Skip to main content

Upper bounds for the spectral radius of matrices having the Perron–Frobenius property

Abstract

A new upper bound for the spectral radius of matrices having the Perron–Frobenius property is given by considering the position of positive entries. Some examples involving the largest zero of polynomials and the spectral radius of the iterative matrix for the Perron–Frobenius splitting are given to show the superiority of the theoretical result.

1 Introduction

Matrices having the Perron–Frobenius property [7] arise in many different fields of science and engineering, such as steady state behavior of Markov chains, population growth models, and Web search engines [2, 9, 11, 12].

Definition 1

[7] If \(A\in \mathbb{R}^{n\times n}\), then A possesses the Perron–Frobenius (P–F) property if the spectral radius

$$ \rho (A):=\max_{\lambda \in \sigma (A)} \bigl\{ \vert \lambda \vert \bigr\} $$

is a positive eigenvalue of A and \(\rho (A) \) possesses a corresponding nonnegative eigenvector, where \(\sigma (A)\) is the spectrum of matrix A.

The well-known classes of nonnegative matrices, eventually positive matrices, and eventually nonnegative matrices [1, 3] are all included in matrices having the P–F property. There are various problems on matrices having the P–F property, for details, see [8, 10, 13, 14]. One of such problems is to bound its dominant eigenvalue \(\rho (A)\), and the first result stated as below is due to Noutsos in 2006 [7].

Theorem 1

[7, Theorem 2.5] Let \(A=(a_{ij})\in \mathbb{R}^{n\times n}\) be a matrix having the P–F property. Then

$$ \rho (A)\leq Bnd_{DN}(A):= \max_{i\in N} R_{i} \bigl(A^{\top} \bigr), $$
(1)

where \(N=\{1,2,\ldots ,n\}\) and \(R_{i}(A^{\top})=\sum_{j\in N} a_{ij}\).

The upper bound (1) due to Noutsos for matrices having the P–F property was improved by He, Liu, and Lv in 2023 by using the positive part of \(R_{i}(A)\) [4].

Theorem 2

[4, Theorems 2, 3 and 5] Let \(A=(a_{ij})\in \mathbb{R}^{n\times n}\) be a matrix having the P–F property. Then

$$ \rho (A)\leq Bnd_{HLL_{1}}(A):=\max_{i\in N} \bigl\{ a_{ii}+r_{i}^{+}(A) \bigr\} $$
(2)

and

$$\begin{aligned} \rho (A) \leq & Bnd_{HLL_{2}}(A) \\ :=& \frac{1}{2}\max_{i,j\in N,~ j\neq i} \bigl(a_{ii}+a_{jj}+ \bigl((a_{ii}-a_{jj})^{2}+4r_{i}^{+}(A)r_{j}^{+}(A) \bigr)^{ \frac{1}{2}} \bigr). \end{aligned}$$
(3)

Furthermore, \(Bnd_{HLL_{2}}(A)\leq Bnd_{HLL_{1}}(A)\), where \(r_{i}^{+}(A):=\sum_{j\in N,~j\neq i \atop a_{ij}>0} a_{ij}\).

Besides bounds (2) and (3), He et al. also provided an S-type upper bound for the spectral radius in [4], but this bound needs more computations. In this paper, we present a new upper bound for the spectral radius for matrices having the P–F property, and show that the new bound is sharper than bounds (2) and (3). Some numerical examples are also given to show the superiority of the new bound.

2 Main results

In this section we give a new upper bound for the spectral radius of matrices having the P–F property.

Theorem 3

Let \(A=(a_{ij})\in \mathbb{R}^{n\times n}\) be a matrix having the Perron–Frobenius property, and \(r_{i}^{+}(A) >0 \) for any \(i\in N\). Then

$$ \rho (A)\leq Bnd(A), $$
(4)

where \(Bnd(A):= \frac{1}{2}\max_{i,j\in N, j\neq i \atop a_{ij} > 0} (a_{ii}+a_{jj}+ ((a_{ii}-a_{jj})^{2}+4r_{i}^{+}(A)r_{j}^{+}(A) )^{\frac{1}{2}} )\).

