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Abstract
Let Y be a uniformly convex space with power type p, and let (G, +) be an abelian
group, δ,ε ≥ 0, 0 < r < 1. We first show a stability result for approximate isometries
from an arbitrary Banach space into Y . This is a generalization of Dolinar’ results for
(δ, r)-isometries of Hilbert spaces and Lp (1 < p <∞) spaces. As a result, we prove that
if a standard mapping F : G → Y satisfies d(u, F(G))≤ δ‖u‖r for every u ∈ Y and

∣
∣
∥
∥F(x) – F(y)

∥
∥ –

∥
∥F(x – y)

∥
∥
∣
∣ ≤ ε, x, y ∈ G,

then there is an additive operator A : G → Y such that

∥
∥F(x) – Ax

∥
∥ = o(

∥
∥F(x)

∥
∥) as

∥
∥F(x)

∥
∥ → ∞.
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1 Introduction
Let (G, +) be a group and let Y be a Banach space. Sikorska [18] firstly investigated the
approximation stability by an additive function for near-surjective mappings F : G → Y
satisfying

∣
∣
∥
∥F(x) – F(y)

∥
∥ –

∥
∥F(x – y)

∥
∥
∣
∣ ≤ ε, (1.1)

and showed that the near-surjectivity assumption is essential. In this paper, we continue
to study asymptotical stability for the above functional equations with a nonsurjectivity
condition, where Y is a uniformly convex Banach space with power type p. Let us first
review the historical development of stability for equation (1.1).

In the fall of 1940, Ulam [20] raised the following question:

Question 1.1 (Ulam [20]) Let G1 be a group and let G2 be a metric group with a metric
d(·, ·). Given ε > 0, does there exist δ > 0 such that if a function h : G1 → G2 satisfies the
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inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there is a homomorphism H : G1 →
G2 with d(h(x), H(x)) < ε for all x ∈ G1?

In 1941, Hyers [9] answered the question of Ulam for the case where G1 and G2 are both
Banach spaces.

Theorem 1.2 (Hyers [9]) Let X, Y be Banach spaces, and let F : X → Y be a mapping with

∥
∥F(x + y) – F(x) – F(y)

∥
∥ ≤ ε, x, y ∈ X, (1.2)

for some ε ≥ 0. Then there is an additive mapping A : X → Y such that

∥
∥F(x) – Ax

∥
∥ ≤ ε, x ∈ X.

The stability result above for (1.2) is called the Hyers–Ulam stability. In 1978, Rassias
[17] obtained the following exciting result, which weakened the condition for the bound
of the norm of F(x + y) – F(x) – F(y).

Theorem 1.3 (Rassias [17]) Let X, Y be Banach spaces, and let F : X → Y be a mapping
satisfying

∥
∥F(x + y) – F(x) – F(y)

∥
∥ ≤ ε

(‖x‖p + ‖y‖p), x, y ∈ X, (1.3)

for some ε ≥ 0 and 0 ≤ p < 1. Then there is an additive mapping A : X → Y such that

∥
∥F(x) – Ax

∥
∥ ≤ 2ε

2 – 2p , x ∈ X.

The stability phenomenon established by Rassias is called the Hyers–Ulam–Rassias sta-
bility. For some recent work on Hyers–Ulam–Rassias stability and related topics, one may
refer to [1, 10, 13, 15].

In 2003, by using a stability result of ε-isometries which was established by Omladič and
Šemrl [14], Tabor [19] firstly got the perturbation stability result for the Fischer–Muszély
functional equation

∣
∣
∥
∥F(x + y)

∥
∥ –

∥
∥F(x) + F(y)

∥
∥
∣
∣ ≤ ε, (1.4)

where F : G → Y is surjective. Further, Sikorska [18] showed the stability of the functional
equation for (1.1).

Theorem 1.4 (Sikorska [18]) Let (G, +) be an abelian group, Y be a Banach space, δ, ε ≥ 0.
If F : G → Y is a δ-surjective mapping satisfying

∣
∣
∥
∥F(x – y)

∥
∥ –

∥
∥F(x) – F(y)

∥
∥
∣
∣ ≤ ε, x, y ∈ G,

then

∥
∥F(x + y) – F(x) – F(y)

∥
∥ ≤ 5ε + 5δ, x, y ∈ G.
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Since 2013, Dong generalized stability of near-surjective equations (1.1) and (1.4), where
the error is unbounded (see [5–8]). However, the near-surjectivity assumption also cannot
be omitted.

This paper is organized as follows. In Sect. 2, we show that if a mapping f : X → Y with
f (0) = 0 satisfies

∣
∣
∥
∥f (x) – f (y)

∥
∥ – ‖x – y‖∣∣ ≤ δ

(‖x‖r + ‖y‖r) + ε,

where X is a Banach space, Y is a uniformly convex space with power type p, and δ, ε ≥ 0,
0 < r < 1, then there are two nonnegative constants K(δ, r, p), K̃(ε) with limδ→0 K(δ, r, p) =
0, limε→0 K̃(ε) = 0 and a linear isometry U : X → Y such that

∥
∥f (x) – Ux

∥
∥ ≤ K(δ, r, p) max

{‖x‖r ,‖x‖1–(1–r)/p} + K̃(ε) max
{

1,‖x‖1–1/p}, x ∈ X.

