Skip to main content

Reich–Krasnoselskii-type fixed point results with applications in integral equations

Abstract

In this paper, motivated by Reich contraction and tool of measure of noncompactness, some generalizations of Reich, Kannan, Darbo, Sadovskii, and Krasnoselskii type fixed point results are presented by considering a pair of maps A, B on a nonempty closed subset M of a Banach space X into X. The existence of a solution to the equation \(Ax+Bx=x\), where A is k-set contractive and B is a generalized Reich contraction, is established. As applications, it is established that the main result of this paper can be applied to learn conditions under which a solution of a nonlinear integral equation exists. Further we explain this phenomenon with the help of a practical example to approximate such solutions by using fixed point techniques. The graphs of exact and approximate solutions are also given to attract readers for further research activities.

1 Introduction

Fixed point theory is one of the most developed and applicable branches of nonlinear mathematical analysis. It based on the well-known principle that every operator equation can be transformed into a fixed point problem, and vice versa.

In essence, the fixed point theory has two branches, namely the metric fixed point theory and topological fixed point theory. Topological fixed point theory is the most important branch of nonlinear analysis. It has a strong and useful history of more than a century. In 1912 Brouwer proved his well-known fixed point theorem. Later in 1922, Banach proved the most versatile result known as Banach contraction principle [38]. The most applicable generalization of Brouwer’s theorem was presented in 1930 by Schauder using compact operators. Banach and Schauder’s results remain most celebrated results in fixed point theory. The following two results of Brouwer and Banach were established in 1912 and 1922, respectively, and are given as follows.

Theorem BR

(Brouwer, [31]) Every compact convex nonempty subset B of \(\mathbb{R} ^{n}\) has a fixed-point property.

Theorem BC

(Banach, [31]) Any contraction mapping of a complete nonempty metric space \(\Omega _{1}\) into \(\Omega _{1}\) has a unique fixed point in \(\Omega _{1}\).

Both theorems are crucial in the existence theory of differential and integral equations. In the literature, there are many generalizations of these results. The most famous generalization of Theorem BR is Schauder’s fixed point theorem.

Theorem SH

(Schauder’s second theorem, [31]) Let \(\Omega _{1}\) be a nonempty convex subset of a normed space L and S be a continuous operator of \(\Omega _{1}\) into a compact set \(B\subseteq \Omega _{1}\). Then S has a fixed point.

A variety of generalizations of these results can be seen in [8, 13, 15, 18, 20, 21, 33, 35], and in the references therein.

Writing the physical problems into mathematical form produces mathematical equations like differential, integral, linear, and nonlinear equations. All these equations can be solved by fixed point techniques. Before solving them, the existence theory for the fixed points of operators plays very a important role. A number of results regarding differential and integral equations in connection with their existence theory can be seen in [1, 2, 6, 9, 11, 17, 23, 24, 28, 32].

In 1958, while studying the existence theory of neutral and delayed differential equations, it was observed that the solution might be expressed as a sum of compact and contractive operators. Working on this idea, Krasnoselskii proved his fixed point results for the sum of compact and contractive operators. The importance and applications of such theorems for the existence of solutions to the equation \(x=Ax+Bx\) can be seen in [10, 12, 14, 2527, 30, 36, 37].

The Krasnoselskii fixed point theorem can be stated as:

Theorem 1

([31]) Consider a Banach space X and let M be its nonempty convex closed subset. Suppose A and B map M into X such that

(1) \(y,\varkappa \in M\) implies \(Ay +B\varkappa \in M\);

(2) B is a contraction mapping;

(3) A is compact and continuous.

Then there is \(x\in M\) such that \(Ax+Bx=x\).

This Krasnoselskii’s theorem is a generalization of Schauder’s fixed point theorem and Banach contraction principle, as we can see by taking \(B=O\) and \(A=O\), respectively.

To weaken the compactness condition used in Schauder’s fixed point theorem, Darbo and Sadovskii [38, p. 500] generalized Schauder’s fixed point theorem by introducing k-set contractive and condensing operators (noncompact operators) in the following way.

Theorem 2

(Darbo) Assume that

(i) the mapping \(T:M\subseteq X\rightarrow M\) is k-set contractive,

(ii) M is a nonempty, convex, bounded, and closed subset of a Banach space X.

Then there exists \(p\in M\) such that \(p=Tp\).

Remark 3

Since every compact operator is k-set contractive with \(k=0\), Darbo’s theorem is a generalization of Schauder’s fixed point theorem.

Theorem 4

(Sadovskii) Assume that

(i) \(T:M\subseteq X\rightarrow M\) is a condensing operator,

(ii) M is a nonempty, convex, bounded, and closed subset of a Banach space X.

Then T has a fixed point.

Remark 5

Since every k-set contractive operator with \(0\leq k<1\) is condensing, Sadovskii’s theorem is an extension of Darbo’s theorem. For more about the above discussed results, one can see the related monographs and articles [3, 4, 16, 34].

Since Krasnoselskii combined the results of Banach and Schauder, in the above results Darbo and Sadovskii generalized Schauder’s theorem. The next result was established by Reich [29], which is a generalization of Kannan fixed point theorem and Banach contraction principle.

Theorem 6

([29]) Consider a complete metric space X with metric d on it and let \(T:X\rightarrow X\) be a mapping with the following property:

$$ d(Tq,Tp)\leq a_{1}d(q,Tq)+a_{2}d(p,Tp)+a_{3}d(q,p), \quad q,p\in X, $$

where \(a_{1}\), \(a_{2}\), \(a_{3}\) are nonnegative and satisfy \(a_{1}+a_{2}+a_{3}<1\). Then T has a unique fixed point.

