Skip to main content

On stability of almost surjective functional equations of uniformly convex Banach spaces

Abstract

Let Y be a uniformly convex space with power type p, and let \((G,+)\) be an abelian group, \(\delta ,\varepsilon \geq 0\), \(0< r<1\). We first show a stability result for approximate isometries from an arbitrary Banach space into Y. This is a generalization of Dolinar’ results for \((\delta ,r)\)-isometries of Hilbert spaces and \(L_{p}\) (\(1< p<\infty \)) spaces. As a result, we prove that if a standard mapping \(F:G\rightarrow Y\) satisfies \(d(u,F(G))\leq \delta \|u\|^{r}\) for every \(u\in Y\) and

$$ \bigl\vert \bigl\Vert F(x)-F(y) \bigr\Vert - \bigl\Vert F(x-y) \bigr\Vert \bigr\vert \leq \varepsilon , \quad x,y \in G, $$

then there is an additive operator \(A:G\rightarrow Y\) such that

$$ \bigl\Vert F(x)-Ax \bigr\Vert =o\bigl( \bigl\Vert F(x) \bigr\Vert \bigr) \quad \text{as } \bigl\Vert F(x) \bigr\Vert \rightarrow \infty . $$

1 Introduction

Let \((G,+)\) be a group and let Y be a Banach space. Sikorska [18] firstly investigated the approximation stability by an additive function for near-surjective mappings \(F:G\rightarrow Y\) satisfying

$$ \bigl\vert \bigl\Vert F(x)-F(y) \bigr\Vert - \bigl\Vert F(x-y) \bigr\Vert \bigr\vert \leq \varepsilon , $$
(1.1)

and showed that the near-surjectivity assumption is essential. In this paper, we continue to study asymptotical stability for the above functional equations with a nonsurjectivity condition, where Y is a uniformly convex Banach space with power type p. Let us first review the historical development of stability for equation (1.1).

In the fall of 1940, Ulam [20] raised the following question:

Question 1.1

(Ulam [20])

Let \(G_{1}\) be a group and let \(G_{2}\) be a metric group with a metric \(d(\cdot ,\cdot )\). Given \(\varepsilon >0\), does there exist \(\delta >0\) such that if a function \(h:G_{1}\rightarrow G_{2}\) satisfies the inequality \(d(h(xy),h(x)h(y))<\delta \) for all \(x,y\in G_{1}\), then there is a homomorphism \(H:G_{1}\rightarrow G_{2}\) with \(d(h(x),H(x))<\varepsilon \) for all \(x\in G_{1}\)?

In 1941, Hyers [9] answered the question of Ulam for the case where \(G_{1}\) and \(G_{2}\) are both Banach spaces.

Theorem 1.2

(Hyers [9])

Let X, Y be Banach spaces, and let \(F:X\rightarrow Y\) be a mapping with

$$ \bigl\Vert F(x+y)-F(x)-F(y) \bigr\Vert \leq \varepsilon , \quad x,y \in X, $$
(1.2)

for some \(\varepsilon \geq 0\). Then there is an additive mapping \(A:X\rightarrow Y\) such that

$$ \bigl\Vert F(x)-Ax \bigr\Vert \leq \varepsilon , \quad x \in X. $$

The stability result above for (1.2) is called the Hyers–Ulam stability. In 1978, Rassias [17] obtained the following exciting result, which weakened the condition for the bound of the norm of \(F(x+y)-F(x)-F(y)\).

Theorem 1.3

(Rassias [17])

Let X, Y be Banach spaces, and let \(F:X\rightarrow Y\) be a mapping satisfying

$$ \bigl\Vert F(x+y)-F(x)-F(y) \bigr\Vert \leq \varepsilon \bigl( \Vert x \Vert ^{p}+ \Vert y \Vert ^{p} \bigr), \quad x,y \in X, $$
(1.3)

for some \(\varepsilon \geq 0\) and \(0\leq p <1\). Then there is an additive mapping \(A:X\rightarrow Y\) such that

$$ \bigl\Vert F(x)-Ax \bigr\Vert \leq \frac{2\varepsilon}{2-2^{p}}, \quad x \in X. $$

The stability phenomenon established by Rassias is called the Hyers–Ulam–Rassias stability. For some recent work on Hyers–Ulam–Rassias stability and related topics, one may refer to [1, 10, 13, 15].

In 2003, by using a stability result of ε-isometries which was established by Omladič and Šemrl [14], Tabor [19] firstly got the perturbation stability result for the Fischer–Muszély functional equation

$$ \bigl\vert \bigl\Vert F(x+y) \bigr\Vert - \bigl\Vert F(x)+F(y) \bigr\Vert \bigr\vert \leq \varepsilon , $$
(1.4)

where \(F:G\rightarrow Y\) is surjective. Further, Sikorska [18] showed the stability of the functional equation for (1.1).

Theorem 1.4

(Sikorska [18])

Let \((G,+)\) be an abelian group, Y be a Banach space, \(\delta ,\varepsilon \geq 0\). If \(F:G\rightarrow Y\) is a δ-surjective mapping satisfying

$$ \bigl\vert \bigl\Vert F(x-y) \bigr\Vert - \bigl\Vert F(x)-F(y) \bigr\Vert \bigr\vert \leq \varepsilon ,\quad x,y \in G, $$

then

$$ \bigl\Vert F(x+y)-F(x)-F(y) \bigr\Vert \leq 5\varepsilon +5 \delta , \quad x,y \in G. $$

Since 2013, Dong generalized stability of near-surjective equations (1.1) and (1.4), where the error is unbounded (see [58]). However, the near-surjectivity assumption also cannot be omitted.

This paper is organized as follows. In Sect. 2, we show that if a mapping \(f:X\rightarrow Y\) with \(f(0)=0\) satisfies

$$ \bigl\vert \bigl\Vert f(x)-f(y) \bigr\Vert - \Vert x-y \Vert \bigr\vert \leq \delta \bigl( \Vert x \Vert ^{r}+ \Vert y \Vert ^{r}\bigr)+ \varepsilon , $$

where X is a Banach space, Y is a uniformly convex space with power type p, and \(\delta ,\varepsilon \geq 0\), \(0< r<1\), then there are two nonnegative constants \(K(\delta ,r,p)\), \(\widetilde{K}(\varepsilon )\) with \(\lim_{\delta \rightarrow 0}K(\delta ,r,p)=0\), \(\lim_{\varepsilon \rightarrow 0}\widetilde{K}(\varepsilon )=0\) and a linear isometry \(U: X \rightarrow Y\) such that

$$\begin{aligned} \bigl\Vert f(x)-Ux \bigr\Vert \leq K(\delta ,r,p) \max \bigl\{ \Vert x \Vert ^{r}, \Vert x \Vert ^{1-(1-r)/p} \bigr\} + \widetilde{K}(\varepsilon )\max \bigl\{ 1, \Vert x \Vert ^{1-1/p} \bigr\} , \quad x \in X. \end{aligned}$$

This is a generalization of Dolinar’ results [4] for \((\delta ,r)\)-isometries of Hilbert spaces and \(L_{p}\) (\(1< p<\infty \)) spaces. In Sect. 3, by using the stability result above for perturbation isometries, we obtain that if \(F:G\rightarrow Y\) satisfies (1.1) and \(d(u,F(G))\leq \delta \|u\|^{r}\) for every \(u\in Y\), then there is an additive operator \(A:G\rightarrow Y\) such that

$$ \bigl\Vert F(x)-Ax \bigr\Vert =o\bigl( \bigl\Vert F(x) \bigr\Vert \bigr) \quad \text{as } \bigl\Vert F(x) \bigr\Vert \rightarrow \infty . $$

As a result, we also give a stability result for the mappings which preserve the equality of distance.

In this paper, the letters X, Y are used to denote real Banach spaces, \(X^{*}\), \(Y^{*}\) are their dual spaces. We also denote that G is an abelian group. For a real Banach space X, we denote by \(S_{X}\) and \(B_{X}\) the unit sphere and the closed unit ball of X, respectively.

2 Asymptotical stability of nonsurjective \((\delta ,r,\varepsilon )\)-isometries

The main results of this section are inspired by [2, Theorem 2.5].

