Skip to main content

New refinements of the Cauchy–Bunyakovsky inequality

A Correction to this article was published on 09 April 2024

This article has been updated

Abstract

This paper presents new refinements on the integral form of Cauchy–Schwartz inequality known as Cauchy–Bunyakovsky inequality. It is proved that when we possess a weighted sum of a set of Cauchy–Bunyakovsky inequalities, there are two forms of refinements enhancing the precision of the original inequality. The superiority of one refinement over the other depends on the problem in which the presented theorem is utilized.

1 Introduction

The most common applications of inequalities in science and engineering occur when there is incomplete information about a system, yet we can utilize an inequality to estimate a certain quantity. It is obvious that the closer the two sides of an inequality are to each other, the more accurate our estimation becomes. This is why refining inequalities is advantageous. Up to the present date, numerous generalizations and refinements for the Cauchy–Schwartz and Cauchy–Bunyakovsky inequalities have been extensively studied [110].

The integral form of Cauchy–Schwartz inequality known as Cauchy–Bunyakovsky inequality for two real functions \(f ( x )\) and \(g ( x )\) states that [11, Ch. 1]

$$ \biggl( \int _{a}^{b} f ( x ) g ( x ) \,dx \biggr)^{2} \leqslant \biggl( \int _{a}^{b} f^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr). $$
(1)

Accordingly, it is obvious that for a set of n functions \(\{ f_{i} ( x ) \}_{i=1}^{n}\), we have:

$$ \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} f_{i} ( x ) g ( x ) \,dx \biggr)^{2} \leqslant \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} f_{i}^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr), $$
(2)

where \(\{ p_{i} \}_{i=1}^{n} >0\) and \(P= \sum_{i=1}^{n} p_{i}\). In this paper, it is proved that Inequality (2) can be refined into the following two forms:

$$ \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} f_{i} ( x ) g ( x ) \,dx \biggr)^{2} + \begin{Bmatrix} q_{1}^{2} \\ q_{2}^{2} \end{Bmatrix} \leqslant \sum _{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} f_{i}^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr), $$
(3)

where \(q_{1}^{2}\) and \(q_{2}^{2}\) are functions of \(f_{i} ( x )\), \(p_{i}\) and \(g ( x )\).

2 Main results

The main result of this paper is contained in the following theorem.

Theorem

Consider a set of n Cauchy–Bunyakovsky inequalities applied to functions \(\{ f_{i} ( x ) \}_{i=1}^{n} \in R\) and \(g ( x ) \in R\) as follows:

$$ \biggl( \int _{a}^{b} f_{i} ( x ) g ( x ) \,dx \biggr)^{2} \leqslant \biggl( \int _{a}^{b} f_{i}^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr), \quad i=1,\dots ,n. $$
(4)

Then, there are two refinements for the weighted sum of n Cauchy–Bunyakovsky inequalities, as follows:

$$ \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} f_{i} ( x ) g ( x ) \,dx \biggr)^{2} + \begin{Bmatrix} q_{1}^{2} \\ q_{2}^{2} \end{Bmatrix} \leqslant \sum _{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} f_{i}^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr), $$
(5)

where \(\{ p_{i} \}_{i=1}^{n} >0\), \(P= \sum_{i=1}^{n} p_{i}\) and

$$\begin{aligned}& q_{1}^{2} = \int _{a}^{b} F^{2} ( x ) \,dx \int _{a}^{b} g^{2} ( x ) \,dx - \biggl( \int _{a}^{b} F ( x ) g ( x ) \,dx \biggr)^{2}, \end{aligned}$$
(6)
$$\begin{aligned}& q_{2}^{2} = \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} r_{i}^{2} ( x ) \,dx \int _{a}^{b} g^{2} ( x ) \,dx - \biggl( \int _{a}^{b} r_{i} ( x ) g ( x ) \,dx \biggr)^{2} \biggr), \end{aligned}$$
(7)
$$\begin{aligned}& F ( x ) = \frac{\sum_{i=1}^{n} f_{i} ( x ) p_{i}}{ P}, \end{aligned}$$
(8)
$$\begin{aligned}& r_{i} ( x ) = f_{i} ( x ) -F ( x ). \end{aligned}$$
(9)

Proof

The theorem is proved through a three-step process. In the first and second steps, the right and left sides of Inequality (2) are obtained, respectively. In the third step, the obtained values are subtracted from each other.

Step 1: Obtaining the right side of the Inequality.

