l}}|^{m} \int \limits _{R_{l}} |\Phi (x -y )| |g_{l}(y )| dy \\ & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad +\int \limits _{R_{l}}|b(y )-b_{B_{l}}|^{m} |\Phi (x -y )| |g_{l}(y )| dy \biggr\} \\ \leq & 2^{(l-k)/2}2^{-kn}|x |^{\beta (x )}\|g_{l}(y )\|_{L^{q_{1}( \cdot )}} \left (|b(x )-b_{B_{l}}|^{m}\|\Phi (x -\cdot )\chi _{l}( \cdot )\| _{L^{q_{1}'(\cdot )}}\right . \\ & \left . \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad +\|(b( \cdot )-b_{B_{l}})^{m} (\Phi (x -\cdot )\chi _{l}(\cdot )\| _{L^{q_{1}'( \cdot )}}\right ). \end{aligned}$$

Similarly, for \(I_{12}\), we have

$$\begin{aligned} I_{12} \leq & \int \limits _{\mathbb{R}^{n}} \frac{ |\Phi (z-1-y )|}{|x -y |^{n-1-\beta (x )}}|g_{l} (y )|\left ( \int \limits _{|x |}^{\infty}\frac{dt}{t^{3}} \right )^{1/2}dy \\ \leq & \int \limits _{\mathbb{R}^{n}} \frac{ |\Phi (x -y )|}{|x -y |^{n-1-\beta (x )}}|g_{l} (y )|dy \\ \leq & {|x |^{-n}}|x |^{\beta (x )} \int \limits _{R_{l}} |\Phi (x -y )| |g(y )| dy \\ \leq & 2^{-kn}|x |^{\beta (x )}\|g_{l} (y )\|_{L^{q_{1}(\cdot )}} \biggr\{ |b(x )-b_{B_{l}}|^{m}\|\Phi (x -\cdot )\chi _{l}(\cdot )\| _{L^{q_{1}'( \cdot )}}\\ &{}+ \|(b(\cdot )-b_{B_{l}})^{m} (\Phi (x -\cdot )\chi _{l}( \cdot )\| _{L^{q_{1}'(\cdot )}}\biggr\} . \end{aligned}$$

We define \(q_{1}(\cdot )\) by the relation \(\frac{1}{q_{1}'(x)}=\frac{1}{q_{1}(x)}+ \frac{1}{s}\). Using Lemma (2.9) and generalized Hölder’s inequality, we have

$$\begin{aligned} \| \Phi (x - \cdot ) \chi _{l}(\cdot ) \| _{L^{q_{1}'(\cdot )}} \leq & \| \Phi (x - \cdot ) \chi _{l}(\cdot ) \| _{L^{s}} \| \chi _{l} ( \cdot ) \| _{L^{q_{1}(\cdot )}} \\ \leq & 2^{-lv} \left ( \int \limits _{2^{l-1} < |y | < 2^{l}} | \Phi (x -y ) |^{s} |y |^{sv}dy \right )^{1/s} \| \chi _{l} \| _{L^{q_{1}( \cdot )}} \\ \leq & 2^{-lv} 2^{k(v+\frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \| \| \chi _{l} \| _{L^{q_{1}(\cdot )}}. \end{aligned}$$

Similarly, using Lemma (2.4), we have

$$\begin{aligned} \|(b(\cdot )-b_{B_{l}})^{m} &(\Phi (x -\cdot )\chi _{l}(\cdot )\| _{L^{q_{1}'( \cdot )}} \\ \leq & \| \Phi (x - \cdot ) \chi _{l}(\cdot ) \| _{L^{s}}\| (b(\cdot )-b_{B_{l}})^{m} \chi _{l}(\cdot ) \|_{L^{q(\cdot )}} \\ \leq & C \|b\|_{BMO(\mathbb{R}^{n})}^{m} \| \chi _{B_{l}} \| _{L^{q( \cdot )}}\| \Phi (x - \cdot ) \chi _{l}(\cdot ) \| _{L^{s}} \\ \leq & C \|b\|_{BMO(\mathbb{R}^{n})}^{m}2^{-lv} 2^{k(v+\frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}}\| \| \chi _{l} \| _{L^{q_{1}( \cdot )}}. \end{aligned}$$

It is known [37] that

$$\begin{aligned} I ^{\beta (\cdot )}((b(x )-b_{B_{l}})^{m}\chi _{k})(x ) &\geq I ^{ \beta (\cdot )}((b(x )-b_{B_{l}})^{m}\chi _{k})(x ).(\chi _{k})(x ) \\ & = \int _{B_{k}} {\frac{|b(x )-b_{B_{l}}|^{m}}{|x -y |^{n-\beta (x )}}}dy . \chi _{k}(x ) \\ & \geq C|b(x )-b_{B_{l}}|^{m}|x |^{\beta (x )}.\chi _{k}(x ) \\ & \geq C|b(x )-b_{B_{l}}|^{m}|x |^{\beta (x )}.\chi _{k}(x ). \end{aligned}$$

Consequently, by proposition (2.8), we have

$$\begin{aligned} &\| (b(x )-b_{B_{l}})^{m}|x |^{\beta (x )}\chi _{k}(x )(1+ |x |)^{- \lambda (x )} \| _{L^{q_{2}(\cdot )}} \\ & \leq \| (1+ |x |)^{-\lambda (x )} (I ^{\beta (\cdot )}((b(x )-b_{B_{l}})^{m} \chi _{k})(x )) \| _{L^{q_{2}(\cdot )}} \\ &\leq \| (b(x )-b_{B_{l}})^{m}\chi _{k})(x )\|_{L^{q_{1}(\cdot )}}. \end{aligned}$$