Proof

Let \(\mathbf{x}=(x_{1},x_{2},\ldots ,x_{n})^{\top}\) be an entrywise nonnegative nonzero eigenvector of matrix A corresponding to \(\rho (A)\), that is,

$$ A \mathbf{x}= \rho (A)\mathbf{x}. $$
(5)

Let

$$ x_{i_{0}}x_{j_{0}}=\max_{a_{ij}>0, ~i\neq j } x_{i} x_{j}. $$

From (5), we have that, for any \(i\in N\),

$$\begin{aligned} \rho (A) x_{i} =& \sum _{k\in N}a_{ik}x_{k} \end{aligned}$$
(6)

and

$$\begin{aligned} \bigl(\rho (A)-a_{ii} \bigr) x_{i} x_{i} =& \sum_{j\in N, j\neq i}a_{ij}x_{j} x_{i} \\ =& \sum_{j\in N,~ j\neq i \atop a_{ij}>0} a_{ij}x_{j} x_{i} + \sum_{j\in N,~ j\neq i \atop a_{ij}\leq 0} a_{ij}x_{j} x_{i} \\ \leq & \sum_{j\in N, ~ j\neq i\atop a_{ij}>0} a_{ij}x_{j} x_{i} \\ \leq & \sum_{j\in N, ~ j\neq i\atop a_{ij}>0} a_{ij}x_{i_{0}} x_{j_{0}} \\ \leq & r_{i}^{+}(A) x_{i_{0}} x_{j_{0}}. \end{aligned}$$
(7)

Case I. If \(x_{i_{0}} x_{j_{0}} > 0\), then \(x_{i_{0}} >0\) and \(x_{j_{0}} > 0\). By (7), we have

$$\begin{aligned} \bigl(\rho (A)-a_{i_{0}i_{0}} \bigr) x_{i_{0}} x_{i_{0}} \leq r_{i_{0}}^{+}(A) x_{i_{0}} x_{j_{0}} \end{aligned}$$
(8)

and

$$\begin{aligned} \bigl(\rho (A)-a_{j_{0}j_{0}} \bigr) x_{j_{0}} x_{j_{0}} \leq r_{j_{0}}^{+}(A) x_{i_{0}} x_{j_{0}}. \end{aligned}$$
(9)

Case I-a. If \(\rho (A)-a_{i_{0}i_{0}} > 0\) and \(\rho (A)-a_{j_{0}j_{0}} > 0\), then multiplying (8) by (9) gives

$$ \bigl(\rho (A)-a_{i_{0}i_{0}} \bigr) \bigl(\rho (A)-a_{j_{0}j_{0}} \bigr) x_{i_{0}}^{2} x_{j_{0}}^{2} \leq r_{i_{0}}^{+}(A) r_{j_{0}}^{+}(A) x_{i_{0}}^{2} x_{j_{0}}^{2}, $$

and hence

$$\begin{aligned} \bigl(\rho (A)-a_{i_{0}i_{0}} \bigr) \bigl(\rho (A)-a_{j_{0}j_{0}} \bigr) \leq r_{i_{0}}^{+}(A) r_{j_{0}}^{+}(A). \end{aligned}$$
(10)

Solving \(\rho (A)\) in (10) gives

$$\begin{aligned} \rho (A) \leq & \frac{1}{2} \bigl(a_{i_{0}i_{0}}+a_{j_{0}j_{0}}+ \bigl((a_{i_{0}i_{0}}-a_{j_{0}j_{0}})^{2}+4r_{i_{0}}^{+}(A)r_{j_{0}}^{+}(A) \bigr)^{\frac{1}{2}} \bigr) \\ \leq & \frac{1}{2}\max_{i,j\in N,~ j\neq i \atop a_{ij} > 0} \bigl(a_{ii}+a_{jj}+ \bigl((a_{ii}-a_{jj})^{2}+4r_{i}^{+}(A)r_{j}^{+}(A) \bigr)^{\frac{1}{2}} \bigr), \end{aligned}$$

i.e., inequality (4) holds.