This is a generalization of Dolinar’ results [4] for (δ, r)-isometries of Hilbert spaces and Lp

(1 < p < ∞) spaces. In Sect. 3, by using the stability result above for perturbation isome-
tries, we obtain that if F : G → Y satisfies (1.1) and d(u, F(G)) ≤ δ‖u‖r for every u ∈ Y ,
then there is an additive operator A : G → Y such that

∥
∥F(x) – Ax

∥
∥ = o

(∥
∥F(x)

∥
∥
)

as
∥
∥F(x)

∥
∥ → ∞.

As a result, we also give a stability result for the mappings which preserve the equality of
distance.

In this paper, the letters X, Y are used to denote real Banach spaces, X∗, Y ∗ are their dual
spaces. We also denote that G is an abelian group. For a real Banach space X, we denote
by SX and BX the unit sphere and the closed unit ball of X, respectively.

2 Asymptotical stability of nonsurjective (δ, r,ε)-isometries
The main results of this section are inspired by [2, Theorem 2.5].

Definition 2.1 Let f : X → Y be a mapping, δ, ε ≥ 0, 0 < r < 1. Then f is called a (δ, r, ε)-
isometry if

∣
∣
∥
∥f (x) – f (y)

∥
∥ – ‖x – y‖∣∣ ≤ δ

(‖x‖r + ‖y‖r) + ε, x, y ∈ X. (2.1)

We say that f is standard if f (0) = 0.

Given a nonzero x ∈ X, we define g : R→ Y as follows:

g(t) =
f (tx)
‖x‖ , t ∈R.

Then for each s, t ∈ R,

∣
∣
∥
∥g(t) – g(s)

∥
∥ – |s – t|∣∣ ≤ |‖f (tx) – f (sx)‖ – |s – t| ‖x‖|

‖x‖ (2.2)

≤ δ
(|s|r + |t|r)‖x‖r–1 + ε‖x‖–1.
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Lemma 2.2 Suppose that g : R → Y is defined as above. Then for every n ∈N, there exists
ϕn ∈ SY∗ such that

∣
∣
〈

ϕn, g(t)
〉

– t
∣
∣ ≤ 3δnr‖x‖r–1 + 2ε‖x‖–1, t ∈ [0, n].

Proof By Hahn–Banach theorem (see [12, p. 75–76]), for each n ∈N, there exists ϕn ∈ SY∗

so that

〈

ϕn, g(n)
〉

=
∥
∥g(n)

∥
∥ =

f (nx)
‖x‖ .

Then

n – δnr‖x‖r–1 – ε‖x‖–1 ≤ 〈

ϕn, g(n)
〉 ≤ n + δnr‖x‖r–1 + ε‖x‖–1.

Given n ∈N, on the one hand,

〈

ϕn, g(t)
〉 ≤ ∥

∥g(t)
∥
∥ ≤ t + δtr‖x‖r–1 + ε‖x‖–1 ≤ t + δnr‖x‖r–1 + ε‖x‖–1, t ∈ [0, n].

On the other hand,

〈

ϕn, g(n)
〉

–
〈

ϕn, g(t)
〉 ≤ ∥

∥g(n) – g(t)
∥
∥ ≤ n – t + 2δnr‖x‖r–1 + ε‖x‖–1, t ∈ [0, n].

Thus,

〈

ϕn, g(t)
〉

=
〈

ϕn, g(n)
〉

–
(〈

ϕn, g(n)
〉

–
〈

ϕn, g(t)
〉)

≥ n – δnr‖x‖r–1 – ε‖x‖–1 –
(

n – t + 2δnr‖x‖r–1 + ε‖x‖–1)

≥ t – 3δnr‖x‖r–1 – 2ε‖x‖–1, t ∈ [0, n].

Therefore,

∣
∣
〈

ϕn, g(t)
〉

– t
∣
∣ ≤ 3δnr‖x‖r–1 + 2ε‖x‖–1, t ∈ [0, n]. �

The modulus of convexity of a Banach space Y is the function δY : [0, 2] → [0, 1] defined
by

δY (ε) = inf

{

1 –
∥
∥
∥
∥

x + y
2

∥
∥
∥
∥

: x, y ∈ BY ,‖x – y‖ ≥ ε

}

.

Definition 2.3 ([16]) A Banach space Y is said to be uniformly convex if δY (ε) > 0 for all
0 < ε ≤ 2. If p ≥ 1, we say that a uniformly convex Banach space Y has power type p if
there is a constant C > 0 so that δY (ε) ≥ Cεp for all 0 < ε ≤ 2.

Remark 2.4 Pisier [16] showed that every uniformly convex Banach spaces can be
renormed to admit power type p for some 2 ≤ p < +∞.
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Theorem 2.5 Suppose that Y is a uniformly convex space with power type p, and that
f : X → Y is a standard (δ, r, ε)-isometry. Then there are constants K (δ, r, p) ≥ 0, K̃(ε) ≥ 0
with limδ→0 K(δ, r, p) = 0, limε→0 K̃(ε) = 0 and a linear isometry U : X → Y such that

∥
∥f (x) – Ux

∥
∥ ≤ K(δ, r, p) max

{‖x‖r ,‖x‖1–(1–r)/p}

+ K̃(ε) max
{

1,‖x‖1–1/p}, x ∈ X.