As a result, we get

$$\begin{aligned} \|& \chi _{k} (1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{\beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}} \\ & \leq C 2^{-kn}\|g_{l}\|_{L^{q_{1}(\cdot )}}\biggr\{ \| (b(x )-b_{B_{l}})^{m}|x |^{\beta (x )}\chi _{k}(x )(1+ |x |)^{-\lambda (x )} \| _{L^{q_{2}( \cdot )}}2^{-lv} 2^{k(v+\frac{n}{s})} \\ &{}\times\| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \| \| \chi _{l} \| _{L^{q_{1}(\cdot )}} \\ & + \|b\|_{BMO(\mathbb{R}^{n})}^{m}2^{-lv} 2^{k(v+\frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}}\| \| \chi _{l} \| _{L^{q_{1}( \cdot )}} \| |x |^{\beta (x )}\chi _{k}(x )(1+ |x |)^{-\lambda (x )} \| _{L^{q_{2}(\cdot )}}\biggr\} \\ & \leq C 2^{-kn}\|g_{l}\|_{L^{q_{1}(\cdot )}}\biggr\{ (k-l)^{m} \|b\|_{BMO( \mathbb{R}^{n})}^{m} \|\chi _{k}\|_{L^{q_{1}(\cdot )}}2^{-lv} 2^{k(v+ \frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}}\| \| \chi _{l} \| _{L^{q_{1}(\cdot )}} \\ & + \|b\|_{BMO(\mathbb{R}^{n})}^{m}2^{-lv} 2^{k(v+\frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}}\| \| \chi _{l} \| _{L^{q_{1}( \cdot )}} \| \chi _{k} \| _{L^{q_{1}(\cdot )}}\biggr\} \\ &\leq C 2^{-kn}\|g_{l}\|_{L^{q_{1}(\cdot )}}(k-l)^{m} \|b\|_{BMO( \mathbb{R}^{n})}^{m} \|\chi _{k}\|_{L^{q(\cdot )}}2^{-lv} 2^{k(v+ \frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \| \chi _{l} \| _{L^{q_{1}( \cdot )}} \\ & \leq C (k-l)^{m} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \|b\|_{BMO( \mathbb{R}^{n})}^{m}2^{-kn}2^{-lv} 2^{k(v+\frac{n}{s})}\|\chi _{k}\|_{L^{q_{1}( \cdot )}} \| \chi _{l} \| _{L^{q_{1}(\cdot )}}\|g_{l}\|_{L^{q_{1}( \cdot )}}. \end{aligned}$$

Applying results to \(E_{11}\), we can get

$$\begin{aligned} E_{11} \leq {}& C \|b\|_{BMO)(\mathbb{R}^{n})} \sup \limits _{\psi >0} \biggl[ \psi ^{\theta }\sum _{k=-\infty}^{-1} 2^{k \alpha (0) p(1+ \psi )} \bigg(\sum \limits _{l = -\infty} ^{k } 2^{(l-k)(n/q_{1}'(0)-v- \frac{n}{s})}(k-l)^{m}\\ &{}\times\| g \chi _{l} \| _{L^{q_{1}(\cdot )}}\bigg)^{p(1+ \psi )} \biggr]^{\frac{1}{p(1+\psi )}} \\ \leq {}&C \|b\|_{BMO)(\mathbb{R}^{n})} \sup \limits _{\psi >0} \bigg[ \psi ^{\theta }\sum _{k=-\infty}^{-1} \bigg(\sum \limits _{l = - \infty} ^{k } 2^{\alpha{(0)}l}\| g \chi _{l} \| _{L^{q_{1}(\cdot )}} 2^{b(l-k)}(k-l)^{m} \bigg)^{p(1+\psi )}\bigg]^{\frac{1}{p(1+\psi )}}. \end{aligned}$$

Let \(v_{1}=\frac{n}{q_{1}'(0)}-v-\frac{n}{s}-\alpha (0)>0\), applying Hölder’s inequality, \(2^{-p(1+\psi )} < 2^{-p}\) and Fubini’s theorem for series, we get