Case I-b. If \(\rho (A)-a_{i_{0}i_{0}}\leq 0\) or \(\rho (A)-a_{j_{0}j_{0}}\leq 0\), then \(\rho (A)\leq \max \{a_{i_{0}i_{0}}, a_{j_{0}j_{0}}\}\). Without loss of generality, suppose that \(a_{i_{0}i_{0}} \geq a_{j_{0}j_{0}}\), then

$$\begin{aligned} \rho (A) \leq & \frac{1}{2}(a_{i_{0}i_{0}}+a_{j_{0}j_{0}}+a_{i_{0}i_{0}}-a_{j_{0}j_{0}}) \\ \leq & \frac{1}{2} \bigl(a_{i_{0}i_{0}}+a_{j_{0}j_{0}}+ \bigl((a_{i_{0}i_{0}}-a_{j_{0}j_{0}})^{2}+4r_{i_{0}}^{+}(A)r_{j_{0}}^{+}(A) \bigr)^{\frac{1}{2}} \bigr) \\ \leq & \frac{1}{2}\max_{i,j\in N,~ j\neq i \atop a_{ij} > 0} \bigl(a_{ii}+a_{jj}+ \bigl((a_{ii}-a_{jj})^{2}+4r_{i}^{+}(A)r_{j}^{+}(A) \bigr)^{\frac{1}{2}} \bigr), \end{aligned}$$

i.e., inequality (4) holds.

Case I-c. If \(\rho (A)-a_{i_{0}i_{0}}\leq 0\) and \(\rho (A)-a_{j_{0}j_{0}}\leq 0\), then \(\rho (A)\leq \min \{a_{i_{0}i_{0}}, a_{j_{0}j_{0}}\}\), and thus \(\rho (A)\leq \min \{a_{i_{0}i_{0}}, a_{j_{0}j_{0}}\} \leq \max \{a_{i_{0}i_{0}}, a_{j_{0}j_{0}}\}\). From Case I-b, inequality (4) also holds.

Case II. If \(x_{i_{0}} x_{j_{0}} = 0\), then from \(\mathbf{x}\neq 0 \), there exists one index \(k\in N\) such that \(x_{k}\neq 0\). For this index k, by the assumption that \(r_{i}^{+}(A) >0 \) for any \(i\in N\), we have \(r_{k}^{+}(A) >0\), and hence there is an index \(k_{0}\in N\) and \(k_{0}\neq k\) such that \(a_{kk_{0}} > 0\). Furthermore, by (7) it follows that

$$ \bigl(\rho (A)-a_{kk} \bigr)x_{k} x_{k} \leq \sum_{j\in N, ~ j\neq k \atop a_{kj}>0} a_{kj}x_{j} x_{k} \leq r_{k}^{+}(A) x_{i_{0}} x_{j_{0}}=0, $$

and hence \(\rho (A)\leq a_{kk}\). Similarly to Case I-b and Case I-c, we have

$$\begin{aligned} \rho (A) \leq & a_{kk} \\ =&\frac{1}{2} (a_{kk}+a_{k_{0}k_{0}}+a_{kk}-a_{k_{0}k_{0}} ) \\ \leq & \frac{1}{2} \bigl(a_{kk}+a_{k_{0}k_{0}}+ \bigl((a_{kk}-a_{k_{0}k_{0}})^{2}+4r_{k}^{+}(A)r_{k_{0}}^{+}(A) \bigr)^{\frac{1}{2}} \bigr) \\ \leq & \frac{1}{2}\max_{i,j\in N,~ j\neq i \atop a_{ij} > 0} \bigl(a_{ii}+a_{jj}+ \bigl((a_{ii}-a_{jj})^{2}+4r_{i}^{+}(A)r_{j}^{+}(A) \bigr)^{\frac{1}{2}} \bigr), \end{aligned}$$

i.e., inequality (4) also holds. The conclusion follows from Case I and Case II. □

Remark here that the difference of bounds (3) and (4) is the restriction under the max, from which it holds obviously that \(Bnd(A) \leq Bnd_{HLL_{2}} \leq Bnd_{HLL_{1}}\), and the bound \(Bnd(A)\) need less computations than \(Bnd_{HLL_{2}}\) in general.

For a nonnegative matrix A, it holds that \(r_{i}(A)=r_{i}^{+}(A)\) for any \(i\in N\). Hence, we can obtain the following bound for the spectral radius for nonnegative matrices because a nonnegative matrix is a matrix having the P–F property.