Definition 2.1

Let \(f:X\rightarrow Y\) be a mapping, \(\delta ,\varepsilon \geq 0\), \(0< r<1\). Then f is called a \((\delta ,r,\varepsilon )\)-isometry if

$$ \bigl\vert \bigl\Vert f(x)-f(y) \bigr\Vert - \Vert x-y \Vert \bigr\vert \leq \delta \bigl( \Vert x \Vert ^{r}+ \Vert y \Vert ^{r}\bigr)+ \varepsilon , \quad x,y \in X. $$
(2.1)

We say that f is standard if \(f(0)=0\).

Given a nonzero \(x\in X\), we define \(g:\mathbb{R}\rightarrow Y\) as follows:

$$ g(t)=\frac{f(tx)}{ \Vert x \Vert }, \quad t\in \mathbb{R}. $$

Then for each \(s,t\in \mathbb{R}\),

$$\begin{aligned} \bigl\vert \bigl\Vert g(t)-g(s) \bigr\Vert - \vert s-t \vert \bigr\vert & \leq \frac{ \vert \Vert f(tx)-f(sx) \Vert - \vert s-t \vert ~ \Vert x \Vert \vert }{ \Vert x \Vert } \\ &\leq \delta \bigl( \vert s \vert ^{r}+ \vert t \vert ^{r}\bigr) \Vert x \Vert ^{r-1}+ \varepsilon \Vert x \Vert ^{-1}. \end{aligned}$$
(2.2)

Lemma 2.2

Suppose that \(g:\mathbb{R}\rightarrow Y\) is defined as above. Then for every \(n\in \mathbb{N}\), there exists \(\varphi _{n}\in S_{Y^{*}}\) such that

$$ \bigl\vert \bigl\langle \varphi _{n},g(t)\bigr\rangle -t \bigr\vert \leq 3 \delta n^{r} \Vert x \Vert ^{r-1} +2 \varepsilon \Vert x \Vert ^{-1}, \quad t\in [0,n]. $$

Proof

By Hahn–Banach theorem (see [12, p. 75–76]), for each \(n\in \mathbb{N}\), there exists \(\varphi _{n}\in S_{Y^{*}}\) so that

$$ \bigl\langle \varphi _{n},g(n)\bigr\rangle = \bigl\Vert g(n) \bigr\Vert = \frac{f(nx)}{ \Vert x \Vert }. $$

Then

$$ n-\delta n^{r} \Vert x \Vert ^{r-1} -\varepsilon \Vert x \Vert ^{-1} \leq \bigl\langle \varphi _{n},g(n) \bigr\rangle \leq n+ \delta n^{r} \Vert x \Vert ^{r-1} + \varepsilon \Vert x \Vert ^{-1}. $$

Given \(n\in \mathbb{N}\), on the one hand,

$$ \bigl\langle \varphi _{n},g(t)\bigr\rangle \leq \bigl\Vert g(t) \bigr\Vert \leq t+ \delta t^{r} \Vert x \Vert ^{r-1} + \varepsilon \Vert x \Vert ^{-1} \leq t+ \delta n^{r} \Vert x \Vert ^{r-1} + \varepsilon \Vert x \Vert ^{-1}, \quad t\in [0,n]. $$

On the other hand,

$$ \bigl\langle \varphi _{n},g(n)\bigr\rangle -\bigl\langle \varphi _{n},g(t)\bigr\rangle \leq \bigl\Vert g(n)-g(t) \bigr\Vert \leq n-t+ 2 \delta n^{r} \Vert x \Vert ^{r-1} +\varepsilon \Vert x \Vert ^{-1}, \quad t\in [0,n]. $$

Thus,

$$\begin{aligned} \bigl\langle \varphi _{n},g(t)\bigr\rangle &=\bigl\langle \varphi _{n},g(n)\bigr\rangle - \bigl( \bigl\langle \varphi _{n},g(n)\bigr\rangle -\bigl\langle \varphi _{n},g(t) \bigr\rangle \bigr) \\ &\geq n-\delta n^{r} \Vert x \Vert ^{r-1}- \varepsilon \Vert x \Vert ^{-1}- \bigl(n-t+ 2 \delta n^{r} \Vert x \Vert ^{r-1} +\varepsilon \Vert x \Vert ^{-1}\bigr) \\ &\geq t - 3\delta n^{r} \Vert x \Vert ^{r-1}-2 \varepsilon \Vert x \Vert ^{-1}, \quad t \in [0,n]. \end{aligned}$$

Therefore,

$$ \bigl\vert \bigl\langle \varphi _{n},g(t)\bigr\rangle -t \bigr\vert \leq 3 \delta n^{r} \Vert x \Vert ^{r-1} +2 \varepsilon \Vert x \Vert ^{-1} ,\quad t\in [0,n]. $$

 □

The modulus of convexity of a Banach space Y is the function \(\delta _{Y}:[0,2] \rightarrow [0,1]\) defined by

$$ \delta _{Y}(\epsilon )=\inf \biggl\{ 1- \biggl\Vert \frac{x+y}{2} \biggr\Vert : x,y \in B_{Y}, \Vert x-y \Vert \geq \epsilon \biggr\} . $$

Definition 2.3

([16])

A Banach space Y is said to be uniformly convex if \(\delta _{Y}(\epsilon )>0\) for all \(0<\epsilon \leq 2\). If \(p\geq 1\), we say that a uniformly convex Banach space Y has power type p if there is a constant \(C>0\) so that \(\delta _{Y}(\epsilon ) \geq C\epsilon ^{p}\) for all \(0<\epsilon \leq 2\).

Remark 2.4

Pisier [16] showed that every uniformly convex Banach spaces can be renormed to admit power type p for some \(2\leq p<+\infty \).

Theorem 2.5

Suppose that Y is a uniformly convex space with power type p, and that \(f:X\rightarrow Y\) is a standard \((\delta ,r,\varepsilon )\)-isometry. Then there are constants \(K(\delta ,r,p)\geq 0\), \(\widetilde{K}(\varepsilon )\geq 0\) with \(\lim_{\delta \rightarrow 0}K(\delta ,r,p)=0\), \(\lim_{\varepsilon \rightarrow 0}\widetilde{K}(\varepsilon )=0\) and a linear isometry \(U: X \rightarrow Y\) such that

$$\begin{aligned} \bigl\Vert f(x)-Ux \bigr\Vert & \leq K(\delta ,r,p) \max \bigl\{ \Vert x \Vert ^{r}, \Vert x \Vert ^{1-(1-r)/p} \bigr\} \\ &\quad{} + \widetilde{K}(\varepsilon )\max \bigl\{ 1, \Vert x \Vert ^{1-1/p} \bigr\} , \quad x\in X. \end{aligned}$$

Proof

Given \(x\in X\setminus \{0\}\), \(t\in \mathbb{R}\), \(n\in \mathbb{N}\), let \(g(t)=\frac{f(tx)}{\|x\|}\), \(y_{n}=\frac{f(2^{n} x)}{\|2^{n} x\|}\), \(z_{n}=\frac{f(2^{n} x)}{\|f(2^{n} x)\|}\). Then \(z_{n}\in S_{Y}\) and

$$ \Vert y_{n}-z_{n} \Vert = \bigl\Vert f\bigl(2^{n} x\bigr) \bigr\Vert ~ \biggl\vert \frac{1}{ \Vert 2^{n} x \Vert }- \frac{1}{ \Vert f(2^{n} x) \Vert } \biggr\vert \leq \frac{\delta \Vert 2^{n} x \Vert ^{r}+\varepsilon}{ \Vert 2^{n} x \Vert }=\delta \bigl\Vert 2^{n} x \bigr\Vert ^{r-1}+\varepsilon \bigl\Vert 2^{n} x \bigr\Vert ^{-1}. $$
(2.3)

From Lemma 2.2, there exists \(\varphi _{2^{n}}\in S_{Y^{*}}\) so that

$$ \bigl\vert \bigl\langle \varphi _{2^{n}},g(t)\bigr\rangle -t \bigr\vert \leq 3 \delta 2^{nr} \Vert x \Vert ^{r-1} +2 \varepsilon \Vert x \Vert ^{-1}, \quad t\in \bigl[0,2^{n} \bigr]. $$

This implies that

$$\begin{aligned}& \biggl|\biggl\langle \varphi _{2^{n}},\frac{g(2^{n})}{2^{n}}\biggr\rangle -1 \biggr| \leq \frac{3 \delta 2^{nr} \|x\|^{r-1} +2\varepsilon \|x\|^{-1}}{2^{n}}, \quad \mbox{and} \\& \biggl|\biggl\langle \varphi _{2^{n}},\frac{g(2^{n-1})}{2^{n-1}}\biggr\rangle -1 \biggr| \leq \frac{3 \delta 2^{nr} \|x\|^{r-1} +2\varepsilon \|x\|^{-1}}{2^{n-1}}. \end{aligned}$$