$$\begin{aligned} E_{11} \leq & C \|b\|_{BMO)(\mathbb{R}^{n})} \sup \limits _{\psi >0} \left [ \psi ^{\theta }\sum _{k=-\infty}^{-1} \left (\sum \limits _{l = -\infty} ^{k }2^{\alpha (0) p(1+\psi ) l}\| g \chi _{l} \|_{L^{q_{1}( \cdot )}}^{p(1+\psi )}2^{v_{1}p(1+\psi )(l-k)/2}\right . \right . \\ & \qquad \qquad \qquad \qquad \times \left .\left . \sum \limits _{l = -\infty} ^{k }2^{v_{1}(p(1+\psi ))^{\prime}(l-k)/2}(k-l)^{m(p(1+ \psi ))^{\prime}/2} \right )^{ \frac{p(1+\psi )}{(p(1+\psi ))^{\prime}}}\right ]^{ \frac{1}{p(1+\psi )}} \\ \leq & C \|b\|_{BMO)(\mathbb{R}^{n})} \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k=-\infty}^{-1} \sum \limits _{l = -\infty} ^{k }2^{\alpha (0) p(1+\psi ) l}\| g \chi _{l} \|_{L^{q_{1}(\cdot )}}^{p(1+ \psi )}2^{v_{1}p(1+\psi )(l-k)/2} \right )^{\frac{1}{p(1+\psi )}} \\ \leq & C \|b\|_{BMO)(\mathbb{R}^{n})} \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{l=-\infty}^{-1} 2^{\alpha (0) p(1+\psi ) l}\| g \chi _{l} \|_{L^{q_{1}(\cdot )}}^{p(1+\psi )} \sum _{k=l}^{-1}2^{v_{1}p(1+ \psi )} \right )^{\frac{1}{p(1+\psi )}} \\ \leq & C \|b\|_{BMO)(\mathbb{R}^{n})} \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{l=-\infty}^{-1} 2^{\alpha (0)p(1+\psi ) l}\| g \chi _{l} \|_{L^{q_{1}(\cdot )}}^{p(1+\psi )} \sum _{k=l}^{-1}2^{v_{1}p(l-k)/2} \right )^{\frac{1}{p(1+\psi )}} \\ \leq & C \|b\|_{BMO)(\mathbb{R}^{n})}\sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{l=-\infty}^{-1} 2^{\alpha (0) p(1+\psi ) l}\| g \chi _{l} \|_{L^{q_{1}(\cdot )}}^{p(1+\psi )} \right )^{ \frac{1}{p(1+\psi )}} \\ \leq & C \|b\|_{BMO)(\mathbb{R}^{n})} \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{l=-\infty}^{\infty } \| 2^{\alpha (\cdot )l }g \chi _{l} \|_{L^{q_{1}(\cdot )}}^{p(1+\psi )} \right )^{ \frac{1}{p(1+\psi )}} \\ \leq & C \|b\|_{BMO)(\mathbb{R}^{n})} \| g \| _{\dot{K} ^{\alpha ( \cdot ),p),\theta}_{ q_{1}(\cdot )}}. \end{aligned}$$

Now, for \(E_{12}\), using Minkowski’s inequality, we have

$$\begin{aligned} E_{12} \leq & \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k =0}^{ \infty} 2^{k \alpha _{\infty }p(1+\psi )} \left (\sum \limits _{l = - \infty} ^{-1}\| \chi _{k} (1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{ \beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}}\right )^{p(1+\psi )}\right )^{ \frac{1}{p(1+\psi )}} \\ + & \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k =0}^{ \infty} 2^{k \alpha _{\infty }p(1+\psi )} \left (\sum \limits _{l = 0} ^{k }\| \chi _{k} (1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{ \beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}}\right )^{p(1+\psi )}\right )^{ \frac{1}{p(1+\psi )}} \\ =:&A_{1}+A_{2}. \end{aligned}$$

The estimate for \(A_{2}\) follows in a similar manner to \(E_{11}\) by replacing \(q_{1}'(0)\) with \(q'_{1\infty}\) and by the use \(v_{2}:= \frac{n}{q'_{1\infty}}-v-\frac{n}{s}-\alpha _{\infty}>0\). For \(A_{1}\), we have

$$\begin{aligned} \| [b, \mu _{\Phi}]_{\beta }^{m} & (g \chi _{l}) \chi _{k} \| _{L^{q_{2}( \cdot )}} \\ \leq & C {(k-l)^{m}} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \|b\|_{BMO( \mathbb{R}^{n})}^{m}2^{-kn}2^{-lv} 2^{k(v+\frac{n}{s})}\|\chi _{k}\|_{L^{q_{1}( \cdot )}} \| \chi _{l} \| _{L^{q_{1}(\cdot )}}\|g_{l}\|_{L^{q_{1}( \cdot )}} \\ \leq & C {(k-l)^{m}} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \|b\|_{BMO( \mathbb{R}^{n})}^{m}2^{l(\frac{n}{q_{1}(0)}-v)}2^{k(v+\frac{n}{s}- \frac{n}{q'_{1 \infty}})}\|g_{l}\|_{L^{q_{1}(\cdot )}}. \end{aligned}$$

Now using the fact that \(-\frac{n}{q'_{1\infty}}+v+\frac{n}{s}+\alpha _{\infty}<0\), we have

