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Abstract
This paper presents new refinements on the integral form of Cauchy–Schwartz
inequality known as Cauchy–Bunyakovsky inequality. It is proved that when we
possess a weighted sum of a set of Cauchy–Bunyakovsky inequalities, there are two
forms of refinements enhancing the precision of the original inequality. The
superiority of one refinement over the other depends on the problem in which the
presented theorem is utilized.
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1 Introduction
The most common applications of inequalities in science and engineering occur when
there is incomplete information about a system, yet we can utilize an inequality to esti-
mate a certain quantity. It is obvious that the closer the two sides of an inequality are to
each other, the more accurate our estimation becomes. This is why refining inequalities is
advantageous. Up to the present date, numerous generalizations and refinements for the
Cauchy–Schwartz and Cauchy–Bunyakovsky inequalities have been extensively studied
[1–10].

The integral form of Cauchy–Schwartz inequality known as Cauchy–Bunyakovsky in-
equality for two real functions f (x) and g(x) states that [11, Ch. 1]
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Accordingly, it is obvious that for a set of n functions {fi(x)}n
i=1, we have:
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where {pi}n
i=1 > 0 and P =

∑n
i=1 pi. In this paper, it is proved that Inequality (2) can be

refined into the following two forms:

n∑
i=1

pi

P

(∫ b

a
fi(x)g(x) dx

)2

+

{
q2

1

q2
2

}
≤

n∑
i=1

pi

P

(∫ b

a
f 2
i (x) dx

)(∫ b

a
g2(x) dx

)
, (3)

where q2
1 and q2

2 are functions of fi(x), pi and g(x).

2 Main results
The main result of this paper is contained in the following theorem.

Theorem Consider a set of n Cauchy–Bunyakovsky inequalities applied to functions
{fi(x)}n

i=1 ∈ R and g(x) ∈ R as follows:
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Then, there are two refinements for the weighted sum of n Cauchy–Bunyakovsky inequali-
ties, as follows:
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where {pi}n
i=1 > 0, P =

∑n
i=1 pi and
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F(x) =
∑n

i=1 fi(x)pi

P
, (8)

ri(x) = fi(x) – F(x). (9)

Proof The theorem is proved through a three-step process. In the first and second steps,
the right and left sides of Inequality (2) are obtained, respectively. In the third step, the
obtained values are subtracted from each other.

Step 1: Obtaining the right side of the Inequality.
Let S1 be equal to the right side of Inequality (2) as follows:
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Substituting fi(x) from Equation (9) into Equation (10) gives:
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The first summation in Equation (11) can be simplified as:
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The second summation in Equation (11) is obtained as follows:
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From Equations (8) and (9), it is obvious that
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2
n∑

i=1

pi

P

(∫ b

a
ri(x)F(x) dx

)(∫ b

a
g2(x) dx

)
= 0. (14)

Therefore, the value S1 in Equation (11) can be rewritten as follows:
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Step 2: Obtaining the left side of the Inequality.
Let S2 be equal to the left side of Inequality (2) as follows:
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Substituting fi(x) from Equation (9) into Equation (16) gives:
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The first summation in Equation (17) can be simplified as:
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The second summation in Equation (17) can be obtained as follows:
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We know that
∑n

i=1 piri(x) = 0. Thus, the second summation in the right side of Equation
(17) is equal to zero similar to step 1. Therefore, the value S2 in Equation (17) can be
rewritten as follows:
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Step 3:
In this step, the value of S1 – S2 is obtained. From Equations (15) and (20), we can write:
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Equation (21) is the sum of two positive parts, according to the Cauchy–Bunyakovsky
inequality. We can name them q2
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2 as follows:
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and

q2
2 =

n∑
i=1

pi

P

((∫ b

a
r2

i (x) dx
)(∫ b

a
g2(x) dx

)
–

(∫ b

a
ri(x)g(x) dx

)2)
. (23)

Given that values of S1 and S2 are respectively right and left side of Inequality (2), the
inequality can be refined into two following forms:
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The proof is complete. �

3 Conclusion
It is obvious that a weighted sum of a set of Cauchy–Bunyakovsky inequalities results in a
new Cauchy–Bunyakovsky inequality. The theorem presented in this paper demonstrates
that there exist two distinct refinement forms for the inequality obtained from a weighted
sum of n Cauchy–Bunyakovsky inequalities.
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