Corollary 1

Let \(A=(a_{ij})\in \mathbb{R}^{n\times n}\) be a nonnegative matrix, and \(r_{i}(A) >0 \) for any \(i\in N\). Then

$$ \rho (A)\leq Bnd_{N}(A), $$
(11)

where \(Bnd_{N}(A):= \frac{1}{2}\max_{i,j\in N, j\neq i \atop a_{ij} \neq 0} (a_{ii}+a_{jj}+ ((a_{ii}-a_{jj})^{2}+4r_{i}(A)r_{j}(A) )^{\frac{1}{2}} )\).

Remark here that the upper bound (11) for the spectral radius of nonnegative matrices is exactly the bound provided by Kolotilina [5].

Example 1

Consider the matrix

$$ A= \begin{bmatrix} -0.2 & 2& 0.00& 1.28& -0.02 \\ 1& 0.62& 0.06& 0.85& 1.00 \\ -0.04& 0.06& 2.93& -0.7& 1.3 \\ 1.4& 0.85& -0.70& 1.06& 1.1 \\ 0& 0.95& 1.0& 1.2& 0.1 \end{bmatrix} $$

with the spectral radius \(\rho (A)=3.4292\) and the corresponding eigenvector \(\mathbf{x}=(0.3107, 0.3707, 0.6992, 0.3082,0.4269)^{\top}\). Bound (1) in Theorem 1, bounds (2) and (3) in Theorem 2, and our bound (4) in Theorem 3 are listed in Table 1. From Table 1 it can be seen that our bound (4) is sharper than bounds (2) and (3), and sharper than bound (1) in some cases.

Table 1 Upper bounds for \(\rho (A)\)

Example 2

Consider the matrix

$$ A= \begin{bmatrix} 0.8310 & 0.2305 & -0.3332 & -0.8384 \\ -0.1629 & 0.5589 & 0.4768 & -0.2525 \\ 5.0414 & 1.6179 & -4.6812 & -0.0670 \\ 1.5611 & -6.0991 & 1.3457 & 7.0798 \end{bmatrix} $$

and the Perron–Frobenius splitting [7, 8] of A with \(A=M-N\), where

$$ M= \begin{bmatrix} 0.5967 & -0.4283 & 0.3641 & -0.6811 \\ 0.5439 & 0.6875 & 0.6861 & 0.4109 \\ 4.7261 & 1.2240 & -5.2960 & 0.5392 \\ 2.1495 & -6.7270 & 1.0426 & 6.6704 \end{bmatrix}, $$

and the iterative matrix

$$ M^{-1}N= \begin{bmatrix} 0.1346 & -0.3462 & 0.3846 & 0.3846 \\ 0.3846 & 0.3462 & -0.1538 & 0.3077 \\ 0.3077 & -0.1154 & 0.3846 & 0.3077 \\ 0.3846 & 0.3846 & -0.3846 & 0.0769 \end{bmatrix} $$

has the P–F property with the spectral radius \(\rho (M^{-1}N)=0.5392\) and the corresponding eigenvector \(\mathbf{x}=(0.4460, 0.4497, 0.7663, 0.1077)^{\top}\). Bounds (1), (2), (3), and (4) for \(\rho (M^{-1}N)\) are given in Table 2. From Table 2 it can be seen that bounds (1), (2), and (3) are larger than 1. However our bound (4) is less than 1, which implies that we can conclude that the Perron–Frobenius splitting for this case is convergent by our bound.

Table 2 Upper bounds for \(\rho (M^{-1}N)\)

Example 3

Consider the matrix

$$ A= \begin{pmatrix} 0 &0 &0 &0&1.1 \\ 1 &0 &0 &0&0.5 \\ 0 &1 &0 &0&-0.1 \\ 0 &0 &1 &0&0.4 \\ 0 &0 &0&1&-0.1 \end{pmatrix}, $$

which is the companion matrix of the polynomial

$$ p(z)=z^{5}+0.1z^{4}-0.4z^{3}+0.1z^{2}-0.5z-1.1. $$

Matrix A has the P–F property with the dominant eigenvalue \(\rho (A)=1.1453\) and the corresponding eigenvector \(\mathbf{x}=(0.3872, 0.5141, 0.4137, 0.5020, 0.4032)^{\top}\), where \(\rho (A)=1.1453\) is also the largest zero of the polynomial \(p(z)\). Besides bounds (1), (2), (3), and (4), we give the upper bound proposed by Melman (see Theorem 3.1 of [6]) for zeros of the polynomial, see Table 3. From Table 3 it can be seen that our bound (4) is sharper than bounds (2) and (3), and sharper than bound (1) and Melman’s bound in Theorem 3.1 of [6] in some cases.