$$\begin{aligned} A_{1} \leq {}& C \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k=0}^{ \infty }2^{k a_{\infty }p(1+\psi )} \left (\sum \limits _{l = -\infty} ^{-1}\| \chi _{k} (1+ |x |)^{-\lambda (x )}[b,\mu _{\Phi}]^{m}_{ \beta }g_{l} \| _{L^{q_{2}(\cdot )}}\right )^{p(1+\psi )}\right )^{ \frac{1}{p(1+\psi )}} \\ \leq {}& C \| b \| _{BMO(\mathbb{R}^{n})}^{m}\sup \limits _{\psi >0} \left (\psi ^{\theta }\sum _{k=0}^{\infty }2^{k a_{\infty }p(1+\psi )} \right . \\ & {}\left . \times \left ( \sum \limits _{l = -\infty} ^{-1}(k-l)^{m}2^{l(\frac{n}{q_{1}(0)}-v)}2^{k(v+ \frac{n}{s}-\frac{n}{q'_{1 \infty}})} \| g_{l} \| _{L^{q_{1}(\cdot )}} \right )^{p(1+\psi )}\right ) ^{\frac{1}{p(1+\psi )}} \\ \leq {}& C \| b \| _{BMO(\mathbb{R}^{n})}^{m}\sup \limits _{\psi >0} \Biggl(\psi ^{\theta }\sum _{k=0}^{\infty }2^{k (a_{\infty}+v+ \frac{n}{s}-\frac{n}{q'_{1 \infty}}) p(1+\psi )} \\ &{}\times\Biggl(\sum \limits _{l = -\infty} ^{-1}(k-l)^{m}2^{l(\frac{n}{q_{1}(0)}-v)} \| g_{l} \| _{L^{q_{1}( \cdot )}} \Biggr)^{p(1+\psi )} \Biggr) ^{\frac{1}{p(1+\psi )}} \\ \leq {}& C \| b \| _{BMO(\mathbb{R}^{n})}^{m}\sup \limits _{\psi >0} \left (\psi ^{\theta }\sum _{k=0}^{\infty }\left (\sum \limits _{l = - \infty} ^{-1}(k-l)^{m}2^{l(\frac{n}{q_{1}(0)}-v)} \| g_{l} \| _{L^{q_{1}( \cdot )}}\right )^{p(1+\psi )}\right ) ^{\frac{1}{p(1+\psi )}} \\ \leq {}& C \| b \| _{BMO(\mathbb{R}^{n})}^{m}\sup \limits _{\psi >0} \left (\psi ^{\theta }\sum _{k=0}^{\infty }\left (\sum \limits _{l = - \infty} ^{-1}(k-l)^{m}2^{l(\frac{n}{q_{1}(0)}-v-\alpha (0))} 2^{l \alpha (0)}\| g_{l} \| _{L^{q_{1}(\cdot )}}\right )^{p(1+\psi )} \right ) ^{\frac{1}{p(1+\psi )}} \\ \leq {}& C \| b \| _{BMO(\mathbb{R}^{n})}^{m}\sup \limits _{\psi >0} \left (\psi ^{\theta }\sum _{k=0}^{\infty }\sum \limits _{l = -\infty} ^{-1} 2^{\alpha (0) l p(1+\psi )} \| g_{l} \|^{p(1+\psi )} _{L^{q_{1}( \cdot )}}\right . \\ &{} \left . \times \left (\sum _{k=0}^{\infty }\sum \limits _{l = - \infty} ^{-1}(k-l)^{m(p(1+\psi ))^{\prime}}2^{l(\frac{n}{q_{1}(0)}-v-l \alpha (0) (p(1+\psi ))^{\prime})}\right )^{p(1+\psi )/(p(1+\psi ))^{ \prime}}\right )^{\frac{1}{p(1+\psi )}} \\ \leq {}& C \| b \| _{BMO(\mathbb{R}^{n})}^{m}\sup \limits _{\psi >0} \left (\psi ^{\theta }\sum _{k=0}^{\infty }\sum \limits _{l = -\infty} ^{-1} 2^{\alpha (0) l p(1+\psi )} \| g_{l} \|^{p(1+\psi )} _{L^{q_{1}( \cdot )}}\right . \\ \leq {}& C\| b \| _{BMO(\mathbb{R}^{n})}^{m} \sup \limits _{\psi >0} \left (\psi ^{\theta }\sum \limits _{l = -\infty} ^{-1} 2^{\alpha (0) l p(1+\psi )} \| g_{l}\|^{p(1+\psi )} _{L^{q_{1}(\cdot )}}\right )^{ \frac{1}{p(1+\psi )}} \\ \leq {}& C\| b \| _{BMO(\mathbb{R}^{n})}^{m} \sup \limits _{\psi >0} \left (\psi ^{\theta }\sum \limits _{l = -\infty} ^{\infty} \| 2^{ \alpha (\cdot ) l } g_{l}\|^{p(1+\psi )} _{L^{q_{1}(\cdot )}}\right )^{ \frac{1}{p(1+\psi )}} \\ \leq {}& C (k-l)^{m} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \|b\|_{BMO( \mathbb{R}^{n})}^{m}2^{-kn}2^{-lv} 2^{k(v+\frac{n}{s})}\|\chi _{k}\|_{L^{q_{1}( \cdot )}} \| \chi _{l} \| _{L^{q_{1}(\cdot )}}\|g_{l}\|_{L^{q_{1}( \cdot )}}. \end{aligned}$$

Now we estimate \(E_{2}\), for each \(k \in \mathbb{Z}\) and \(l \geq k+1\) and a.e. \(x \in R_{k}\), \(y \in R_{l}\), we know that \(|x -y | \approx |y | \approx 2^{l}\), we consider

$$\begin{aligned} \left |[b, \mu _{\Phi}]_{\beta }(g_{l} )(x )\right | & \leq \left ( \int \limits _{o}^{|y |} \left | \int \limits _{|x -y |\leq t} \frac{ \Phi (x -y )(b(x)-b(y))}{|x -y |^{n-1-\beta (x )}}g_{l} (y ) dy \right |^{2}\frac{dt}{t^{3}} \right )^{1/2} \\ & + \left ( \int \limits _{|y |}^{\infty} \left | \int \limits _{|x -y |\leq t} \frac{ \Phi (x -y )(b(x)-b(y))}{|x -y |^{n-1-\beta (x )}}g_{l} (y ) dy \right |^{2}\frac{dt}{t^{3}} \right )^{1/2} \\ &=: I_{31}+I_{32}. \end{aligned}$$