Then

$$\begin{aligned} \frac{ \Vert y_{n-1}+y_{n} \Vert }{2}&\geq \biggl\langle \varphi _{2^{n}}, \frac{y_{n-1}+y_{n}}{2}\biggr\rangle \\ &= \frac{1}{2}\biggl\langle \varphi _{2^{n}}, \frac{g(2^{n-1})}{2^{n-1}}+ \frac{g(2^{n})}{2^{n}}\biggr\rangle \\ &\geq 1-\frac{1}{2} \bigl( 3 \delta 2^{nr} \Vert x \Vert ^{r-1} +2\varepsilon \Vert x \Vert ^{-1} \bigr) \biggl(\frac{1}{2^{n}}+\frac{1}{2^{n-1}}\biggr) \\ &\geq 1-\frac{9}{2} \bigl(\delta \bigl\Vert 2^{n}x \bigr\Vert ^{r-1} +\varepsilon \bigl\Vert 2^{n} x \bigr\Vert ^{-1}\bigr). \end{aligned}$$

It follows from (2.3) that

$$\begin{aligned} \frac{ \Vert z_{n-1}+z_{n} \Vert }{2}& = \frac{ \Vert y_{n-1}+y_{n} \Vert }{2}-\biggl( \frac{ \Vert y_{n-1}+y_{n} \Vert }{2}- \frac{ \Vert z_{n-1}+z_{n} \Vert }{2}\biggr) \\ &\geq \frac{ \Vert y_{n-1}+y_{n} \Vert }{2}-\frac{1}{2}\bigl( \Vert y_{n-1}-z_{n-1} \Vert + \Vert y_{n}-z_{n} \Vert \bigr) \\ &\geq 1-\frac{9}{2} \bigl(\delta \bigl\Vert 2^{n}x \bigr\Vert ^{r-1} +\varepsilon \bigl\Vert 2^{n} x \bigr\Vert ^{-1}\bigr) \\ & \quad{}- \frac{1}{2}\bigl(\delta \bigl\Vert 2^{n-1} x \bigr\Vert ^{r-1}+\varepsilon \bigl\Vert 2^{n-1} x \bigr\Vert ^{-1}+\delta \bigl\Vert 2^{n} x \bigr\Vert ^{r-1}+\varepsilon \bigl\Vert 2^{n} x \bigr\Vert ^{-1}\bigr) \\ & = 1-C_{1}(\delta ,r) \bigl\Vert 2^{n}x \bigr\Vert ^{r-1} -\widetilde{C_{1}}( \varepsilon ) \bigl\Vert 2^{n}x \bigr\Vert ^{-1}, \end{aligned}$$

where \(C_{1}(\delta ,r)= (\frac{2^{1-r}+10}{2} )\delta \), \(\widetilde{C_{1}}(\varepsilon )=6\varepsilon \). Since Y is uniformly convex with power type p, there is a constant \(C>0\) such that \(\delta _{Y}(\epsilon )\geq C\epsilon ^{p}\) for all \(0<\epsilon \leq 2\). Then

$$\begin{aligned} C \Vert z_{n-1}-z_{n} \Vert ^{p} &\leq \delta _{Y}\bigl( \Vert z_{n-1}-z_{n} \Vert \bigr) \leq 1- \frac{ \Vert z_{n-1}+z_{n} \Vert }{2} \\ &\leq C_{1}(\delta ,r) \bigl\Vert 2^{n}x \bigr\Vert ^{r-1} + \widetilde{C_{1}}(\varepsilon ) \bigl\Vert 2^{n}x \bigr\Vert ^{-1}. \end{aligned}$$

It follows that \(\|z_{n-1}-z_{n}\| \leq (\frac{C_{1}( \delta ,r)}{C})^{1/p} \|2^{n}x \|^{(r-1)/p} +(\frac{\widetilde{C_{1}}(\varepsilon )}{C})^{1/p} \|2^{n}x \|^{-1/p} \). Again by (2.3),

$$\begin{aligned} \Vert y_{n-1}-y_{n} \Vert &\leq \Vert y_{n-1}-z_{n-1} \Vert + \Vert z_{n-1}-z_{n} \Vert + \Vert z_{n}-y_{n} \Vert \\ & \leq \delta \bigl\Vert 2^{n-1} x \bigr\Vert ^{r-1}+ \varepsilon \bigl\Vert 2^{n-1}x \bigr\Vert ^{-1}+ \biggl( \frac{C_{1}( \delta ,r)}{C}\biggr)^{1/p} \bigl\Vert 2^{n}x \bigr\Vert ^{(r-1)/p} \\ &\quad{}+\biggl(\frac{\widetilde{C_{1}}(\varepsilon )}{C}\biggr)^{1/p} \bigl\Vert 2^{n}x \bigr\Vert ^{-1/p}+ \delta \bigl\Vert 2^{n} x \bigr\Vert ^{r-1}+\varepsilon \bigl\Vert 2^{n}x \bigr\Vert ^{-1} \\ &=\bigl(2^{1-r} +1\bigr) \delta \bigl\Vert 2^{n}x \bigr\Vert ^{r-1} +3\varepsilon \bigl\Vert 2^{n}x \bigr\Vert ^{-1}+ \biggl( \frac{C_{1}( \delta ,r)}{C}\biggr)^{1/p} \bigl\Vert 2^{n}x \bigr\Vert ^{(r-1)/p} \\ & \quad{}+\biggl(\frac{\widetilde{C_{1}}(\varepsilon )}{C}\biggr)^{1/p} \bigl\Vert 2^{n}x \bigr\Vert ^{-1/p}. \end{aligned}$$

Because of \(0<\frac{1-r}{p}\leq 1-r<1\), then \((2^{n})^{r-1}\leq (2^{n})^{(r-1)/p}\) and \(2^{-n} \leq 2^{-n/p}\). Thus

$$\begin{aligned} \Vert y_{n-1}-y_{n} \Vert & \leq 2^{n(r-1)/p} \biggl( \biggl( \frac{C_{1}( \delta ,r)}{C}\biggr)^{1/p} \Vert x \Vert ^{(r-1)/p} +\bigl(2^{1-r}+1\bigr)\delta \Vert x \Vert ^{r-1} \biggr) \\ &\quad{} + 2^{-n/p} \biggl( \biggl(\frac{\widetilde{C_{1}}(\varepsilon )}{C}\biggr)^{1/p} \Vert x \Vert ^{-1/p}+ 3\varepsilon \Vert x \Vert ^{-1} \biggr). \end{aligned}$$

Therefore,

$$\begin{aligned} \biggl\Vert \frac{f(2^{n} x)}{2^{n}}-\frac{f(2^{n-1}x)}{2^{n-1}} \biggr\Vert & = \Vert y_{n-1}-y_{n} \Vert \cdot \Vert x \Vert \\ &\leq 2^{n(r-1)/p} \biggl( \biggl( \frac{C_{1}( \delta ,r)}{C} \biggr)^{1/p} \Vert x \Vert ^{1-(1-r)/p} +\bigl(2^{1-r}+1 \bigr)\delta \Vert x \Vert ^{r} \biggr) \\ & \quad{}+2^{-n/p} \biggl( \biggl(\frac{\widetilde{C_{1}}(\varepsilon )}{C} \biggr)^{1/p} \Vert x \Vert ^{1-1/p}+ 3\varepsilon \biggr). \end{aligned}$$

Put \(C_{2}(\delta ,r,p)=(\frac{C_{1}( \delta ,r)}{C})^{1/p}+(2^{1-r}+1) \delta \), \(\widetilde{C_{2}}(\varepsilon )= ( \frac{\widetilde{C_{1}}(\varepsilon )}{C})^{1/p}+3\varepsilon \). Then \(\lim_{\delta \rightarrow 0} C_{2}(\delta ,r,p)=0\), \(\lim_{\varepsilon \rightarrow 0}\widetilde{C_{2}}( \varepsilon )=0\), and

$$\begin{aligned} \biggl\Vert \frac{f(2^{n} x)}{2^{n}}-\frac{f(2^{n-1}x)}{2^{n-1}} \biggr\Vert & \leq C_{2}( \delta ,r,p) 2^{n(r-1)/p}\max \bigl\{ \Vert x \Vert ^{r}, \Vert x \Vert ^{1-(1-r)/p}\bigr\} \\ &\quad{}+ \widetilde{C_{2}}(\varepsilon ) 2^{-n/p} \max \bigl\{ 1, \Vert x \Vert ^{1-1/p} \bigr\} . \end{aligned}$$