Table 3 Upper bounds for \(\rho (A)\)

3 Conclusions

In this paper we propose a new upper bound for the spectral radius by considering the position of the positive entries for a given matrix having the Perron–Frobenius property. We conjecture that by this technique the S-type upper bound for the spectral radius in [4] can be improved further.

Availability of supporting data

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Berman, A., Catral, M., DeAlba, L., et al.: Sign patterns that allow eventual positivity. Electron. J. Linear Algebra 19, 108–120 (2009)

    Article  MathSciNet  Google Scholar 

  2. Diao, W.L., Ma, C.Q.: Sign-consensus of linear multiagent systems under a state observer protocol. Complexity 2019, 3010465 (2019)

    Article  Google Scholar 

  3. Elhashash, A., Szyld, D.B.: Two characterizations of matrices with the Perron–Frobenius property. Numer. Linear Algebra Appl. 16(11–12), 863–869 (2009)

    Article  MathSciNet  Google Scholar 

  4. He, J., Liu, Y., Lv, W.: New upper bounds for the dominant eigenvalue of a matrix with Perron–Frobenius property. J. Inequal. Appl. 2023, 13 (2023)

    Article  MathSciNet  Google Scholar 

  5. Kolotilina, L.Y.: Bounds and inequalities for the Perron root of a nonnegative matrix. Zap. Nauč. Semin. POMI 284, 77–122 (2002)

    Google Scholar 

  6. Melman, A.: Upper and lower bounds for the Perron root of a nonnegative matrix. Linear Multilinear Algebra 61(2), 171–181 (2013)

    Article  MathSciNet  Google Scholar 

  7. Noutsos, D.: On Perron–Frobenius property of matrices having some negative entries. Linear Algebra Appl. 412(2–3), 132–153 (2006)

    Article  MathSciNet  Google Scholar 

  8. Noutsos, D.: On Stein–Rosenberg type theorems for nonnegative and Perron–Frobenius splittings. Linear Algebra Appl. 429(8–9), 1983–1996 (2008)

    Article  MathSciNet  Google Scholar 

  9. Noutsos, D., Tsatsomeros, M.J.: Reachability and holdability of nonnegative states. SIAM J. Matrix Anal. Appl. 30(2), 700–712 (2008)

    Article  MathSciNet  Google Scholar 

  10. Olesky, D., Tsatsomeros, M., Van den Driessche, P.: \(M_{\vee}\)-Matrices: a generalization of M-matrices based on eventually nonnegative matrices. Electron. J. Linear Algebra 18, 339–351 (2009)

    Article  MathSciNet  Google Scholar 

  11. Pillai, S.U., Suel, T., Cha, S.: The Perron–Frobenius theorem: some of its applications. IEEE Signal Process. Mag. 22(2), 62–75 (2005)

    Article  Google Scholar 

  12. Sootla, A.: Properties of eventually positive linear input–output systems. IET Control Theory Appl. 13(7), 891–897 (2019)

    Article  MathSciNet  Google Scholar 

  13. Tarazaga, P.: On the structure of the set of symmetric matrices with the Perron–Frobenius property. Linear Algebra Appl. 549, 219–232 (2018)

    Article  MathSciNet  Google Scholar 

  14. Tarazaga, P., Raydan, M., Hurman, A.: Perron–Frobenius theorem for matrices with some negative entries. Linear Algebra Appl. 328(1–3), 57–68 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by Yunnan Fundamental Research Projects (Grant NO. 202401AT070479), and Yunnan Provincial Xingdian Talent Support Program.

Author information

Authors and Affiliations

Authors

Contributions

K.M. Li (first author): conceptualization, methodology, writing-original draft; C.Q. Li (Second author, corresponding author): conceptualization, writing-original draft, writing review and editing.

Corresponding author

Correspondence to Chaoqian Li.

Ethics declarations

Ethical approval

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Li, C. Upper bounds for the spectral radius of matrices having the Perron–Frobenius property. J Inequal Appl 2024, 68 (2024). https://doi.org/10.1186/s13660-024-03144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-024-03144-y

Keywords