Using similar arguments as used in \(I_{11}\), we obtain

$$\begin{aligned} I_{31} \leq & 2^{(l-k)/2}2^{-ln}|x |^{\beta (x )}\|g_{l}(y )\|_{L^{q_{1}( \cdot )}} \left (|b(x )-b_{B_{l}}|^{m}\|\Phi (x -\cdot )\chi _{l}( \cdot )\| _{L^{q_{1}'(\cdot )}}\right . \\ & \left . \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad +\|(b( \cdot )-b_{B_{l}})^{m} (\Phi (x -\cdot )\chi _{l}(\cdot )\| _{L^{q_{1}'( \cdot )}}\right ). \end{aligned}$$

Using the same arguments of \(I_{12}\), we obtain

$$\begin{aligned} I_{32} \leq{}& 2^{-ln}|x |^{\beta (x )}\|g_{l} (y )\|_{L^{q_{1}(\cdot )}} \left \{|b(x )-b_{B_{l}}|^{m}\|\Phi (x -\cdot )\chi _{l}(\cdot )\| _{L^{q_{1}'( \cdot )}}\right.\\ &{}\left.+ \|(b(\cdot )-b_{B_{l}})^{m} (\Phi (x -\cdot )\chi _{l}( \cdot )\| _{L^{q_{1}'(\cdot )}}\right . \\ &{}\times \left . \| \chi _{k} (1+ |x |)^{-\lambda (x )} [b, \mu _{\Phi}]^{m}_{\beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}}\right \} \\ \leq{}& C 2^{-ln}\|g_{l}\|_{L^{q_{1}(\cdot )}}\biggr\{ \| (b(x )-b_{B_{l}})^{m}|x |^{\beta (x )}\chi _{k}(x )(1+ |x |)^{-\lambda (x )} \| _{L^{q_{2}( \cdot )}}\\ &{}\times 2^{-lv} 2^{k(v+\frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \| \| \chi _{l} \| _{L^{q_{1}(\cdot )}} \\ &{} + \|b\|_{BMO(\mathbb{R}^{n})}^{m}2^{-lv} 2^{k(v+\frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}}\| \| \chi _{l} \| _{L^{q_{1}( \cdot )}} \| |x |^{\beta (x )}\chi _{k}(x )(1+ |x |)^{-\lambda (x )} \| _{L^{q_{2}(\cdot )}}\biggr\} \\ \leq {}&C 2^{-ln}\|g_{l}\|_{L^{q_{1}(\cdot )}}\biggr\{ (k-l)^{m} \|b\|_{BMO( \mathbb{R}^{n})}^{m} \|\chi _{k}\|_{L^{q_{1}(\cdot )}}2^{-lv} 2^{k(v+ \frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}}\| \| \chi _{l} \| _{L^{q_{1}(\cdot )}} \\ &{}+ \|b\|_{BMO(\mathbb{R}^{n})}^{m}2^{-lv} 2^{k(v+ \frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}}\| \| \chi _{l} \| _{L^{q_{1}(\cdot )}} \| \chi _{k} \| _{L^{q_{1}(\cdot )}}\biggr\} \\ \leq{}& C 2^{-ln}\|g_{l}\|_{L^{q_{1}(\cdot )}}(k-l)^{m} \|b\|_{BMO( \mathbb{R}^{n})}^{m} \|\chi _{k}\|_{L^{q_{1}(\cdot )}}2^{-lv} 2^{k(v+ \frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \| \chi _{l} \| _{L^{q_{1}( \cdot )}} \\ \leq {}&C (k-l)^{m} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \|b\|_{BMO( \mathbb{R}^{n})}^{m}2^{-ln}2^{-lv} 2^{k(v+\frac{n}{s})}\|\chi _{k}\|_{L^{q_{1}( \cdot )}} \| \chi _{l} \| _{L^{q_{1}(\cdot )}}\|g_{l}\|_{L^{q_{1}( \cdot )}} \\ \leq{}& C (k-l)^{m} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \|b\|_{BMO( \mathbb{R}^{n})}^{m}2^{(k-l)(v+\frac{n}{s}+\frac{n}{q_{1\infty}})}\| g \chi _{l} \| _{L^{q_{1}(\cdot )}}. \end{aligned}$$

Now splitting \(E_{2}\), we have

$$\begin{aligned} E_{2} \leq & \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k=- \infty}^{\infty} \left (\sum \limits _{l = k+1} ^{\infty}\| 2^{k \alpha (\cdot )} \chi _{k} (1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{ \beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}}\right )^{p(1+\psi )}\right )^{ \frac{1}{p(1+\psi )}}, \\ \leq & \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k=- \infty}^{-1} 2^{k \alpha (0)p(1+\psi )} \left (\sum \limits _{l = k+1} ^{\infty}\| \chi _{k} (1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{ \beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}}\right )^{p(1+\psi )}\right )^{ \frac{1}{p(1+\psi )}} \\ + & \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k =0}^{ \infty} 2^{k \alpha _{\infty }p(1+\psi )} \left (\sum \limits _{l = k+1} ^{\infty}\| \chi _{k} (1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{ \beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}}\right )^{p(1+\psi )}\right )^{ \frac{1}{p(1+\psi )}} \\ =: & E_{21}+E_{22}. \end{aligned}$$