Let \(n,m\in \mathbb{N}\) with \(n>m\). We have

$$\begin{aligned} \biggl\Vert \frac{f(2^{n} x)}{2^{n}}-\frac{f(2^{m}x)}{2^{m}} \biggr\Vert &\leq C_{2}( \delta ,r,p) \sum _{k=m+1}^{n} 2^{k(r-1)/p}\max \bigl\{ \Vert x \Vert ^{r}, \Vert x \Vert ^{1-(1-r)/p} \bigr\} \\ & \quad{}+ \widetilde{C_{2}}(\varepsilon ) \sum _{k=m+1}^{n} 2^{-k/p} \max \bigl\{ 1, \Vert x \Vert ^{1-1/p} \bigr\} \\ & \leq \frac{2^{(m+1)(r-1)/p}}{1-2^{(r-1)/p}} C_{2}(\delta ,r,p) \max \bigl\{ \Vert x \Vert ^{r}, \Vert x \Vert ^{1-(1-r)/p} \bigr\} . \\ &\quad{}+ \frac{2^{-(m+1)/p}}{1-2^{-1/p}} \widetilde{C_{2}}( \varepsilon ) \max \bigl\{ 1, \Vert x \Vert ^{1-1/p} \bigr\} . \end{aligned}$$
(2.4)

It follows from \(\frac{r-1}{p}<0\) that \(\{\frac{f(2^{n} x)}{2^{n}} \}\) is a Cauchy sequence. We define \(U: X\rightarrow Y\) by

$$ Ux=\lim_{n\rightarrow \infty}\frac{f(2^{n} x)}{2^{n}}, \quad x \in X. $$

From \(0< r<1\) and since f is a \((\delta ,r,\varepsilon )\)-isometry, we obtain that

$$\begin{aligned} \bigl\vert \Vert Ux-Uy \Vert - \Vert x-y \Vert \bigr\vert &=\lim _{n\rightarrow \infty} \biggl\vert \biggl\Vert \frac{f(2^{n} x)}{2^{n}}- \frac{f(2^{n} y)}{2^{n}} \biggr\Vert - \Vert x-y \Vert \biggr\vert \\ & \leq \lim_{n\rightarrow \infty} \frac{\delta \cdot 2^{nr} ( \Vert x \Vert ^{r}+ \Vert y \Vert ^{r}) +\varepsilon}{2^{n}} \\ &= \lim_{n\rightarrow \infty} \frac{\delta ( \Vert x \Vert ^{r}+ \Vert y \Vert ^{r})+\varepsilon}{2^{n(1-r)}} \\ &=0 \quad \text{for each } x,y\in X. \end{aligned}$$

Since Y is strictly convex, U is a linear isometry. Taking \(m=0\) in (2.4) and letting \(n\rightarrow \infty \), we obtain that

$$\begin{aligned} \bigl\Vert f(x)-Ux \bigr\Vert \leq K(\delta ,r,p) \max \bigl\{ \Vert x \Vert ^{r}, \Vert x \Vert ^{1-(1-r)/p} \bigr\} + \widetilde{K}(\varepsilon ) \max \bigl\{ 1, \Vert x \Vert ^{1-1/p}\bigr\} , \quad x \in X. \end{aligned}$$

Here \(K(\delta ,r,p)= \frac{2^{(r-1)/p}}{1- 2^{(r-1)/p}} C_{2}(\delta ,r,p)\), \(\widetilde{K}(\varepsilon )= \frac{2^{-1/p}}{1-2^{-1/p}} \widetilde{C_{2}}(\varepsilon )\). Clearly, \(\lim_{\delta \rightarrow 0}K(\delta ,r,p)=0\) and \(\lim_{\varepsilon \rightarrow 0}\widetilde{K}(\varepsilon )=0\). □

Note that Hilbert spaces have power type 2 and \(L_{p}\) spaces have power type p if \(p>2\); and 2 if \(1< p\leq 2\) (see [3, Theorem 1, p. 69]). Then, by Theorem 2.5, we have the following corollaries which were obtained by Dolinar.

Corollary 2.6

([4, Proposition 2])

Let Y be a Hilbert space, and let \(f:X\rightarrow Y\) be a standard mapping satisfying

$$ \bigl\vert \bigl\Vert f(x)-f(y) \bigr\Vert - \Vert x-y \Vert \bigr\vert \leq \delta \Vert x-y \Vert ^{r}, \quad x,y \in X, $$
(2.5)

for some \(\delta \geq 0\) and \(0< r<1\). Then there exist a linear isometry \(U: X \rightarrow Y\) and a constant \(K(\delta ,r)\geq 0\) such that \(\lim_{\delta \rightarrow 0}K(\delta ,r)=0\) and

$$ \bigl\Vert f(x)-Ux \bigr\Vert \leq K(\delta ,r)\max \bigl\{ \Vert x \Vert ^{r}, \Vert x \Vert ^{(1+r)/2} \bigr\} , \quad x\in X. $$

Corollary 2.7

([4, Proposition 3])

Let \(Y=L_{p}\) (\(1< p<\infty \)), and let \(f:X\rightarrow Y\) be a standard mapping satisfying

$$ \bigl\vert \bigl\Vert f(x)-f(y) \bigr\Vert - \Vert x-y \Vert \bigr\vert \leq \delta \Vert x-y \Vert ^{r}, \quad x,y \in X, $$
(2.6)

for some \(\delta \geq 0\) and \(0< r<1\). Then there exist a linear isometry \(U: X \rightarrow Y\) and a constant \(K(\delta ,r,p)\geq 0\) such that \(\lim_{\delta \rightarrow 0}K(\delta ,r,p)=0\) and

$$ \bigl\Vert f(x)-Ux \bigr\Vert \leq K(\delta ,r,p)\max \bigl\{ \Vert x \Vert ^{r}, \Vert x \Vert ^{1-(1-r)/p} \bigr\} , \quad x\in X. $$

3 \((\delta ,r)\)-Surjective functional equations

Let \((G,+)\) be an abelian group, \(0\in G\) be a unit element, and Y be a Banach space. We say that a mapping \(F:G\rightarrow Y\) is \((\delta ,r)\)-surjective if \(d(u,F(G))\leq \delta \|u\|^{r}\) for every \(u\in Y\); F is said to be standard if \(F(0)=0\).

Theorem 3.1

Suppose that Y is a uniformly convex space with power type p, and that \(F:G\rightarrow Y\) is a \((\delta ,r)\)-surjective mapping with

$$ \bigl\vert \bigl\Vert F(x)-F(y) \bigr\Vert - \bigl\Vert F(x-y) \bigr\Vert \bigr\vert \leq \varepsilon , $$

where \(\delta ,\varepsilon \geq 0\) and \(0< r<1\). Then there are constants \(K(\delta ,r,p)\) and \(\widetilde{K}(2\varepsilon )\) such that

$$\begin{aligned} \bigl\Vert F(x+y)-F(x)-F(y) \bigr\Vert & \leq K(\delta ,r,p)\max \bigl\{ \bigl\Vert F(y) \bigr\Vert ^{r}, \bigl\Vert F(y) \bigr\Vert ^{1-(1-r)/p} \bigr\} \\ &\quad{} + \widetilde{K}(2\varepsilon ) \max \bigl\{ 1, \bigl\Vert F(y) \bigr\Vert ^{1-1/p} \bigr\} + \varepsilon , \quad x,y\in G. \end{aligned}$$

Proof

Given \(x\in G\), a set-valued mapping \(\Phi _{x}:Y \rightarrow 2^{Y}\) is defined by

$$ \Phi _{x}(u)=\bigl\{ F(a_{u}+x)-F(x) :a_{u} \in F^{-1} \bigl(B\bigl(u,\delta \Vert u \Vert ^{r}\bigr)\bigr) \bigr\} , \quad u\in Y. $$