Proof Given x ∈ X \ {0}, t ∈ R, n ∈ N, let g(t) = f (tx)
‖x‖ , yn = f (2nx)

‖2nx‖ , zn = f (2nx)
‖f (2nx)‖ . Then zn ∈ SY

and

‖yn –zn‖ =
∥
∥f

(

2nx
)∥
∥

∣
∣
∣
∣

1
‖2nx‖ –

1
‖f (2nx)‖

∣
∣
∣
∣
≤ δ‖2nx‖r + ε

‖2nx‖ = δ
∥
∥2nx

∥
∥

r–1 +ε
∥
∥2nx

∥
∥

–1. (2.3)

From Lemma 2.2, there exists ϕ2n ∈ SY∗ so that

∣
∣
〈

ϕ2n , g(t)
〉

– t
∣
∣ ≤ 3δ2nr‖x‖r–1 + 2ε‖x‖–1, t ∈ [

0, 2n].

This implies that

∣
∣
∣
∣

〈

ϕ2n ,
g(2n)

2n

〉

– 1
∣
∣
∣
∣
≤ 3δ2nr‖x‖r–1 + 2ε‖x‖–1

2n , and

∣
∣
∣
∣

〈

ϕ2n ,
g(2n–1)

2n–1

〉

– 1
∣
∣
∣
∣
≤ 3δ2nr‖x‖r–1 + 2ε‖x‖–1

2n–1 .

Then

‖yn–1 + yn‖
2

≥
〈

ϕ2n ,
yn–1 + yn

2

〉

=
1
2

〈

ϕ2n ,
g(2n–1)

2n–1 +
g(2n)

2n

〉

≥ 1 –
1
2
(

3δ2nr‖x‖r–1 + 2ε‖x‖–1)
(

1
2n +

1
2n–1

)

≥ 1 –
9
2
(

δ
∥
∥2nx

∥
∥

r–1 + ε
∥
∥2nx

∥
∥

–1).

It follows from (2.3) that

‖zn–1 + zn‖
2

=
‖yn–1 + yn‖

2
–

(‖yn–1 + yn‖
2

–
‖zn–1 + zn‖

2

)

≥ ‖yn–1 + yn‖
2

–
1
2
(‖yn–1 – zn–1‖ + ‖yn – zn‖

)

≥ 1 –
9
2
(

δ
∥
∥2nx

∥
∥

r–1 + ε
∥
∥2nx

∥
∥

–1)

–
1
2
(

δ
∥
∥2n–1x

∥
∥

r–1 + ε
∥
∥2n–1x

∥
∥

–1 + δ
∥
∥2nx

∥
∥

r–1 + ε
∥
∥2nx

∥
∥

–1)

= 1 – C1(δ, r)
∥
∥2nx

∥
∥

r–1 – C̃1(ε)
∥
∥2nx

∥
∥

–1,
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where C1(δ, r) = ( 21–r+10
2 )δ, C̃1(ε) = 6ε. Since Y is uniformly convex with power type p,

there is a constant C > 0 such that δY (ε) ≥ Cεp for all 0 < ε ≤ 2. Then

C‖zn–1 – zn‖p ≤ δY
(‖zn–1 – zn‖

) ≤ 1 –
‖zn–1 + zn‖

2

≤ C1(δ, r)
∥
∥2nx

∥
∥

r–1 + C̃1(ε)
∥
∥2nx

∥
∥

–1.

It follows that ‖zn–1 – zn‖ ≤ ( C1(δ,r)
C )1/p‖2nx‖(r–1)/p + ( C̃1(ε)

C )1/p‖2nx‖–1/p. Again by (2.3),

‖yn–1 – yn‖ ≤ ‖yn–1 – zn–1‖ + ‖zn–1 – zn‖ + ‖zn – yn‖

≤ δ
∥
∥2n–1x

∥
∥

r–1 + ε
∥
∥2n–1x

∥
∥

–1 +
(

C1(δ, r)
C

)1/p
∥
∥2nx

∥
∥

(r–1)/p

+
(

C̃1(ε)
C

)1/p
∥
∥2nx

∥
∥

–1/p + δ
∥
∥2nx

∥
∥

r–1 + ε
∥
∥2nx

∥
∥

–1

=
(

21–r + 1
)

δ
∥
∥2nx

∥
∥

r–1 + 3ε
∥
∥2nx

∥
∥

–1 +
(

C1(δ, r)
C

)1/p
∥
∥2nx

∥
∥

(r–1)/p

+
(

C̃1(ε)
C

)1/p
∥
∥2nx

∥
∥

–1/p.

Because of 0 < 1–r
p ≤ 1 – r < 1, then (2n)r–1 ≤ (2n)(r–1)/p and 2–n ≤ 2–n/p. Thus

‖yn–1 – yn‖ ≤ 2n(r–1)/p
((

C1(δ, r)
C

)1/p

‖x‖(r–1)/p +
(

21–r + 1
)

δ‖x‖r–1
)

+ 2–n/p
((

C̃1(ε)
C

)1/p

‖x‖–1/p + 3ε‖x‖–1
)

.

