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Abstract
A new upper bound for the spectral radius of matrices having the Perron–Frobenius
property is given by considering the position of positive entries. Some examples
involving the largest zero of polynomials and the spectral radius of the iterative matrix
for the Perron–Frobenius splitting are given to show the superiority of the theoretical
result.
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1 Introduction
Matrices having the Perron–Frobenius property [7] arise in many different fields of sci-
ence and engineering, such as steady state behavior of Markov chains, population growth
models, and Web search engines [2, 9, 11, 12].

Definition 1 [7] If A ∈ R
n×n, then A possesses the Perron–Frobenius (P–F) property if

the spectral radius

ρ(A) := max
λ∈σ (A)

{|λ|}

is a positive eigenvalue of A and ρ(A) possesses a corresponding nonnegative eigenvector,
where σ (A) is the spectrum of matrix A.

The well-known classes of nonnegative matrices, eventually positive matrices, and even-
tually nonnegative matrices [1, 3] are all included in matrices having the P–F prop-
erty. There are various problems on matrices having the P–F property, for details, see
[8, 10, 13, 14]. One of such problems is to bound its dominant eigenvalue ρ(A), and the
first result stated as below is due to Noutsos in 2006 [7].
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Theorem 1 [7, Theorem 2.5] Let A = (aij) ∈ R
n×n be a matrix having the P–F property.

Then

ρ(A) ≤ BndDN (A) := max
i∈N

Ri
(
A�)

, (1)

where N = {1, 2, . . . , n} and Ri(A�) =
∑

j∈N aij.

The upper bound (1) due to Noutsos for matrices having the P–F property was improved
by He, Liu, and Lv in 2023 by using the positive part of Ri(A) [4].

Theorem 2 [4, Theorems 2, 3 and 5] Let A = (aij) ∈ R
n×n be a matrix having the P–F

property. Then

ρ(A) ≤ BndHLL1 (A) := max
i∈N

{
aii + r+

i (A)
}

(2)

and

ρ(A) ≤ BndHLL2 (A) (3)

:=
1
2

max
i,j∈N , j �=i

(
aii + ajj +

(
(aii – ajj)2 + 4r+

i (A)r+
j (A)

) 1
2
)
.

Furthermore, BndHLL2 (A) ≤ BndHLL1 (A), where r+
i (A) :=

∑
j∈N , j �=i

aij>0
aij.

Besides bounds (2) and (3), He et al. also provided an S-type upper bound for the spectral
radius in [4], but this bound needs more computations. In this paper, we present a new
upper bound for the spectral radius for matrices having the P–F property, and show that
the new bound is sharper than bounds (2) and (3). Some numerical examples are also given
to show the superiority of the new bound.

2 Main results
In this section we give a new upper bound for the spectral radius of matrices having the
P–F property.

Theorem 3 Let A = (aij) ∈ R
n×n be a matrix having the Perron–Frobenius property, and

r+
i (A) > 0 for any i ∈ N . Then

ρ(A) ≤ Bnd(A), (4)

where Bnd(A) := 1
2 max i,j∈N ,j �=i

aij>0
(aii + ajj + ((aii – ajj)2 + 4r+

i (A)r+
j (A)) 1

2 ).

Proof Let x = (x1, x2, . . . , xn)� be an entrywise nonnegative nonzero eigenvector of matrix
A corresponding to ρ(A), that is,

Ax = ρ(A)x. (5)

Let

xi0 xj0 = max
aij>0, i�=j

xixj.
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From (5), we have that, for any i ∈ N ,

ρ(A)xi =
∑

k∈N

aikxk (6)

and

(
ρ(A) – aii

)
xixi =

∑

j∈N ,j �=i

aijxjxi

=
∑

j∈N , j �=i
aij>0

aijxjxi +
∑

j∈N , j �=i
aij≤0

aijxjxi

≤
∑

j∈N , j �=i
aij>0

aijxjxi (7)

≤
∑

j∈N , j �=i
aij>0

aijxi0 xj0

≤ r+
i (A)xi0 xj0 .