When F is \((\delta ,r)\)-surjective, this entails that \(\Phi _{x}(u)\neq \emptyset \) for every \(u\in Y\). Fixing \(u,v\in Y\), for each \(z_{u}\in \Phi _{x}(u)\), \(z_{v}\in \Phi _{x}(v)\), there exist \(a_{u}\in F^{-1} (B(u,\delta \|u\|^{r}))\) and \(a_{v} \in F^{-1} (B(v,\delta \|v\|^{r}))\) so that \(z_{u}=F(a_{u}+x)-F(x)\) and \(z_{v}=F(a_{v}+x)-F(x)\). Then

$$\begin{aligned} \bigl\vert \Vert z_{u}-z_{v} \Vert - \Vert u-v \Vert \bigr\vert &\leq \bigl\vert \bigl\Vert F(a_{u}+x)-F(a_{v}+x) \bigr\Vert - \bigl\Vert F(a_{u}-a_{v}) \bigr\Vert \bigr\vert \\ &\quad{}+ \bigl\vert \bigl\Vert F(a_{u}-a_{v}) \bigr\Vert - \bigl\Vert F(a_{u})-F(a_{v}) \bigr\Vert \bigr\vert \\ &\quad{}+ \bigl\Vert F(a_{u})-u \bigr\Vert + \bigl\Vert F(a_{v})-v \bigr\Vert \\ &\leq \delta \bigl( \Vert u \Vert ^{r}+ \Vert v \Vert ^{r}\bigr) + 2\varepsilon . \end{aligned}$$
(3.1)

In particular, if \(u=v\) (i.e., \(z_{u},z_{v}\in \Phi _{x}(u)\)), we have

$$ \Vert z_{u}-z_{v} \Vert \leq 2 \delta \Vert u \Vert ^{r} + 2 \varepsilon . $$
(3.2)

Let \(g_{x}:Y\rightarrow Y\) be an arbitrary selection of \(\Phi _{x}\). It follows from (3.1) that

$$ \bigl\vert \bigl\Vert g_{x}(u)-g_{x}(v) \bigr\Vert - \Vert u-v \Vert \bigr\vert \leq \delta \bigl( \Vert u \Vert ^{r}+ \Vert v \Vert ^{r}\bigr) + 2\varepsilon . $$
(3.3)

Then, by Theorem 2.5, there exist a linear isometry \(U_{g_{x}}:Y\rightarrow Y\) and two constants \(K(\delta ,r,p)\), \(\widetilde{K}(2\varepsilon )\) such that

$$\begin{aligned} \bigl\Vert g_{x}(u)-g_{x}(0)-U_{g_{x}}(u) \bigr\Vert & \leq K(\delta ,r,p) \max \bigl\{ \Vert u \Vert ^{r}, \Vert u \Vert ^{1-(1-r)/p} \bigr\} \\ &\quad{} + \widetilde{K}(2\varepsilon )\max \bigl\{ 1, \Vert u \Vert ^{1-1/p} \bigr\} , \quad u \in Y. \end{aligned}$$
(3.4)

Since \(g_{x}(0)\in \Phi _{x}(0)\), we can find \(a\in F^{-1}(0)\) so that \(g_{x}(0)=F(a+x)-F(x)\). Thus,

$$ \bigl\Vert g_{x}(0) \bigr\Vert \leq \bigl\vert \bigl\Vert F(a+x)-F(x) \bigr\Vert - \bigl\Vert F(a) \bigr\Vert \bigr\vert + \bigl\Vert F(a) \bigr\Vert \leq \varepsilon . $$

Therefore,

$$\begin{aligned} \bigl\Vert g_{x}(u)-U_{g_{x}}(u) \bigr\Vert & \leq K(\delta ,r,p) \max \bigl\{ \Vert u \Vert ^{r}, \Vert u \Vert ^{1-(1-r)/p}\bigr\} \\ &\quad{} + \widetilde{K}(2\varepsilon )\max \bigl\{ 1, \Vert u \Vert ^{1-1/p} \bigr\} + \varepsilon , \quad u \in Y. \end{aligned}$$
(3.5)

Assume that \(h_{x}:Y\rightarrow Y\) is another selection of \(\Phi _{x}\). Combining (3.2) and (3.5), we obtain that

$$\begin{aligned} \bigl\Vert U_{g_{x}}(u)-U_{h_{x}}(u) \bigr\Vert &\leq \bigl\Vert U_{g_{x}}(u)-g_{x}(u) \bigr\Vert + \bigl\Vert g_{x}(u)-h_{x}(u) \bigr\Vert + \bigl\Vert h_{x}(u)-U_{h_{x}}(u) \bigr\Vert \\ &\leq 2K(\delta ,r,p) \max \bigl\{ \Vert u \Vert ^{r}, \Vert u \Vert ^{1-(1-r)/p}\bigr\} + 2 \widetilde{K}(2\varepsilon )\max \bigl\{ 1, \Vert u \Vert ^{1-1/p} \bigr\} \\ &\quad{}+2\delta \Vert u \Vert ^{r}+4\varepsilon , \quad u\in Y. \end{aligned}$$
(3.6)

Note that if \(0< r<1\), \(p\geq 1\), and \(U_{g_{x}} \), \(U_{h_{x}}\) are two linear isometries, then for each \(u\in Y\),

$$\begin{aligned} \bigl\Vert U_{g_{x}}(u)-U_{h_{x}}(u) \bigr\Vert &= \frac{ \Vert U_{g_{x}}(nu)-U_{h_{x}}(nu) \Vert }{n} \\ &\leq \frac{2K(\delta ,r,p) \max \{ \Vert nu \Vert ^{r}, \Vert nu \Vert ^{1-(1-r)/p} \} }{n} \\ &\quad{}+ \frac{2\widetilde{K}(2\varepsilon )\max \{1, \Vert nu \Vert ^{1-1/p} \}+2\delta \Vert u \Vert ^{r}+4\varepsilon}{n} \\ &\rightarrow 0,\quad n \rightarrow \infty . \end{aligned}$$

This implies that \(U_{g_{x}}=U_{h_{x}}\). We denote \(U_{g_{x}}\) by \(U_{x}\).

In what follows, we shall prove that

$$ U_{x}=id_{Y}. $$

Firstly, we show

$$ U_{x_{1}}=U_{x_{2}}, \quad x_{1}, x_{2}\in G. $$

Given \(x, y\in G\), let \(u=F(y)\), and then \(y\in F^{-1}(u) \subseteq F^{-1}(B(u,\delta \|u\|^{r}))\) and \(F(y+x)-F(x)\) is a value of a selection at u of \(\Phi _{x}\). By (3.5), we have

$$\begin{aligned} \bigl\Vert F(y+x)-F(x)-U_{x}(u) \bigr\Vert & \leq K(\delta ,r,p) \max \bigl\{ \Vert u \Vert ^{r}, \Vert u \Vert ^{1-(1-r)/p}\bigr\} \\ &\quad{} + \widetilde{K}(2\varepsilon )\max \bigl\{ 1, \Vert u \Vert ^{1-1/p} \bigr\} + \varepsilon . \end{aligned}$$
(3.7)

For every \(x_{1}\), \(x_{2}\in G\),

$$\begin{aligned} \bigl\Vert U_{x_{1}}(u)-U_{x_{2}}(u) \bigr\Vert &\leq \bigl\Vert F(y+x_{1})-F(x_{1})-U_{x_{1}}(u) \bigr\Vert + \bigl\Vert F(y+x_{2})-F(x_{2})-U_{x_{2}}(u) \bigr\Vert \\ &\quad{}+ \bigl\Vert F(y+x_{1})-F(y+x_{2}) \bigr\Vert + \bigl\Vert F(x_{1})-F(x_{2}) \bigr\Vert \\ &\leq 2K(\delta ,r,p) \max \{ \Vert u \Vert ^{r}, \Vert u \Vert ^{1-(1-r)/p} + 2 \widetilde{K}(2\varepsilon )\max \bigl\{ 1, \Vert u \Vert ^{1-1/p} \bigr\} \\ &\quad{}+ 3\varepsilon + \bigl\Vert F(x_{1}-x_{2}) \bigr\Vert + \bigl\Vert F(x_{1})-F(x_{2}) \bigr\Vert . \end{aligned}$$

Combining \(0< r<1\) and the linearity of \(U_{x_{1}}\), \(U_{x_{2}}\), we obtain that \(U_{x_{1}}(u)=U_{x_{2}}(u)\) for all \(u\in F(G)\). Since F is \((\delta ,r)\)-surjective, for each \(w\in Y\), \(n\in \mathbb{N}\), there exists \(z_{n}\in G\) such that \(\|nw-F(z_{n})\|\leq \delta \|nw\|^{r}\). Then

$$\begin{aligned} \bigl\Vert U_{x_{1}}(w)-U_{x_{2}}(w) \bigr\Vert &= \frac{ \Vert U_{x_{1}}(nw)-U_{x_{2}}(nw) \Vert }{n} \\ &\leq \frac{ \Vert U_{x_{1}}(nw)-U_{x_{1}}(F(z_{n})) \Vert }{n} + \frac{ \Vert U_{x_{2}}(nw)-U_{x_{2}}(F(z_{n})) \Vert }{n} \\ &\quad{}+\frac{ \Vert U_{x_{1}}(F(z_{n}))-U_{x_{2}}(F(z_{n})) \Vert }{n} \\ &\leq 2\delta \frac{ \Vert nw \Vert ^{r}}{n}\rightarrow 0, \quad n\rightarrow \infty . \end{aligned}$$