For \(E_{22}\), we have

$$\begin{aligned} E_{22} \leq{}& C \|b\|_{BMO(\mathbb{R}^{n})}^{m} \sup \limits _{\psi >0} \Biggl( \psi ^{\theta }\sum _{k=0}^{\infty} 2^{k \alpha _{\infty }p(1+ \psi )} \\ &{}\times\Biggl(\sum \limits _{l=k+1} ^{\infty}2^{(k-l)(v+\frac{n}{s}+ \frac{n}{q_{1\infty}})}(k-l)^{m} \| g_{l} \| _{L^{q_{1}(\cdot )}} \Biggr)^{p(1+\psi )} \Biggr)^{\frac{1}{p(1+\psi )}} \\ \leq{}& C \|b\|_{BMO(\mathbb{R}^{n})}^{m} \sup \limits _{\psi >0} \Biggl( \psi ^{\theta }\sum _{k=0}^{\infty} 2^{k \alpha _{\infty }p(1+ \psi )} \| g \chi _{l} \|_{L^{q_{1}(\cdot )}}^{p(1+\psi )}\\ &{}\times \Biggl( \sum \limits _{l=k+1} ^{\infty}2^{(k-l)(v+\frac{n}{s}+ \frac{n}{q_{1\infty}})}(k-l)^{m} \Biggr)^{p(1+\psi )} \Biggr)^{ \frac{1}{p(1+\psi )}}. \end{aligned}$$

Let \(d=\frac{n}{q_{1 \infty}} + v + \frac{n}{s}+\alpha _{\infty}>0\). Then, we use Hölder’s theorem for series and \(2^{-p(1+\psi )} < 2^{-p}\) to obtain

$$\begin{aligned} E_{22} \leq {}& C \|b\|_{BMO(\mathbb{R}^{n})}^{m} \sup \limits _{\psi >0} \left [ \psi ^{\theta }\sum _{k=0}^{\infty} \left (\sum \limits _{l=k+1} ^{\infty}2^{l \alpha _{\infty }p(1+\psi )} \| g \chi _{l} \|_{L^{q_{1}( \cdot )}}^{p(1+\psi )}2^{dp(1+\psi )(k-l)/2}\right . \right ) \\ &{} \left . \times \left ( \sum \limits _{l=k+1}^{\infty}(k-l)^{m(p(1+\psi ))^{\prime}/2} 2^{d(p(1+ \psi ))^{\prime}(k-l)/2} \right )^{ \frac{p(1+\psi )}{(p(1+\psi ))^{\prime}}}\right ]^{ \frac{1}{p(1+\psi )}} \\ \leq {}& C \|b\|_{BMO(\mathbb{R}^{n})}^{m} \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k=0}^{\infty} \sum \limits _{l=k+1} ^{ \infty}2^{l\alpha _{\infty }p(1+\psi ) }\| g_{l} \|_{L^{q_{1}(\cdot )}}^{p(1+ \psi )}2^{dp(1+\psi )(k-l)/2} \right )^{\frac{1}{p(1+\psi )}} \\ \leq {}& C \|b\|_{BMO(\mathbb{R}^{n})}^{m} \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{l=0}^{\infty} 2^{l\alpha _{\infty }p(1+ \psi ) }\| g_{l} \|_{L^{q_{1}(\cdot )}}^{p(1+\psi )}\sum \limits _{k=0} ^{l-1}2^{dp(1+\psi )(k-l)/2} \right )^{\frac{1}{p(1+\psi )}} \\ \leq {}& C \|b\|_{BMO(\mathbb{R}^{n})}^{m} \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{l=-\infty}^{\infty} \|2^{l \alpha ( \cdot ) } g \chi _{l} \|_{L^{q_{1}(\cdot )}}^{p(1+\psi )} \right )^{ \frac{1}{p(1+\psi )}} \\ \leq {}& C \|b\|_{BMO(\mathbb{R}^{n})}^{m}\| g \| _{\dot{K} ^{\alpha ( \cdot ),p),\theta}_{ q_{1}(\cdot )}}. \end{aligned}$$

Now, for \(E_{21}\), using Minkowski’s inequality, we have

$$\begin{aligned} E_{21}\leq & \sup \limits _{\psi >0} \left ( \psi ^{\theta }\sum _{k=- \infty}^{-1} 2^{k \alpha (0) p(1+\psi )} \left (\sum \limits _{l=k+1} ^{-1}\| \chi _{k} (1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{ \beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}}\right )^{p(1+\psi )}\right )^{ \frac{1}{p(1+\psi )}} \\ + & \sup \limits _{\psi >0} \left ( \psi ^{\theta }\ \sum _{k=-\infty}^{-1} 2^{k \alpha (0) p(1+\psi )} \left (\sum \limits _{l = 0} ^{\infty}\| \chi _{k} (1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{\beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}}\right )^{p(1+\psi )}\right )^{ \frac{1}{p(1+\psi )}} \\ =:& B_{1}+B_{2}. \end{aligned}$$

The estimate for \(B_{1}\) follows in a similar manner to \(E_{22}\) with \(q_{1\infty}\) replaced by \(q_{1}(0)\) and using the fact that \(\frac{n}{q_{1}(0)}+v+\frac{n}{s}+\alpha (0)>0\). For \(B_{2}\), we have