Therefore,

∥
∥
∥
∥

f (2nx)
2n –

f (2n–1x)
2n–1

∥
∥
∥
∥

= ‖yn–1 – yn‖ · ‖x‖

≤ 2n(r–1)/p
((

C1(δ, r)
C

)1/p

‖x‖1–(1–r)/p +
(

21–r + 1
)

δ‖x‖r
)

+ 2–n/p
((

C̃1(ε)
C

)1/p

‖x‖1–1/p + 3ε

)

.

Put C2(δ, r, p) = ( C1(δ,r)
C )1/p + (21–r + 1)δ, C̃2(ε) = ( C̃1(ε)

C )1/p + 3ε. Then limδ→0 C2(δ, r, p) = 0,
limε→0 C̃2(ε) = 0, and

∥
∥
∥
∥

f (2nx)
2n –

f (2n–1x)
2n–1

∥
∥
∥
∥

≤ C2(δ, r, p)2n(r–1)/p max
{‖x‖r ,‖x‖1–(1–r)/p}

+ C̃2(ε)2–n/p max
{

1,‖x‖1–1/p}.
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Let n, m ∈N with n > m. We have

∥
∥
∥
∥

f (2nx)
2n –

f (2mx)
2m

∥
∥
∥
∥

≤ C2(δ, r, p)
n

∑

k=m+1

2k(r–1)/p max
{‖x‖r ,‖x‖1–(1–r)/p} (2.4)

+ C̃2(ε)
n

∑

k=m+1

2–k/p max
{

1,‖x‖1–1/p}

≤ 2(m+1)(r–1)/p

1 – 2(r–1)/p C2(δ, r, p) max
{‖x‖r ,‖x‖1–(1–r)/p}.

+
2–(m+1)/p

1 – 2–1/p C̃2(ε) max
{

1,‖x‖1–1/p}.

It follows from r–1
p < 0 that { f (2nx)

2n } is a Cauchy sequence. We define U : X → Y by

Ux = lim
n→∞

f (2nx)
2n , x ∈ X.

From 0 < r < 1 and since f is a (δ, r, ε)-isometry, we obtain that

∣
∣‖Ux – Uy‖ – ‖x – y‖∣∣ = lim

n→∞

∣
∣
∣
∣

∥
∥
∥
∥

f (2nx)
2n –

f (2ny)
2n

∥
∥
∥
∥

– ‖x – y‖
∣
∣
∣
∣

≤ lim
n→∞

δ · 2nr(‖x‖r + ‖y‖r) + ε

2n

= lim
n→∞

δ(‖x‖r + ‖y‖r) + ε

2n(1–r)

= 0 for each x, y ∈ X.

Since Y is strictly convex, U is a linear isometry. Taking m = 0 in (2.4) and letting n → ∞,
we obtain that

∥
∥f (x) – Ux

∥
∥ ≤ K(δ, r, p) max

{‖x‖r ,‖x‖1–(1–r)/p} + K̃(ε) max
{

1,‖x‖1–1/p}, x ∈ X.

Here K(δ, r, p) = 2(r–1)/p

1–2(r–1)/p C2(δ, r, p), K̃(ε) = 2–1/p

1–2–1/p C̃2(ε). Clearly, limδ→0 K(δ, r, p) = 0 and
limε→0 K̃(ε) = 0. �

Note that Hilbert spaces have power type 2 and Lp spaces have power type p if p > 2;
and 2 if 1 < p ≤ 2 (see [3, Theorem 1, p. 69]). Then, by Theorem 2.5, we have the following
corollaries which were obtained by Dolinar.

Corollary 2.6 ([4, Proposition 2]) Let Y be a Hilbert space, and let f : X → Y be a standard
mapping satisfying

∣
∣
∥
∥f (x) – f (y)

∥
∥ – ‖x – y‖∣∣ ≤ δ‖x – y‖r , x, y ∈ X, (2.5)

for some δ ≥ 0 and 0 < r < 1. Then there exist a linear isometry U : X → Y and a constant
K(δ, r) ≥ 0 such that limδ→0 K(δ, r) = 0 and

∥
∥f (x) – Ux

∥
∥ ≤ K(δ, r) max

{‖x‖r ,‖x‖(1+r)/2}, x ∈ X.
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Corollary 2.7 ([4, Proposition 3]) Let Y = Lp (1 < p < ∞), and let f : X → Y be a standard
mapping satisfying

∣
∣
∥
∥f (x) – f (y)

∥
∥ – ‖x – y‖∣∣ ≤ δ‖x – y‖r , x, y ∈ X, (2.6)

for some δ ≥ 0 and 0 < r < 1. Then there exist a linear isometry U : X → Y and a constant
K(δ, r, p) ≥ 0 such that limδ→0 K(δ, r, p) = 0 and

∥
∥f (x) – Ux

∥
∥ ≤ K(δ, r, p) max

{‖x‖r ,‖x‖1–(1–r)/p}, x ∈ X.

3 (δ, r)-Surjective functional equations
Let (G, +) be an abelian group, 0 ∈ G be a unit element, and Y be a Banach space. We say
that a mapping F : G → Y is (δ, r)-surjective if d(u, F(G)) ≤ δ‖u‖r for every u ∈ Y ; F is said
to be standard if F(0) = 0.