This implies that \(x_{1}, x_{2}\in G\), \(U_{x_{1}}=U_{x_{2}}\). Putting \(x=0\) in (3.7), we obtain that

$$\begin{aligned} \bigl\Vert u-U_{0}(u) \bigr\Vert & \leq K( \delta ,r,p) \max \bigl\{ \Vert u \Vert ^{r}, \Vert u \Vert ^{1-(1-r)/p} \bigr\} \\ &\quad{} + \widetilde{K}(2\varepsilon )\max \bigl\{ 1, \Vert u \Vert ^{1-1/p} \bigr\} + \varepsilon ,\quad u\in F(G). \end{aligned}$$
(3.8)

In the following, we prove

$$ U_{0}=id_{Y}. $$

Again since F is \((\delta ,r)\)-surjective, for every \(w\in Y\), \(n\in \mathbb{N}\), there exists \(z_{n}\in G\) such that \(\|nw-F(z_{n})\|\leq \delta \|nw\|^{r}\). This entails that \(\lim_{n\rightarrow \infty}\frac{F(z_{n})}{n}=w\). Then by (3.8), we obtain that for each \(w\in Y\),

$$\begin{aligned} \bigl\Vert w-U_{0}(w) \bigr\Vert &=\frac{ \Vert nw-U_{0}(nw) \Vert }{n} \\ &\leq \frac{ \Vert nw-F(z_{n}) \Vert }{n}+ \frac{ \Vert F(z_{n})-U_{0}(F(z_{n})) \Vert }{n}+ \frac{ \Vert U_{0}(F(z_{n}))-U_{0}(nw) \Vert }{n} \\ &\leq 2\delta \frac{ \Vert nw \Vert ^{r}}{n}+ \frac{K(\delta ,r,p) \max \{ \Vert F(z_{n}) \Vert ^{r}, \Vert F(z_{n}) \Vert ^{1-(1-r)/p}\}}{n} \\ & \quad{}+ \frac{\widetilde{K}(2\varepsilon )\max \{1, \Vert F(z_{n}) \Vert ^{1-1/p} \}+ \varepsilon}{n} \\ &\rightarrow 0, \quad n \rightarrow \infty . \end{aligned}$$

Thus

$$ U_{0}=id_{Y}. $$

Therefore, from (3.7), we obtain that

$$\begin{aligned} \bigl\Vert F(x+y)-F(x)-F(y) \bigr\Vert & \leq K(\delta ,r,p)\max \bigl\{ \bigl\Vert F(y) \bigr\Vert ^{r}, \bigl\Vert F(y) \bigr\Vert ^{1-(1-r)/p} \bigr\} \\ &\quad{} + \widetilde{K}(2\varepsilon ) \max \bigl\{ 1, \bigl\Vert F(y) \bigr\Vert ^{1-1/p} \bigr\} + \varepsilon , \quad x,y \in G. \end{aligned}$$

 □

Theorem 3.2

Suppose that Y is a uniformly convex space with power type p, and that \(F:G\rightarrow Y\) is a \((\delta ,r)\)-surjective mapping with

$$ \bigl\vert \bigl\Vert F(x)-F(y) \bigr\Vert - \bigl\Vert F(x-y) \bigr\Vert \bigr\vert \leq \varepsilon , $$
(3.9)

where \(\delta ,\varepsilon \geq 0\) and \(0< r<1\). Then there is an additive mapping \(A:G\rightarrow Y\) such that

$$ \bigl\Vert F(x)-Ax \bigr\Vert =o\bigl( \bigl\Vert F(x) \bigr\Vert \bigr),\quad \bigl\Vert F(x) \bigr\Vert \rightarrow \infty . $$

Proof

By Theorem 3.1,

$$\begin{aligned} \bigl\Vert F(x+y)-F(x)-F(y) \bigr\Vert & \leq K(\delta ,r,p)\max \bigl\{ \bigl\Vert F(y) \bigr\Vert ^{r}, \bigl\Vert F(y) \bigr\Vert ^{1-(1-r)/p} \bigr\} \\ &\quad{} + \widetilde{K}(2\varepsilon ) \max \bigl\{ 1, \bigl\Vert F(y) \bigr\Vert ^{1-1/p} \bigr\} + \varepsilon ,\quad x,y \in G. \end{aligned}$$

If we replace y for x in inequality above, then

$$\begin{aligned} \bigl\Vert F(2x)-2F(x) \bigr\Vert & \leq K (\delta ,r,p)\max \bigl\{ \bigl\Vert F(x) \bigr\Vert ^{r}, \bigl\Vert F(x) \bigr\Vert ^{1-(1-r)/p} \bigr\} \\ &\quad{} + \widetilde{K}(2\varepsilon ) \max \bigl\{ 1, \bigl\Vert F(x) \bigr\Vert ^{1-1/p} \bigr\} + \varepsilon . \end{aligned}$$

By substituting \(2^{n}x\) for x, and dividing by \(2^{n+1}\) in the inequality above, we observe that

$$\begin{aligned} \biggl\Vert \frac{F(2^{n+1}x)}{2^{n+1}}-\frac{F(2^{n}x)}{2^{n}} \biggr\Vert &\leq \frac{K(\delta ,r,p)\max \{ \Vert F(2^{n}x) \Vert ^{r}, \Vert F(2^{n}x) \Vert ^{1-(1-r)/p} \}}{2^{n+1}} \\ & \quad{}+ \frac{\widetilde{K}(2\varepsilon ) \max \{ 1, \Vert F(2^{n}x) \Vert ^{1-1/p} \} +\varepsilon}{2^{n+1}}. \end{aligned}$$
(3.10)

Next, we study the relationship between \(\|F(2^{n}x)\|\) and \(2^{n} \|F(x)\|\). Let \(x=0\) and \(y=x\) in (3.9), then

$$ \bigl\vert \bigl\Vert F(-x) \bigr\Vert - \bigl\Vert F(x) \bigr\Vert \bigr\vert \leq \varepsilon . $$
(3.11)

Letting \(y=-x\) in (3.9), we have

$$ \bigl\vert \bigl\Vert F(2x) \bigr\Vert - \bigl\Vert F(x)-F(-x) \bigr\Vert \bigr\vert \leq \varepsilon . $$
(3.12)

Then

$$ \bigl\Vert F(2x) \bigr\Vert \leq \bigl\Vert F(x)-F(-x) \bigr\Vert + \varepsilon \leq \bigl\Vert F(-x) \bigr\Vert + \bigl\Vert F(x) \bigr\Vert + \varepsilon \leq 2\bigl( \bigl\Vert F(x) \bigr\Vert +\varepsilon \bigr). $$

By mathematical induction, we obtain that

$$ \bigl\Vert F\bigl(2^{n}x \bigr) \bigr\Vert \leq 2^{n} \bigl\Vert F(x) \bigr\Vert +\bigl(2^{n+1} -2 \bigr)\varepsilon \leq 2^{n} \bigl\Vert F(x) \bigr\Vert +2^{n+1} \varepsilon . $$

Since \(0< r<1\), we have

$$ \bigl\Vert F\bigl(2^{n}x\bigr) \bigr\Vert ^{r} \leq 2^{nr} \bigl\Vert F(x) \bigr\Vert ^{r} + 2^{nr} (2\varepsilon )^{r}. $$
(3.13)

Combing (3.10) and (3.13), we observe that

$$\begin{aligned} \biggl\Vert \frac{F(2^{n+1}x)}{2^{n+1}}-\frac{F(2^{n}x)}{2^{n}} \biggr\Vert &\leq \frac{K(\delta ,r,p)}{2}\max \bigl\{ 2^{n(r-1)} \bigl\Vert F(x) \bigr\Vert ^{r} + 2^{n(r-1)}(2 \varepsilon )^{r}, \\ &\quad 2^{n(r-1)/p} \bigl\Vert F(x) \bigr\Vert ^{1-(1-r)/p} + 2^{n(r-1)/p}(2 \varepsilon )^{1-(1-r)/p}\bigr\} \\ & \quad{}+ \frac{\widetilde{K}(2\varepsilon )}{2} \max \bigl\{ 2^{-n}, 2^{-n/p} \bigl\Vert F(x) \bigr\Vert ^{1-1/p}+ 2^{-n/p}(2\varepsilon )^{1-1/p} \bigr\} + \varepsilon /2^{n+1}. \end{aligned}$$
(3.14)