$$\begin{aligned} &\| \chi _{k} (1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{\beta }(g_{l} ) \| _{L^{q_{2}(\cdot )}} \\ & \leq C 2^{-ln}\|g_{l}\|_{L^{q_{1}(\cdot )}}\biggr\{ \| (b(x )-b_{B_{l}})^{m}|x |^{\beta (x )}\chi _{k}(x )(1+ |x |)^{-\lambda (x )} \| _{L^{q_{2}( \cdot )}}\\ &\times 2^{-lv} 2^{k(v+\frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \| \| \chi _{l} \| _{L^{q_{1}(\cdot )}} \\ & + \|b\|_{BMO(\mathbb{R}^{n})}^{m}2^{-lv} 2^{k(v+\frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}}\| \| \chi _{l} \| _{L^{q_{1}( \cdot )}} \| |x |^{\beta (x )}\chi _{k}(x )(1+ |x |)^{-\lambda (x )} \| _{L^{q_{2}(\cdot )}}\biggr\} \\ & \leq C 2^{-ln}\|g_{l}\|_{L^{q_{1}(\cdot )}}\biggr\{ (k-l)^{m} \|b\|_{BMO( \mathbb{R}^{n})}^{m} \|\chi _{k}\|_{L^{q_{1}(\cdot )}}2^{-lv} 2^{k(v+ \frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}}\| \| \chi _{l} \| _{L^{q_{1}(\cdot )}} \\ & + \|b\|_{BMO(\mathbb{R}^{n})}^{m}2^{-lv} 2^{k(v+\frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}}\| \| \chi _{l} \| _{L^{q_{1}( \cdot )}} \| \chi _{k} \| _{L^{q_{1}(\cdot )}}\biggr\} \\ &\leq C 2^{-ln}\|g_{l}\|_{L^{q_{1}(\cdot )}}(k-l)^{m} \|b\|_{BMO( \mathbb{R}^{n})}^{m} \|\chi _{k}\|_{L^{q_{1}(\cdot )}}2^{-lv} 2^{k(v+ \frac{n}{s})} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \| \chi _{l} \| _{L^{q_{1}( \cdot )}} \\ & \leq C (k-l)^{m} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \|b\|_{BMO( \mathbb{R}^{n})}^{m}2^{-ln}2^{-lv} 2^{k(v+\frac{n}{s})}2^{ln /q_{1 \infty}}2^{kn /q_{1}(0)}\|g_{l}\|_{L^{q_{1}(\cdot )}} \\ & \leq C (k-l)^{m} \| \Phi \| _{L^{s}{(\mathbb{S}^{n-1})}} \|b\|_{BMO( \mathbb{R}^{n})}^{m}2^{-l(v+\frac{n}{s}+\frac{n}{q_{1\infty}})}2^{k(v+ \frac{n}{q_{1}(0)}+\frac{n}{s})}\| g_{l} \| _{L^{q_{1}(\cdot )}}. \end{aligned}$$

Using these estimates for \(B_{2}\), we get the estimate for \(E_{21}\).

Combining the estimates for \(E_{1}\) and \(E_{2}\) yields

$$ \|(1+ |x |)^{-\lambda (x )} [b,\mu _{\Phi}]^{m}_{\beta }(g)\|_{ \dot{K} ^{\alpha (\cdot ),p),\theta}_{ q_{2}(\cdot )}(\mathbb{R}^{n})} \leq C \|b\|_{BMO(\mathbb{R}^{n})}^{m}\|g\|_{\dot{K} ^{\alpha (\cdot ),p), \theta}_{ q_{1}(\cdot )}(\mathbb{R}^{n})}, $$

which ends the proof. □

Data availability

No data were used to support this study.

References

  1. Aboulaich, R., Boujena, S., Guarmah, E.E.: On a non-linear model for image denoising. Math. Rep. 345(8), 425–429 (2007)

    Google Scholar 

  2. Aboulaich, R., Meskine, D., Souissi, A.: New diffusion models in image processing. Comput. Math. Appl. 56(4), 874–882 (2008)

    Article  MathSciNet  Google Scholar 

  3. Acerbi, E., Mingione, G.: Regularity results for electrorheological fluids, the stationary case. C. R. Math. Acad. Sci. Paris 334(9), 817–822 (2002)

    Article  MathSciNet  Google Scholar 

  4. Acerbi, E., Mingione, G.: Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal. 164(3), 213–259 (2002)

    Article  MathSciNet  Google Scholar 

  5. Ajaib, A., Hussain, A.: Weighted \(CBMO\) estimates for commutators of matrix Hausdorff operator on the Heisenberg group. Open Math. 18(1), 496–511 (2020)

    Article  MathSciNet  Google Scholar 

  6. Almeida, A., Drihem, D.: Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 394(2), 781–795 (2012)

    Article  MathSciNet  Google Scholar 

  7. Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara 52, 19–36 (2006)

    Article  MathSciNet  Google Scholar 

  8. Beurling, A.: Construction and analysis of some convolution algebras. Ann. Inst. Fourier (Grenoble) 14, 1–32 (1964)

    Article  MathSciNet  Google Scholar 

  9. Cruz-Uribe, D., Diening, L., Fiorenza, A.: A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9) 2, 151–173 (2009)

    MathSciNet  Google Scholar 

  10. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Appl. Numer. Harmon. Anal. Birkhäuser, Heidelberg (2013)

    Book  Google Scholar 

  11. Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Pérez, C.: The boundedness of classical operators on variable \(L^{p}\) spaces. Ann. Acad. Sci. Fenn., Math. 31, 239–264 (2006)

    MathSciNet  Google Scholar 

  12. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.J.: The maximal function on variable \(L^{p}\) spaces. Ann. Acad. Sci. Fenn., Math. 28, 223–238 (2003)

    MathSciNet  Google Scholar 

  13. Diening, L.: Maximal function on generalized Lebesgue spaces \(L^{p(\cdot )}\). Math. Inequal. Appl. 7, 245–253 (2004)