Theorem 3.1 Suppose that Y is a uniformly convex space with power type p, and that
F : G → Y is a (δ, r)-surjective mapping with

∣
∣
∥
∥F(x) – F(y)

∥
∥ –

∥
∥F(x – y)

∥
∥
∣
∣ ≤ ε,

where δ, ε ≥ 0 and 0 < r < 1. Then there are constants K (δ, r, p) and K̃(2ε) such that

∥
∥F(x + y) – F(x) – F(y)

∥
∥ ≤ K(δ, r, p) max

{∥
∥F(y)

∥
∥

r ,
∥
∥F(y)

∥
∥

1–(1–r)/p}

+ K̃(2ε) max
{

1,
∥
∥F(y)

∥
∥

1–1/p} + ε, x, y ∈ G.

Proof Given x ∈ G, a set-valued mapping �x : Y → 2Y is defined by

�x(u) =
{

F(au + x) – F(x) : au ∈ F–1(B
(

u, δ‖u‖r))}, u ∈ Y .

When F is (δ, r)-surjective, this entails that �x(u) 	= ∅ for every u ∈ Y . Fixing u, v ∈ Y , for
each zu ∈ �x(u), zv ∈ �x(v), there exist au ∈ F–1(B(u, δ‖u‖r)) and av ∈ F–1(B(v, δ‖v‖r)) so
that zu = F(au + x) – F(x) and zv = F(av + x) – F(x). Then

∣
∣‖zu – zv‖ – ‖u – v‖∣∣ ≤ ∣

∣
∥
∥F(au + x) – F(av + x)

∥
∥ –

∥
∥F(au – av)

∥
∥
∣
∣ (3.1)

+
∣
∣
∥
∥F(au – av)

∥
∥ –

∥
∥F(au) – F(av)

∥
∥
∣
∣

+
∥
∥F(au) – u

∥
∥ +

∥
∥F(av) – v

∥
∥

≤ δ
(‖u‖r + ‖v‖r) + 2ε.

In particular, if u = v (i.e., zu, zv ∈ �x(u)), we have

‖zu – zv‖ ≤ 2δ‖u‖r + 2ε. (3.2)

Let gx : Y → Y be an arbitrary selection of �x. It follows from (3.1) that

∣
∣
∥
∥gx(u) – gx(v)

∥
∥ – ‖u – v‖∣∣ ≤ δ

(‖u‖r + ‖v‖r) + 2ε. (3.3)
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Then, by Theorem 2.5, there exist a linear isometry Ugx : Y → Y and two constants
K(δ, r, p), K̃(2ε) such that

∥
∥gx(u) – gx(0) – Ugx (u)

∥
∥ ≤ K(δ, r, p) max

{‖u‖r ,‖u‖1–(1–r)/p} (3.4)

+ K̃(2ε) max
{

1,‖u‖1–1/p}, u ∈ Y .

Since gx(0) ∈ �x(0), we can find a ∈ F–1(0) so that gx(0) = F(a + x) – F(x). Thus,

∥
∥gx(0)

∥
∥ ≤ ∣

∣
∥
∥F(a + x) – F(x)

∥
∥ –

∥
∥F(a)

∥
∥
∣
∣ +

∥
∥F(a)

∥
∥ ≤ ε.

Therefore,

∥
∥gx(u) – Ugx (u)

∥
∥ ≤ K(δ, r, p) max

{‖u‖r ,‖u‖1–(1–r)/p} (3.5)

+ K̃(2ε) max
{

1,‖u‖1–1/p} + ε, u ∈ Y .

Assume that hx : Y → Y is another selection of �x. Combining (3.2) and (3.5), we obtain
that

∥
∥Ugx (u) – Uhx (u)

∥
∥ ≤ ∥

∥Ugx (u) – gx(u)
∥
∥ +

∥
∥gx(u) – hx(u)

∥
∥ +

∥
∥hx(u) – Uhx (u)

∥
∥

≤ 2K(δ, r, p) max
{‖u‖r ,‖u‖1–(1–r)/p} + 2K̃(2ε) max

{

1,‖u‖1–1/p}

+ 2δ‖u‖r + 4ε, u ∈ Y . (3.6)

Note that if 0 < r < 1, p ≥ 1, and Ugx , Uhx are two linear isometries, then for each u ∈ Y ,

∥
∥Ugx (u) – Uhx (u)

∥
∥ =

‖Ugx (nu) – Uhx (nu)‖
n

≤ 2K(δ, r, p) max{‖nu‖r ,‖nu‖1–(1–r)/p}
n

+
2K̃ (2ε) max{1,‖nu‖1–1/p} + 2δ‖u‖r + 4ε

n

→ 0, n → ∞.

This implies that Ugx = Uhx . We denote Ugx by Ux.
In what follows, we shall prove that

Ux = idY .

Firstly, we show

Ux1 = Ux2 , x1, x2 ∈ G.

Given x, y ∈ G, let u = F(y), and then y ∈ F–1(u) ⊆ F–1(B(u, δ‖u‖r)) and F(y + x) – F(x) is a
value of a selection at u of �x. By (3.5), we have

∥
∥F(y + x) – F(x) – Ux(u)

∥
∥ ≤ K(δ, r, p) max

{‖u‖r ,‖u‖1–(1–r)/p} (3.7)

+ K̃ (2ε) max
{

1,‖u‖1–1/p} + ε.
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For every x1, x2 ∈ G,

∥
∥Ux1 (u) – Ux2 (u)

∥
∥ ≤ ∥

∥F(y + x1) – F(x1) – Ux1 (u)
∥
∥ +

∥
∥F(y + x2) – F(x2) – Ux2 (u)

∥
∥

+
∥
∥F(y + x1) – F(y + x2)

∥
∥ +

∥
∥F(x1) – F(x2)

∥
∥

≤ 2K(δ, r, p) max{‖u‖r ,‖u‖1–(1–r)/p + 2K̃ (2ε) max
{

1,‖u‖1–1/p}

+ 3ε +
∥
∥F(x1 – x2)

∥
∥ +

∥
∥F(x1) – F(x2)

∥
∥.