Note that \(0< r<1\), \(p\geq 1\), and then for \(n>m\),

$$ \sum_{k=m+1}^{n}2^{k(r-1)}, \sum_{k=m+1}^{n}2^{k(r-1)/p}, \sum _{k=m+1}^{n}2^{-k}, \sum _{k=m+1}^{n}2^{-k/p}\rightarrow 0,\quad \text{as } m \rightarrow \infty . $$
(3.15)

It follows that \(\{\frac{F(2^{n}x)}{2^{n}}\}\) is a Cauchy sequence for all \(x\in G\) and thus there is a limit function

$$ Ax=\lim_{n\rightarrow \infty} \frac{F(2^{n}x)}{2^{n}}, \quad x \in G. $$

Then by (3.14) and (3.15), there exist constants \(L_{1}, L_{2}, L_{3}, L_{4}>0\) such that

$$ \begin{aligned}[t] \bigl\Vert F(x)-Ax \bigr\Vert &= \sum _{n=0}^{\infty} \biggl\Vert \frac{F(2^{n+1}x)}{2^{n+1}}- \frac{F(2^{n}x)}{2^{n}} \biggr\Vert \\ &\leq L_{1} \bigl\Vert F(x) \bigr\Vert ^{r} + L_{2} \bigl\Vert f(x) \bigr\Vert ^{1-(1-r)/p} +L_{3} \bigl\Vert F(x) \bigr\Vert ^{1-1/p}+ L_{4}. \end{aligned} $$
(3.16)

Clearly,

$$ \bigl\Vert F(x)-Ax \bigr\Vert =o\bigl( \bigl\Vert F(x) \bigr\Vert \bigr),\quad \bigl\Vert F(x) \bigr\Vert \rightarrow \infty . $$

Now, we only need to prove that A is additive. For every \(x,y \in G\),

$$\begin{aligned} & \biggl\Vert \frac{F(2^{n}(x+y))}{2^{n}}-\frac{F(2^{n}x)}{2^{n}}- \frac{F(2^{n}y)}{2^{n}} \biggr\Vert \\ &\quad \leq \frac{K(\delta ,r,p)\max \{ \Vert F(2^{n}y) \Vert ^{r}, \Vert F(2^{n}y) \Vert ^{1-(1-r)/p} \}}{2^{n}} \\ &\quad \quad{}+ \frac{\widetilde{K}(2\varepsilon ) \max \{ 1, \Vert F(2^{n}y) \Vert ^{1-1/p} \} +\varepsilon}{2^{n}}. \end{aligned}$$
(3.17)

Note that \(\frac{\|F(2^{n}y)\|^{r}}{2^{n}}=(\frac{\|F(2^{n}y)\|}{2^{n}})^{r} \cdot 2^{(r-1)n}\rightarrow 0\) as \(n\rightarrow \infty \). Similarly, we also have \(\frac{\|F(2^{n}y)\|^{1-(1-r)/p}}{2^{n}}, \frac{\|F(2^{n}y)\|^{1-1/p}}{2^{n}} \rightarrow 0\) as \(n\rightarrow \infty \). By letting \(n\rightarrow \infty \) in (3.17), we obtain \(\|A(x+y)-Ax-Ay\|=0\), i.e., A is additive. □

By Theorem 3.2, we obtain the following corollaries.

Corollary 3.3

Suppose that Y is a Hilbert space, and that \(F:G\rightarrow Y\) is a \((\delta ,r)\)-surjective mapping with

$$ \bigl\vert \bigl\Vert F(x)-F(y) \bigr\Vert - \bigl\Vert F(x-y) \bigr\Vert \bigr\vert \leq \varepsilon , $$

where \(\delta ,\varepsilon \geq 0\) and \(0< r<1\). Then there is an additive mapping \(A:G\rightarrow Y\) such that

$$ \bigl\Vert F(x)-Ax \bigr\Vert =o\bigl( \bigl\Vert F(x) \bigr\Vert \bigr),\quad \bigl\Vert F(x) \bigr\Vert \rightarrow \infty . $$

Corollary 3.4

Suppose that \(Y=L_{p}\) (\(1< p<\infty \)), and that \(F:G\rightarrow Y\) is a \((\delta ,r)\)-surjective mapping with

$$ \bigl\vert \bigl\Vert F(x)-F(y) \bigr\Vert - \bigl\Vert F(x-y) \bigr\Vert \bigr\vert \leq \varepsilon , $$

where \(\delta ,\varepsilon \geq 0\) and \(0< r<1\). Then there is an additive mapping \(A:G\rightarrow Y\) such that

$$ \bigl\Vert F(x)-Ax \bigr\Vert =o\bigl( \bigl\Vert F(x) \bigr\Vert \bigr),\quad \bigl\Vert F(x) \bigr\Vert \rightarrow \infty . $$

As an application of Theorem 3.2, we show the following stability result for maps which preserve equality of distance.

Definition 3.5

([21])

Let X, Y be Banach spaces, we say that a map \(T:X\rightarrow Y\) preserves the equality of distance if

$$ \Vert x-y \Vert = \Vert u-v \Vert \quad \Rightarrow \quad \bigl\Vert T(x)-T(y) \bigr\Vert = \bigl\Vert T(u)-T(v) \bigr\Vert , \quad x,y,u,v\in X. $$

Lemma 3.6

([21])

Let X, Y be Banach spaces with \(\dim X\geq 2\), and let \(T:X\rightarrow Y\) be a mapping which preserves the equality of distance. If for each \(\eta >0\) there exist \(x, y\in X\) with \(x\neq y\) so that \(\|T(x)-T(y)\| <\eta \), then T is uniformly continuous.

Theorem 3.7

Let X be a Banach space with \(\dim X\geq 2\), Y be a uniformly convex space with power type p, and let \(f:X\rightarrow Y\) be a \((\delta ,r)\)-surjective standard mapping, where \(\delta ,\varepsilon \geq 0\), \(0< r<1\). If

$$ \Vert x-y \Vert = \Vert u-v \Vert \quad \Rightarrow \quad \bigl\vert \bigl\Vert f(x)-f(y) \bigr\Vert - \bigl\Vert f(u)-f(v) \bigr\Vert \bigr\vert \leq \varepsilon , \quad x,y,u,v\in X, $$
(3.18)

then there exist a constant \(\alpha >0\) and a linear isometry \(U:X\rightarrow Y\) such that

$$ \bigl\Vert f(x)-\alpha Ux \bigr\Vert =o\bigl( \bigl\Vert f(x) \bigr\Vert \bigr), \quad \bigl\Vert f(x) \bigr\Vert \rightarrow \infty . $$

Proof

Substituting \(u=x-y\) and \(v=0\) in (3.18), we have

$$ \bigl\vert \bigl\Vert f(x)-f(y) \bigr\Vert - \bigl\Vert f(x-y) \bigr\Vert \bigr\vert \leq \varepsilon . $$

By Theorem 3.2, we can find an additive mapping \(A:X\rightarrow Y\) such that

$$ \bigl\Vert f(x)-Ax \bigr\Vert =o\bigl( \bigl\Vert f(x) \bigr\Vert \bigr), \quad \bigl\Vert f(x) \bigr\Vert \rightarrow \infty . $$

For every \(x,y,u,v\in X\) with \(\|x-y\|=\|u-v\|\), it follows from (3.18) that

$$\begin{aligned} &\biggl\vert \biggl\Vert \frac{f(2^{n}x)}{2^{n}} -\frac{f(2^{n}y)}{2^{n}} \biggr\Vert - \biggl\Vert \frac{f(2^{n}u)}{2^{n}}-\frac{f(2^{n}v)}{2^{n}} \biggr\Vert \biggr\vert \leq \frac{\varepsilon}{2^{n}}. \end{aligned}$$

Letting \(n\rightarrow \infty \) in the inequality above, \(\|Ax-Ay\|=\|Au-Av\|\), i.e., A preserves equality of distance. By the additivity of the mapping A, for each \(\eta >0\) there exist \(x,y\in X\) with \(x\neq y\) such that \(\|Ax-Ay\|<\eta \). According to Lemma 3.6, A is uniformly continuous and then A is linear.