    MathSciNet  Google Scholar 

  14. Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn., Math. 34, 503–522 (2009)

    MathSciNet  Google Scholar 

  15. Feichtinger, H.G., Weisz, F.: Herz spaces and summability of Fourier transforms. Math. Nachr. 281(3), 309–324 (2008)

    Article  MathSciNet  Google Scholar 

  16. Herz, C.: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283–324 (1968)

    MathSciNet  Google Scholar 

  17. Hussain, A., Ajaib, A.: Some results for the commutators of generalized Hausdorff operator. J. Math. Inequal. 13(4), 1129–1146 (2019)

    Article  MathSciNet  Google Scholar 

  18. Hussain, A., Khan, I., Mohamed, A.: Variable Her–Morrey estimates for rough fractional Hausdorff operator. J. Inequal. Appl. 2024, Article ID 33 (2024)

    Article  Google Scholar 

  19. Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent. Rend. Circ. Mat. Palermo 59, 199–213 (2010)

    Article  MathSciNet  Google Scholar 

  20. Kokilashvili, V., Samko, S.: On Sobolev theorem for Riesz-type potentials in the Lebesgue spaces with variable exponent. Z. Anal. Anwend. 22, 899–910 (2003)

    Article  MathSciNet  Google Scholar 

  21. Li, X., Yang, D.: Boundedness of some sublinear operators on Herz spaces. Ill. J. Math. 40(3), 484–501 (1996)

    MathSciNet  Google Scholar 

  22. Lu, S., Yang, D.: The decomposition of the weighted Herz spaces and its application. Sci. China Ser. A 38, 147–158 (1995)

    MathSciNet  Google Scholar 

  23. Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51(4), 355–426 (2006)

    Article  MathSciNet  Google Scholar 

  24. Muckenhoupt, B., Wheeden, R.L.: Weighted norm inequalities for singular and fractional integrals. Trans. Am. Math. Soc. 161, 249–258 (1971)

    Article  MathSciNet  Google Scholar 

  25. Ruzicka, M.: Electrorheological fluids: modeling and mathematical theory. Lect. Notes Math. 1748, 16–38 (2000)

    MathSciNet  Google Scholar 

  26. Ruzicka, M.: Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math. 49(6), 565–609 (2004)

    Article  MathSciNet  Google Scholar 

  27. Samko, S.G.: Variable exponent Herz spaces. Mediterr. J. Math. 10(4), 2007–2025 (2013)

    Article  MathSciNet  Google Scholar 

  28. Stein, E.: On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans. Am. Math. Soc. 88, 430–466 (1958)

    Article  MathSciNet  Google Scholar 

  29. Sultan, B., Azmi, F.M., Sultan, M., Mahmood, T., Mlaiki, N., Souayah, N.: Boundedness of fractional integrals on grand weighted Herz–Morrey spaces with variable exponent. Fractal Fract. 6(11), Article ID 660 (2022)

    Article  Google Scholar 

  30. Sultan, B., Sultan, M.: Boundedness of commutators of rough Hardy operators on grand variable Herz spaces. Forum Math. 36(3), 717–733 (2024)

    Article  MathSciNet  Google Scholar 

  31. Sultan, B., Sultan, M.: Boundedness of higher order commutators of Hardy operators on grand Herz–Morrey spaces. Bull. Sci. Math. 190, Article ID 103373 (2024)

    Article  MathSciNet  Google Scholar 

  32. Sultan, B., Sultan, M., Khan, I.: On Sobolev theorem for higher commutators of fractional integrals in grand variable Herz spaces. Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107464 (2023). https://doi.org/10.1016/j.cnsns.2023.107464

    Article  MathSciNet  Google Scholar 

  33. Sultan, B., Sultan, M., Mehmood, M., Azmi, F., Alghafli, M.A., Mlaiki, N.: Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent. AIMS Math. 8, 752–764 (2023)

    Article  MathSciNet  Google Scholar 

  34. Sultan, B., Sultan, M., Zhang, Q.Q., Mlaiki, N.: Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Math. 8(10), 24515–24527 (2023)

    Article  MathSciNet  Google Scholar 

  35. Sultan, M., Sultan, B., Aloqaily, A., Mlaiki, N.: Boundedness of some operators on grand Herz spaces with variable exponent. AIMS Math. 8, 12964–12985 (2023)

    Article  MathSciNet  Google Scholar 

  36. Sultan, M., Sultan, B., Hussain, A.: Grand Herz–Morrey spaces with variable exponent. Math. Notes 114(5), 957–977 (2023)

    Article  MathSciNet  Google Scholar 

  37. Wu, J.L., Zhao, W.J.: Boundedness for fractional Hardy-type operator on variable-exponent Herz–Morrey spaces. Kyoto J. Math. 56(4), 831–845 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors cordially thank the reviewers for their useful comments on the manuscript. The authors Aziz Khan and Thabet Abdeljawad would like to thank Prince Sultan University and the support through TAS research lab.

Funding

This work did not receive any external funding.

Author information

Authors and Affiliations

Authors

Contributions

Contributions from all authors were equal and significant. The original manuscript was read and approved by all authors.

Corresponding authors

Correspondence to Mehvish Sultan or Thabet Abdeljawad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultan, B., Sultan, M., Khan, A. et al. Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces. J Inequal Appl 2024, 93 (2024). https://doi.org/10.1186/s13660-024-03169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-024-03169-3

Mathematics Subject Classification

Keywords