Combining 0 < r < 1 and the linearity of Ux1 , Ux2 , we obtain that Ux1 (u) = Ux2 (u) for all
u ∈ F(G). Since F is (δ, r)-surjective, for each w ∈ Y , n ∈ N, there exists zn ∈ G such that
‖nw – F(zn)‖ ≤ δ‖nw‖r . Then

∥
∥Ux1 (w) – Ux2 (w)

∥
∥ =

‖Ux1 (nw) – Ux2 (nw)‖
n

≤ ‖Ux1 (nw) – Ux1 (F(zn))‖
n

+
‖Ux2 (nw) – Ux2 (F(zn))‖

n

+
‖Ux1 (F(zn)) – Ux2 (F(zn))‖

n

≤ 2δ
‖nw‖r

n
→ 0, n → ∞.

This implies that x1, x2 ∈ G, Ux1 = Ux2 . Putting x = 0 in (3.7), we obtain that

∥
∥u – U0(u)

∥
∥ ≤ K(δ, r, p) max

{‖u‖r ,‖u‖1–(1–r)/p} (3.8)

+ K̃(2ε) max
{

1,‖u‖1–1/p} + ε, u ∈ F(G).

In the following, we prove

U0 = idY .

Again since F is (δ, r)-surjective, for every w ∈ Y , n ∈ N, there exists zn ∈ G such that
‖nw – F(zn)‖ ≤ δ‖nw‖r . This entails that limn→∞ F(zn)

n = w. Then by (3.8), we obtain that
for each w ∈ Y ,

∥
∥w – U0(w)

∥
∥ =

‖nw – U0(nw)‖
n

≤ ‖nw – F(zn)‖
n

+
‖F(zn) – U0(F(zn))‖

n
+

‖U0(F(zn)) – U0(nw)‖
n

≤ 2δ
‖nw‖r

n
+

K(δ, r, p) max{‖F(zn)‖r ,‖F(zn)‖1–(1–r)/p}
n

+
K̃(2ε) max{1,‖F(zn)‖1–1/p} + ε

n

→ 0, n → ∞.

Thus

U0 = idY .
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Therefore, from (3.7), we obtain that

∥
∥F(x + y) – F(x) – F(y)

∥
∥ ≤ K(δ, r, p) max

{∥
∥F(y)

∥
∥

r ,
∥
∥F(y)

∥
∥

1–(1–r)/p}

+ K̃(2ε) max
{

1,
∥
∥F(y)

∥
∥

1–1/p} + ε, x, y ∈ G. �

Theorem 3.2 Suppose that Y is a uniformly convex space with power type p, and that
F : G → Y is a (δ, r)-surjective mapping with

∣
∣
∥
∥F(x) – F(y)

∥
∥ –

∥
∥F(x – y)

∥
∥
∣
∣ ≤ ε, (3.9)

where δ, ε ≥ 0 and 0 < r < 1. Then there is an additive mapping A : G → Y such that

∥
∥F(x) – Ax

∥
∥ = o

(∥
∥F(x)

∥
∥
)

,
∥
∥F(x)

∥
∥ → ∞.

Proof By Theorem 3.1,

∥
∥F(x + y) – F(x) – F(y)

∥
∥ ≤ K(δ, r, p) max

{∥
∥F(y)

∥
∥

r ,
∥
∥F(y)

∥
∥

1–(1–r)/p}

+ K̃(2ε) max
{

1,
∥
∥F(y)

∥
∥

1–1/p} + ε, x, y ∈ G.

If we replace y for x in inequality above, then

∥
∥F(2x) – 2F(x)

∥
∥ ≤ K(δ, r, p) max

{∥
∥F(x)

∥
∥

r ,
∥
∥F(x)

∥
∥

1–(1–r)/p}

+ K̃(2ε) max
{

1,
∥
∥F(x)

∥
∥

1–1/p} + ε.

By substituting 2nx for x, and dividing by 2n+1 in the inequality above, we observe that

∥
∥
∥
∥

F(2n+1x)
2n+1 –

F(2nx)
2n

∥
∥
∥
∥

≤ K(δ, r, p) max{‖F(2nx)‖r ,‖F(2nx)‖1–(1–r)/p}
2n+1 (3.10)

+
K̃(2ε) max{1,‖F(2nx)‖1–1/p} + ε

2n+1 .

Next, we study the relationship between ‖F(2nx)‖ and 2n‖F(x)‖. Let x = 0 and y = x in
(3.9), then

∣
∣
∥
∥F(–x)

∥
∥ –

∥
∥F(x)

∥
∥
∣
∣ ≤ ε. (3.11)

Letting y = –x in (3.9), we have

∣
∣
∥
∥F(2x)

∥
∥ –

∥
∥F(x) – F(–x)

∥
∥
∣
∣ ≤ ε. (3.12)

Then

∥
∥F(2x)

∥
∥ ≤ ∥

∥F(x) – F(–x)
∥
∥ + ε ≤ ∥

∥F(–x)
∥
∥ +

∥
∥F(x)

∥
∥ + ε ≤ 2

(∥
∥F(x)

∥
∥ + ε

)

.