Let \(S_{1}\) be equal to the right side of Inequality (2) as follows:

$$ S_{1} = \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} f_{i}^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr). $$
(10)

Substituting \(f_{i} ( x )\) from Equation (9) into Equation (10) gives:

$$\begin{aligned} S_{1} &= \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} F^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) \\ &\quad {}+2 \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} r_{i} ( x ) F ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) \\ &\quad {}+ \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} r_{i}^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr). \end{aligned}$$
(11)

The first summation in Equation (11) can be simplified as:

$$ \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} F^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) = \biggl( \int _{a}^{b} F^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr). $$
(12)

The second summation in Equation (11) is obtained as follows:

$$\begin{aligned}& 2 \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} r_{i} ( x ) F ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) \\& \quad =2 \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) \sum_{i=1}^{n} \frac{p_{i}}{P} \int _{a}^{b} F ( x ) r_{i} ( x ) \,dx \\& \quad = 2 \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) \int _{a}^{b} \sum_{i=1}^{n} \frac{p_{i}}{P} F ( x ) r_{i} ( x ) \,dx \\& \quad =2 \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) \int _{a}^{b} \frac{F ( x )}{P} \sum _{i=1}^{n} p_{i} r_{i} ( x ) \,dx . \end{aligned}$$
(13)

From Equations (8) and (9), it is obvious that \(\sum_{i=1}^{n} p_{i} r_{i} ( x ) =0\). Hence,

$$ 2 \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} r_{i} ( x ) F ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) =0. $$
(14)

Therefore, the value \(S_{1}\) in Equation (11) can be rewritten as follows:

$$ S_{1} = \biggl( \int _{a}^{b} F^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) + \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} r_{i}^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr). $$
(15)

Step 2: Obtaining the left side of the Inequality.

Let \(S_{2}\) be equal to the left side of Inequality (2) as follows:

$$ S_{2} = \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} f_{i} ( x ) g ( x ) \,dx \biggr)^{2}. $$
(16)

Substituting \(f_{i} ( x )\) from Equation (9) into Equation (16) gives:

$$\begin{aligned} S_{2} &= \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} F ( x ) g ( x ) \,dx + \int _{a}^{b} r_{i} ( x ) g ( x ) \,dx \biggr)^{2} \\ &=\sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} F ( x ) g ( x ) \,dx \biggr)^{2} +2 \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} F ( x ) g ( x ) \,dx \biggr) \biggl( \int _{a}^{b} r_{i} ( x ) g ( x ) \,dx \biggr) \\ &\quad {}+ \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} r_{i} ( x ) g ( x ) \,dx \biggr)^{2}. \end{aligned}$$
(17)

The first summation in Equation (17) can be simplified as:

$$ \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} F ( x ) g ( x ) \,dx \biggr)^{2} = \biggl( \int _{a}^{b} F ( x ) g ( x ) \,dx \biggr)^{2}. $$
(18)

The second summation in Equation (17) can be obtained as follows:

$$\begin{aligned}& 2 \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} F ( x ) g ( x ) \,dx \biggr) \biggl( \int _{a}^{b} r_{i} ( x ) g ( x ) \,dx \biggr) \\& \quad =2 \biggl( \int _{a}^{b} F ( x ) g ( x ) \,dx \biggr) \sum _{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} r_{i} ( x ) g ( x ) \,dx \biggr) \\& \quad = 2 \biggl( \int _{a}^{b} F ( x ) g ( x ) \,dx \biggr) \int _{a}^{b} \sum_{i=1}^{n} \frac{p_{i}}{P} r_{i} ( x ) g ( x ) \,dx \\& \quad =2 \biggl( \int _{a}^{b} F ( x ) g ( x ) \,dx \biggr) \int _{a}^{b} \frac{g ( x )}{P} \sum _{i=1}^{n} p_{i} r_{i} ( x ) \,dx . \end{aligned}$$
(19)

We know that \(\sum_{i=1}^{n} p_{i} r_{i} ( x ) =0\). Thus, the second summation in the right side of Equation (17) is equal to zero similar to step 1. Therefore, the value \(S_{2}\) in Equation (17) can be rewritten as follows:

$$ S_{2} = \biggl( \int _{a}^{b} F ( x ) g ( x ) \,dx \biggr)^{2} + \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} r_{i} ( x ) g ( x ) \,dx \biggr)^{2}. $$
(20)

Step 3:

In this step, the value of \(S_{1} - S_{2}\) is obtained. From Equations (15) and (20), we can write:

$$\begin{aligned} S_{1} - S_{2} ={}& \biggl( \biggl( \int _{a}^{b} F^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) - \biggl( \int _{a}^{b} F ( x ) g ( x ) \,dx \biggr)^{2} \biggr) \\ &{}+ \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \biggl( \int _{a}^{b} r_{i}^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) - \biggl( \int _{a}^{b} r_{i} ( x ) g ( x ) \,dx \biggr)^{2} \biggr). \end{aligned}$$
(21)

Equation (21) is the sum of two positive parts, according to the Cauchy–Bunyakovsky inequality. We can name them \(q_{1}^{2}\) and \(q_{2}^{2}\) as follows:

$$ q_{1}^{2} = \biggl( \biggl( \int _{a}^{b} F^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) - \biggl( \int _{a}^{b} F ( x ) g ( x ) \,dx \biggr)^{2} \biggr), $$
(22)

and

$$ q_{2}^{2} = \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \biggl( \int _{a}^{b} r_{i}^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) - \biggl( \int _{a}^{b} r_{i} ( x ) g ( x ) \,dx \biggr)^{2} \biggr). $$
(23)

Given that values of \(S_{1}\) and \(S_{2}\) are respectively right and left side of Inequality (2), the inequality can be refined into two following forms:

$$ S_{1} - S_{2} = \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} f_{i}^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) - \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} f_{i} ( x ) g ( x ) \,dx \biggr)^{2} \geqslant q_{1}^{2}, $$
(24)

or

$$ S_{1} - S_{2} = \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} f_{i}^{2} ( x ) \,dx \biggr) \biggl( \int _{a}^{b} g^{2} ( x ) \,dx \biggr) - \sum_{i=1}^{n} \frac{p_{i}}{P} \biggl( \int _{a}^{b} f_{i} ( x ) g ( x ) \,dx \biggr)^{2} \geqslant q_{2}^{2}. $$
(25)

The proof is complete. □

3 Conclusion

It is obvious that a weighted sum of a set of Cauchy–Bunyakovsky inequalities results in a new Cauchy–Bunyakovsky inequality. The theorem presented in this paper demonstrates that there exist two distinct refinement forms for the inequality obtained from a weighted sum of n Cauchy–Bunyakovsky inequalities.

Data availability

There is no data to declare.

Change history

References

  1. Han, J., Shi, J.: Refinements of Cauchy–Schwarz norm inequality. J. Math. Inequal. 13, 1095–1103 (2019)

    Article  MathSciNet  Google Scholar 

  2. Alzer, H.: A refinement of the Cauchy–Schwarz inequality. J. Math. Anal. Appl. 168(2), 596–604 (1992)

    Article  MathSciNet  Google Scholar 

  3. Masjed-Jamei, M., Hussain, N.: More results on a functional generalization of the Cauchy–Schwarz inequality. J. Inequal. Appl. 2012, 239 (2012)

    Article  MathSciNet  Google Scholar 

  4. Masjed-Jamei, M.: A functional generalization of the Cauchy–Schwarz inequality and some subclasses. Appl. Math. Lett. 22(9), 1335–1339 (2009)

    Article  MathSciNet  Google Scholar 

  5. Mercer, P.R.: A refined Cauchy–Schwarz inequality. Int. J. Math. Educ. Sci. Technol. 38(6), 839–843 (2007)

    Article  MathSciNet  Google Scholar 

  6. Wada, S.: On some refinement of the Cauchy–Schwarz inequality. Linear Algebra Appl. 420(2–3), 433–440 (2007)

    Article  MathSciNet  Google Scholar 

  7. Mercer, P.R.: A refined Cauchy–Schwarz inequality. Int. J. Math. Educ. Sci. Technol. 38(6), 839–843 (2007)

    Article  MathSciNet  Google Scholar 

  8. Choi, D.: A generalization of the Cauchy–Schwarz inequality. J. Math. Inequal. 10(4), 1009–1012 (2016)

    Article  MathSciNet  Google Scholar 

  9. Tuo, L.: Generalizations of Cauchy–Schwarz inequality in unitary spaces. J. Inequal. Appl. 2015(1), 201 (2015)

    Article  MathSciNet  Google Scholar 

  10. Sever Dragomir, S.: Improving Schwarz inequality in inner product spaces. arXiv e-prints, p. arXiv-1709 (2017)

  11. Steele, J.M.: The Cauchy–Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

Download references

Funding

There is no funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

This article has only one author.

Corresponding author

Correspondence to Saeed Montazeri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montazeri, S. New refinements of the Cauchy–Bunyakovsky inequality. J Inequal Appl 2023, 161 (2023). https://doi.org/10.1186/s13660-023-03074-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-03074-1

Keywords