Case I. If xi0 xj0 > 0, then xi0 > 0 and xj0 > 0. By (7), we have

(
ρ(A) – ai0i0

)
xi0 xi0 ≤ r+

i0 (A)xi0 xj0 (8)

and

(
ρ(A) – aj0j0

)
xj0 xj0 ≤ r+

j0 (A)xi0 xj0 . (9)

Case I-a. If ρ(A) – ai0i0 > 0 and ρ(A) – aj0j0 > 0, then multiplying (8) by (9) gives

(
ρ(A) – ai0i0

)(
ρ(A) – aj0j0

)
x2

i0 x2
j0 ≤ r+

i0 (A)r+
j0 (A)x2

i0 x2
j0 ,

and hence

(
ρ(A) – ai0i0

)(
ρ(A) – aj0j0

) ≤ r+
i0 (A)r+

j0 (A). (10)

Solving ρ(A) in (10) gives

ρ(A) ≤ 1
2
(
ai0i0 + aj0j0 +

(
(ai0i0 – aj0j0 )2 + 4r+

i0 (A)r+
j0 (A)

) 1
2
)

≤ 1
2

max
i,j∈N , j �=i

aij>0

(
aii + ajj +

(
(aii – ajj)2 + 4r+

i (A)r+
j (A)

) 1
2
)
,

i.e., inequality (4) holds.
Case I-b. If ρ(A) – ai0i0 ≤ 0 or ρ(A) – aj0j0 ≤ 0, then ρ(A) ≤ max{ai0i0 , aj0j0}. Without loss

of generality, suppose that ai0i0 ≥ aj0j0 , then

ρ(A) ≤ 1
2

(ai0i0 + aj0j0 + ai0i0 – aj0j0 )
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≤ 1
2
(
ai0i0 + aj0j0 +

(
(ai0i0 – aj0j0 )2 + 4r+

i0 (A)r+
j0 (A)

) 1
2
)

≤ 1
2

max
i,j∈N , j �=i

aij>0

(
aii + ajj +

(
(aii – ajj)2 + 4r+

i (A)r+
j (A)

) 1
2
)
,

i.e., inequality (4) holds.
Case I-c. If ρ(A) – ai0i0 ≤ 0 and ρ(A) – aj0j0 ≤ 0, then ρ(A) ≤ min{ai0i0 , aj0j0}, and thus

ρ(A) ≤ min{ai0i0 , aj0j0} ≤ max{ai0i0 , aj0j0}. From Case I-b, inequality (4) also holds.
Case II. If xi0 xj0 = 0, then from x �= 0, there exists one index k ∈ N such that xk �= 0. For

this index k, by the assumption that r+
i (A) > 0 for any i ∈ N , we have r+

k (A) > 0, and hence
there is an index k0 ∈ N and k0 �= k such that akk0 > 0. Furthermore, by (7) it follows that

(
ρ(A) – akk

)
xkxk ≤

∑

j∈N , j �=k
akj>0

akjxjxk ≤ r+
k (A)xi0 xj0 = 0,

and hence ρ(A) ≤ akk . Similarly to Case I-b and Case I-c, we have

ρ(A) ≤ akk

=
1
2

(akk + ak0k0 + akk – ak0k0 )

≤ 1
2
(
akk + ak0k0 +

(
(akk – ak0k0 )2 + 4r+

k (A)r+
k0 (A)

) 1
2
)

≤ 1
2

max
i,j∈N , j �=i

aij>0

(
aii + ajj +

(
(aii – ajj)2 + 4r+

i (A)r+
j (A)

) 1
2
)
,

i.e., inequality (4) also holds. The conclusion follows from Case I and Case II. �

Remark here that the difference of bounds (3) and (4) is the restriction under the max,
from which it holds obviously that Bnd(A) ≤ BndHLL2 ≤ BndHLL1 , and the bound Bnd(A)
need less computations than BndHLL2 in general.

For a nonnegative matrix A, it holds that ri(A) = r+
i (A) for any i ∈ N . Hence, we can

obtain the following bound for the spectral radius for nonnegative matrices because a
nonnegative matrix is a matrix having the P–F property.

Corollary 1 Let A = (aij) ∈ R
n×n be a nonnegative matrix, and ri(A) > 0 for any i ∈ N .

Then

ρ(A) ≤ BndN (A), (11)

where BndN (A) := 1
2 max i,j∈N ,j �=i

aij �=0
(aii + ajj + ((aii – ajj)2 + 4ri(A)rj(A)) 1

2 ).