In the following, we show that there exist \(\alpha >0\) and a linear isometry \(U:X\rightarrow Y\) so that \(A=\alpha U\).

For each \(x \in S_{X}\), put \(\alpha =\|Ax\|\). Then

$$ \Vert Ay \Vert = \Vert y \Vert \cdot \biggl\Vert A\biggl( \frac{y}{ \Vert y \Vert }\biggr) \biggr\Vert = \alpha \Vert y \Vert \quad \text{for all }y\in X\setminus \{0\} . $$

This entails \(\alpha >0\). We define a mapping \(U:X\rightarrow Y\) by \(U=\alpha ^{-1} A\). Clearly, U is a linear isometry and

$$ \bigl\Vert f(x)-\alpha Ux \bigr\Vert =o\bigl( \bigl\Vert f(x) \bigr\Vert \bigr), \quad \bigl\Vert f(x) \bigr\Vert \rightarrow \infty . $$

 □

The following example shows that the conditions of \((\delta ,r)\)-surjectivity and uniform convexity in Theorem 3.7 cannot be removed.

Example 3.8

Let \(X=\ell _{\infty}^{2}\) and \(Y=\ell _{\infty}^{3}\), where \(\ell _{\infty}^{n}\) denotes the vector space \(\mathbb{R}^{n}\), endowed with the supremum norm \(\|\cdot \|\) defined for \(x=(x_{1},x_{2},\dots ,x_{n})\in \ell _{\infty}^{n}\) by \(\|(x_{1},x_{2},\dots ,x_{n})\|=\max \{|x_{1}|, |x_{2}|,\dots ,|x_{n}| \}\). Then Y is not uniformly convex. We define \(f:\ell _{\infty}^{2}\rightarrow \ell _{\infty}^{3}\) as follows:

$$ f(s,t)=\bigl(s,t,\max \bigl\{ \vert s \vert , \vert t \vert \bigr\} \bigr),\quad {(s,t)\in \ell _{\infty}^{2}}. $$

Clearly, f is a nonlinear isometry and (3.18) holds. It is also easy to show that f does not satisfy the \((\delta ,r)\)-surjectivity condition, where \(\delta \geq 0\), \(0< r<1\).

Next, we shall prove that there is no linear isometry \(U:\ell _{\infty}^{2}\rightarrow \ell _{\infty}^{3}\) and \(\alpha >0\) such that

$$ \bigl\Vert f(s,t)-\alpha U(s,t) \bigr\Vert =o\bigl( \bigl\Vert f(s,t) \bigr\Vert \bigr), \quad \bigl\Vert f(s,t) \bigr\Vert \rightarrow \infty . $$

Otherwise, if there were a linear isometry \(U:\ell _{\infty}^{2}\rightarrow \ell _{\infty}^{3}\) and a constant \(\alpha >0\) such that the above formula holds, then

$$ \lim_{ \Vert f(s,t) \Vert \rightarrow \infty} \frac{ \Vert f(s,t)-\alpha U(s,t) \Vert }{ \Vert f(s,t) \Vert }=\lim_{ \Vert (s,t) \Vert \rightarrow \infty} \frac{ \Vert f(s,t)-\alpha U(s,t) \Vert }{ \Vert (s,t) \Vert }=0. $$

It follows that for every \((s,t) \in \ell _{\infty}^{2} \setminus \{0\}\),

$$ \alpha U(s,t)= \lim_{n\rightarrow \infty}\frac{f (n(s,t) )}{n}=\bigl(s,t, \max \bigl\{ \vert s \vert , \vert t \vert \bigr\} \bigr)=f(s,t). $$

This is a contradiction to the linearity of U.

4 Conclusion

In this article, we mainly studied the stability of functional equation (1.1) with a nonsurjectivity condition. Firstly, we gave an asymptotical stability result of perturbed isometries of uniformly convex spaces. Next, we showed that if a standard mapping \(F:G\rightarrow Y\) satisfies (1.1) and \(d(u,F(G))\leq \delta \|u\|^{r}\) for every \(u\in Y\), where G is an abelian group and Y is a uniformly convex space with power type p, then there is an additive operator \(A:G\rightarrow Y\) such that \(\|F(x)-Ax\|=o(\|F(x)\|)\) as \(\|F(x)\|\rightarrow \infty \). As an application, we gave a stability result for the mappings which preserve the equality of distance. For more results in modular spaces and Orlicz-binomial spaces, one may refer to [11, 22].

Availability of data and materials

Not applicable.

References

  1. Brzdęk, J., Fechner, W., Moslehian, M.S., Sikorska, J.: Recent developments of the conditional stability of the homomorphism equation. Banach J. Math. Anal. 9(3), 278–326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheng, L., Fang, Q., Luo, S., Sun, L.: On non-surjective coarse isometries between Banach spaces. Quaest. Math. 42(3), 347–362 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diestel, J.: Geometry of Banach Spaces—Selected Topics. Lect. Notes in Math., vol. 485. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  4. Dolinar, G.: Generalized stability of isometries. J. Math. Anal. Appl. 242(1), 39–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dong, Y.: Generalized stabilities of two functional equations. Aequ. Math. 86(3), 269–277 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dong, Y.: On approximate isometries and application to stability of a functional equation. J. Math. Anal. Appl. 426(1), 125–137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, Y., Chen, L.: On generalized Hyers–Ulam stability of additive mappings on restricted domains of Banach spaces. Aequ. Math. 90(5), 871–878 (2016)

    Article  MATH  Google Scholar 

  8. Dong, Y., Cheng, Q.: A note on stability of Fischer–Muszély functional equation. Aequ. Math. 89(3), 605–612 (2015)

    Article  MATH  Google Scholar 

  9. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jung, S.M.: Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Optimization and Its Applications, vol. 48. Springer, New York (2011)

    Book  MATH  Google Scholar 

  11. Karthikeyan, S., Park, C., Palani, P., Kumar, T.R.K.: Stability of an additive-quartic functional equation in modular spaces. J. Math. Comput. Sci. 26(1), 22–40 (2022)

    Article  Google Scholar 

  12. Megginson, R.E.: An Introduction to Banach Space Theory. Graduate Texts in Mathematics, vol. 183. Springer, New York (1998)

    MATH  Google Scholar 

  13. Miheţ, D., Saadati, R.: On the stability of the additive Cauchy functional equation in random normed spaces. Appl. Math. Lett. 24(12), 2005–2009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Omladič, M., Šemrl, P.: On nonlinear perturbations of isometries. Math. Ann. 303, 617–628 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Park, C., O’Regan, D., Saadati, R.: Stability of some set-valued functional equations. Appl. Math. Lett. 24(11), 1910–1914 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pisier, G.: Martingales with values in uniformly convex spaces. Isr. J. Math. 20(3–4), 326–350 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sikorska, J.: Stability of the preservation of the equality of distance. J. Math. Anal. Appl. 311, 209–217 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tabor, J.: Stability of the Fisher–Muszély functional equation. Publ. Math. 62, 205–211 (2003)

    MATH  Google Scholar 

  20. Ulam, S.M.: A Collection of Mathematical Problems. Interscience, New York (1960)

    MATH  Google Scholar 

  21. Vogt, A.: Maps which preserve equality of distance. Stud. Math. 45, 43–48 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yaying, T., Hazarika, B., Mursaleen, M.: Norm of matrix operator on Orlicz-binomial spaces and related operator ideal. J. Math. Comput. Sci. 23(4), 341–353 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for the helpful comments and constructive suggestions, and the authors also would like to thank the colleagues and graduate students in the Functional Analysis group of Xiamen University for their very helpful conversations and suggestions.

Funding

Supported by Research Program of Science at Universities of Inner Mongolia Autonomous Region, No. NJZY22345, Fund Project for Central Leading Local Science and Technology Development, No. 2022ZY0194, and National Natural Science Foundation of China, No. 12071388.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. Material preparation and analysis were performed by Yuqi Sun and Wen Zhang. We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. All authors wrote the main manuscript text and reviewed the manuscript.

Corresponding author

Correspondence to Wen Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhang, W. On stability of almost surjective functional equations of uniformly convex Banach spaces. J Inequal Appl 2023, 113 (2023). https://doi.org/10.1186/s13660-023-03027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-03027-8

Mathematics Subject Classification

Keywords