By mathematical induction, we obtain that

∥
∥F

(

2nx
)∥
∥ ≤ 2n∥∥F(x)

∥
∥ +

(

2n+1 – 2
)

ε ≤ 2n∥∥F(x)
∥
∥ + 2n+1ε.
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Since 0 < r < 1, we have

∥
∥F

(

2nx
)∥
∥

r ≤ 2nr∥∥F(x)
∥
∥

r + 2nr(2ε)r . (3.13)

Combing (3.10) and (3.13), we observe that

∥
∥
∥
∥

F(2n+1x)
2n+1 –

F(2nx)
2n

∥
∥
∥
∥

≤ K(δ, r, p)
2

max
{

2n(r–1)∥∥F(x)
∥
∥

r + 2n(r–1)(2ε)r , (3.14)

2n(r–1)/p∥∥F(x)
∥
∥

1–(1–r)/p + 2n(r–1)/p(2ε)1–(1–r)/p}

+
K̃(2ε)

2
max

{

2–n, 2–n/p∥∥F(x)
∥
∥

1–1/p + 2–n/p(2ε)1–1/p} + ε/2n+1.

Note that 0 < r < 1, p ≥ 1, and then for n > m,

n
∑

k=m+1

2k(r–1),
n

∑

k=m+1

2k(r–1)/p,
n

∑

k=m+1

2–k ,
n

∑

k=m+1

2–k/p → 0, as m → ∞. (3.15)

It follows that { F(2nx)
2n } is a Cauchy sequence for all x ∈ G and thus there is a limit function

Ax = lim
n→∞

F(2nx)
2n , x ∈ G.

Then by (3.14) and (3.15), there exist constants L1, L2, L3, L4 > 0 such that

∥
∥F(x) – Ax

∥
∥ =

∞
∑

n=0

∥
∥
∥
∥

F(2n+1x)
2n+1 –

F(2nx)
2n

∥
∥
∥
∥

≤ L1
∥
∥F(x)

∥
∥

r + L2
∥
∥f (x)

∥
∥

1–(1–r)/p + L3
∥
∥F(x)

∥
∥

1–1/p + L4.

(3.16)

Clearly,

∥
∥F(x) – Ax

∥
∥ = o

(∥
∥F(x)

∥
∥
)

,
∥
∥F(x)

∥
∥ → ∞.

Now, we only need to prove that A is additive. For every x, y ∈ G,

∥
∥
∥
∥

F(2n(x + y))
2n –

F(2nx)
2n –

F(2ny)
2n

∥
∥
∥
∥

(3.17)

≤ K(δ, r, p) max{‖F(2ny)‖r ,‖F(2ny)‖1–(1–r)/p}
2n

+
K̃(2ε) max{1,‖F(2ny)‖1–1/p} + ε

2n .

Note that ‖F(2ny)‖r

2n = ( ‖F(2ny)‖
2n )r ·2(r–1)n → 0 as n → ∞. Similarly, we also have ‖F(2ny)‖1–(1–r)/p

2n ,
‖F(2ny)‖1–1/p

2n → 0 as n → ∞. By letting n → ∞ in (3.17), we obtain ‖A(x + y) – Ax – Ay‖ = 0,
i.e., A is additive. �

By Theorem 3.2, we obtain the following corollaries.
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Corollary 3.3 Suppose that Y is a Hilbert space, and that F : G → Y is a (δ, r)-surjective
mapping with

∣
∣
∥
∥F(x) – F(y)

∥
∥ –

∥
∥F(x – y)

∥
∥
∣
∣ ≤ ε,

where δ, ε ≥ 0 and 0 < r < 1. Then there is an additive mapping A : G → Y such that

∥
∥F(x) – Ax

∥
∥ = o

(∥
∥F(x)

∥
∥
)

,
∥
∥F(x)

∥
∥ → ∞.

Corollary 3.4 Suppose that Y = Lp (1 < p < ∞), and that F : G → Y is a (δ, r)-surjective
mapping with

∣
∣
∥
∥F(x) – F(y)

∥
∥ –

∥
∥F(x – y)

∥
∥
∣
∣ ≤ ε,

where δ, ε ≥ 0 and 0 < r < 1. Then there is an additive mapping A : G → Y such that

∥
∥F(x) – Ax

∥
∥ = o

(∥
∥F(x)

∥
∥
)

,
∥
∥F(x)

∥
∥ → ∞.

As an application of Theorem 3.2, we show the following stability result for maps which
preserve equality of distance.

Definition 3.5 ([21]) Let X, Y be Banach spaces, we say that a map T : X → Y preserves
the equality of distance if

‖x – y‖ = ‖u – v‖ ⇒ ∥
∥T(x) – T(y)

∥
∥ =

∥
∥T(u) – T(v)

∥
∥, x, y, u, v ∈ X.