Remark here that the upper bound (11) for the spectral radius of nonnegative matrices
is exactly the bound provided by Kolotilina [5].
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Table 1 Upper bounds for ρ(A)

ρ(A) Bound (1) Bound (2) Bound (3) Our bound (4)

3.4292 4.4800 4.4100 4.3253 4.0754

Example 1 Consider the matrix

A =

⎡

⎢⎢⎢⎢⎢⎢
⎣

–0.2 2 0.00 1.28 –0.02
1 0.62 0.06 0.85 1.00

–0.04 0.06 2.93 –0.7 1.3
1.4 0.85 –0.70 1.06 1.1
0 0.95 1.0 1.2 0.1

⎤

⎥⎥⎥⎥⎥⎥
⎦

with the spectral radius ρ(A) = 3.4292 and the corresponding eigenvector x = (0.3107,
0.3707, 0.6992, 0.3082, 0.4269)� . Bound (1) in Theorem 1, bounds (2) and (3) in Theo-
rem 2, and our bound (4) in Theorem 3 are listed in Table 1. From Table 1 it can be seen
that our bound (4) is sharper than bounds (2) and (3), and sharper than bound (1) in some
cases.

Example 2 Consider the matrix

A =

⎡

⎢⎢⎢
⎣

0.8310 0.2305 –0.3332 –0.8384
–0.1629 0.5589 0.4768 –0.2525
5.0414 1.6179 –4.6812 –0.0670
1.5611 –6.0991 1.3457 7.0798

⎤

⎥⎥⎥
⎦

and the Perron–Frobenius splitting [7, 8] of A with A = M – N , where

M =

⎡

⎢⎢⎢
⎣

0.5967 –0.4283 0.3641 –0.6811
0.5439 0.6875 0.6861 0.4109
4.7261 1.2240 –5.2960 0.5392
2.1495 –6.7270 1.0426 6.6704

⎤

⎥⎥⎥
⎦

,

and the iterative matrix

M–1N =

⎡

⎢⎢⎢
⎣

0.1346 –0.3462 0.3846 0.3846
0.3846 0.3462 –0.1538 0.3077
0.3077 –0.1154 0.3846 0.3077
0.3846 0.3846 –0.3846 0.0769

⎤

⎥⎥⎥
⎦

has the P–F property with the spectral radius ρ(M–1N) = 0.5392 and the corresponding
eigenvector x = (0.4460, 0.4497, 0.7663, 0.1077)�. Bounds (1), (2), (3), and (4) for ρ(M–1N)
are given in Table 2. From Table 2 it can be seen that bounds (1), (2), and (3) are larger
than 1. However our bound (4) is less than 1, which implies that we can conclude that the
Perron–Frobenius splitting for this case is convergent by our bound.
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Table 2 Upper bounds for ρ(M–1N)

ρ(A) Bound (1) Bound (2) Bound (3) Our bound (4)

0.5392 1.2115 1.0385 1.0184 0.9778

Table 3 Upper bounds for ρ(A)

ρ(A) Bound (1) Bound (2) Bound (3) Melman’s bound Our bound (4)

1.1453 1.8000 1.5000 1.4491 1.3282 1.2845

Example 3 Consider the matrix

A =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 1.1
1 0 0 0 0.5
0 1 0 0 –0.1
0 0 1 0 0.4
0 0 0 1 –0.1

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

which is the companion matrix of the polynomial

p(z) = z5 + 0.1z4 – 0.4z3 + 0.1z2 – 0.5z – 1.1.

Matrix A has the P–F property with the dominant eigenvalue ρ(A) = 1.1453 and the corre-
sponding eigenvector x = (0.3872, 0.5141, 0.4137, 0.5020, 0.4032)� , where ρ(A) = 1.1453 is
also the largest zero of the polynomial p(z). Besides bounds (1), (2), (3), and (4), we give the
upper bound proposed by Melman (see Theorem 3.1 of [6]) for zeros of the polynomial,
see Table 3. From Table 3 it can be seen that our bound (4) is sharper than bounds (2) and
(3), and sharper than bound (1) and Melman’s bound in Theorem 3.1 of [6] in some cases.

3 Conclusions
In this paper we propose a new upper bound for the spectral radius by considering the
position of the positive entries for a given matrix having the Perron–Frobenius property.
We conjecture that by this technique the S-type upper bound for the spectral radius in [4]
can be improved further.
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