Lemma 3.6 ([21]) Let X, Y be Banach spaces with dim X ≥ 2, and let T : X → Y be a
mapping which preserves the equality of distance. If for each η > 0 there exist x, y ∈ X with
x 	= y so that ‖T(x) – T(y)‖ < η, then T is uniformly continuous.

Theorem 3.7 Let X be a Banach space with dim X ≥ 2, Y be a uniformly convex space
with power type p, and let f : X → Y be a (δ, r)-surjective standard mapping, where δ, ε ≥ 0,
0 < r < 1. If

‖x – y‖ = ‖u – v‖ ⇒ ∣
∣
∥
∥f (x) – f (y)

∥
∥ –

∥
∥f (u) – f (v)

∥
∥
∣
∣ ≤ ε, x, y, u, v ∈ X, (3.18)

then there exist a constant α > 0 and a linear isometry U : X → Y such that

∥
∥f (x) – αUx

∥
∥ = o

(∥
∥f (x)

∥
∥
)

,
∥
∥f (x)

∥
∥ → ∞.

Proof Substituting u = x – y and v = 0 in (3.18), we have

∣
∣
∥
∥f (x) – f (y)

∥
∥ –

∥
∥f (x – y)

∥
∥
∣
∣ ≤ ε.

By Theorem 3.2, we can find an additive mapping A : X → Y such that

∥
∥f (x) – Ax

∥
∥ = o

(∥
∥f (x)

∥
∥
)

,
∥
∥f (x)

∥
∥ → ∞.
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For every x, y, u, v ∈ X with ‖x – y‖ = ‖u – v‖, it follows from (3.18) that

∣
∣
∣
∣

∥
∥
∥
∥

f (2nx)
2n –

f (2ny)
2n

∥
∥
∥
∥

–
∥
∥
∥
∥

f (2nu)
2n –

f (2nv)
2n

∥
∥
∥
∥

∣
∣
∣
∣
≤ ε

2n .

Letting n → ∞ in the inequality above, ‖Ax – Ay‖ = ‖Au – Av‖, i.e., A preserves equality
of distance. By the additivity of the mapping A, for each η > 0 there exist x, y ∈ X with x 	= y
such that ‖Ax – Ay‖ < η. According to Lemma 3.6, A is uniformly continuous and then A
is linear.

In the following, we show that there exist α > 0 and a linear isometry U : X → Y so that
A = αU .

For each x ∈ SX , put α = ‖Ax‖. Then

‖Ay‖ = ‖y‖ ·
∥
∥
∥
∥

A
(

y
‖y‖

)∥
∥
∥
∥

= α‖y‖ for all y ∈ X \ {0}.

This entails α > 0. We define a mapping U : X → Y by U = α–1A. Clearly, U is a linear
isometry and

∥
∥f (x) – αUx

∥
∥ = o

(∥
∥f (x)

∥
∥
)

,
∥
∥f (x)

∥
∥ → ∞. �

The following example shows that the conditions of (δ, r)-surjectivity and uniform con-
vexity in Theorem 3.7 cannot be removed.

Example 3.8 Let X = 	2∞ and Y = 	3∞, where 	n∞ denotes the vector space R
n, endowed

with the supremum norm ‖ · ‖ defined for x = (x1, x2, . . . , xn) ∈ 	n∞ by ‖(x1, x2, . . . , xn)‖ =
max{|x1|, |x2|, . . . , |xn|}. Then Y is not uniformly convex. We define f : 	2∞ → 	3∞ as follows:

f (s, t) =
(

s, t, max
{|s|, |t|}), (s, t) ∈ 	2

∞.

Clearly, f is a nonlinear isometry and (3.18) holds. It is also easy to show that f does not
satisfy the (δ, r)-surjectivity condition, where δ ≥ 0, 0 < r < 1.

Next, we shall prove that there is no linear isometry U : 	2∞ → 	3∞ and α > 0 such that

∥
∥f (s, t) – αU(s, t)

∥
∥ = o

(∥
∥f (s, t)

∥
∥
)

,
∥
∥f (s, t)

∥
∥ → ∞.

Otherwise, if there were a linear isometry U : 	2∞ → 	3∞ and a constant α > 0 such that the
above formula holds, then

lim
‖f (s,t)‖→∞

‖f (s, t) – αU(s, t)‖
‖f (s, t)‖ = lim

‖(s,t)‖→∞
‖f (s, t) – αU(s, t)‖

‖(s, t)‖ = 0.

It follows that for every (s, t) ∈ 	2∞ \ {0},

αU(s, t) = lim
n→∞

f (n(s, t))
n

=
(

s, t, max
{|s|, |t|}) = f (s, t).

This is a contradiction to the linearity of U .
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4 Conclusion
In this article, we mainly studied the stability of functional equation (1.1) with a nonsur-
jectivity condition. Firstly, we gave an asymptotical stability result of perturbed isometries
of uniformly convex spaces. Next, we showed that if a standard mapping F : G → Y satis-
fies (1.1) and d(u, F(G)) ≤ δ‖u‖r for every u ∈ Y , where G is an abelian group and Y is a
uniformly convex space with power type p, then there is an additive operator A : G → Y
such that ‖F(x) – Ax‖ = o(‖F(x)‖) as ‖F(x)‖ → ∞. As an application, we gave a stability re-
sult for the mappings which preserve the equality of distance. For more results in modular
spaces and Orlicz-binomial spaces, one may refer to [11, 22].
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