Remark 7

Letting \(a_{1}=a_{2}=0\) gives Banach fixed point theorem, and taking \(a_{1}=a_{2}\), \(a_{3}=0\) gives Kannan fixed point theorem [19].

To combine the generalized Reich contraction and k-set contractive mappings in the form of operator equation \(x=Ax+Bx\) and generalize Reich, Kannan, Darbo, Sadovskii, and Krasnoselskii type fixed point results, we need the following definitions.

Definition 8

([5, 7]) Let X be a Banach space and \(\mathit{B}(X)\) be the collection of all bounded subsets of X. A mapping μ of \(\mathit{B}(X)\) into \([0,+\infty )\) is called a measure of noncompactness if the following conditions hold for all \(E,F\in \mathit{B}(X)\):

(1) \(\mu ( F ) =\mu ( \overline{F} ) \);

(2) \(\mu ( F\cup E ) =\max \{ \mu ( F ) ,\mu ( E ) \}\);

(3) \(\mu ( F ) =0 \Leftrightarrow F\) is precompact.

The following conditions can also be deduced:

(4) \(\mu ( E+F ) \leq \mu (E)+\mu ( F ) \);

(5) \(E\subseteq F\) implies \(\mu ( E ) \leq \mu ( F ) \).

Definition 9

([37]) Let X be a Banach space and \(T:M\subseteq X\longrightarrow X\) be a mapping. Then T is called k-set contractive if the following conditions hold for any bounded subset E of M:

(1) T is continuous and bounded;

(2) \(\mu ( T(E) ) \leq k\mu ( E ) \).

Also T is strictly k-set contractive if

(1) T is k-set contractive;

(2) \(\mu ( T(E) ) < k\mu ( E ) \) with \(\mu ( E ) \neq 0\).

Finally, T is condensing if T is strictly 1-set contractive.

Now we define generalized Kannan contractions in Banach spaces.

Definition 10

Consider a Banach space X and let M be its nonempty subset. Suppose A and B map M into X. Then B is called a generalized Kannan contraction if

$$ \bigl\Vert By-By^{\prime } \bigr\Vert \leq \alpha \bigl( \bigl\Vert Ax-(I-B)y \bigr\Vert + \bigl\Vert Ax-(I-B)y^{\prime } \bigr\Vert \bigr), $$

with \(\alpha <\frac{1}{2}\) and all \(x,y,y^{\prime }\in M\).

Remark 11

If \(A=O\) (the zero operator), we obtain a Kannan contraction.

To investigate the novelty of the above definition, the following example is important.

Example 12

Let \(B: \mathbb{R} \rightarrow \mathbb{R} \) be the mapping defined by

$$ Bx= \textstyle\begin{cases} \frac{x}{3}&\text{if }0\leq x< 1, \\ \frac{1}{6}&\text{if }x=1, \\ 0&\text{elsewhere}.\end{cases} $$

Then with usual metric induced from the usual norm \(\vert \cdot \vert \) on \(\mathbb{R} \), we have

$$ \frac{1}{9}=d \biggl( B ( 0 ) ,B \biggl( \frac{1}{3} \biggr) \biggr) =\frac{1}{2} \biggl[ d \bigl( 0,B ( 0 ) \bigr) +d \biggl( \frac{1}{3},B \biggl( \frac{1}{3} \biggr) \biggr) \biggr] =\frac{1}{9} $$

so the condition of a Kannan mapping fails, but if we define \(Ax=\frac{2}{3}\), then the condition of a generalized Kannan contraction holds.

The above example and definition motivated us to define the following.

Definition 13

Consider a Banach space X and let M be its nonempty subset. Suppose A and B map M into X. Then B is called a generalized Reich contraction if

$$ \bigl\Vert By-By^{\prime } \bigr\Vert \leq a_{1} \bigl\Vert Ax-(I-B)y \bigr\Vert +a_{2} \bigl\Vert Ax-(I-B)y^{\prime } \bigr\Vert +a_{3} \bigl\Vert y-y^{\prime } \bigr\Vert , $$

for nonnegative numbers \(a_{1}\), \(a_{2}\), and \(a_{3}\) with \(a_{1}+a_{2}+a_{3}<1\) and all \(y,y^{\prime },x\in M\).

Remark 14

Taking \(A=O\) (the zero operator), we obtain a Reich contraction.

Lemma 15

([37]) Let M be a subset of a Banach space X and A be a Lipschitz mapping of M into X such that

$$ \Vert Ax-Ay \Vert \leq k \Vert x-y \Vert $$

for \(x,y\in M\). Then \(\mu (A(E))\leq k\mu (E)\) holds for every bounded subset E of M.

2 Main results

The following theorem shows that a unique solution exists for the operator equation \(x=Ax+Bx\) if A is a contraction and B is a generalized Reich contraction.

Theorem 16

Let X be a Banach space and M be its nonempty closed subset. Consider the mappings \(A:M\rightarrow X\) and \(B:M\rightarrow X\) such that

(1) \(\Vert By-By^{\prime } \Vert \leq a_{1} \Vert Av-(I-B)y \Vert +a_{2} \Vert Av-(I-B)y^{\prime } \Vert +a_{3} \Vert y-y^{\prime } \Vert \) with \(a_{1}+a_{2}+a_{3}<1\) and all \(y,y^{\prime },v\in M\);

(2) \(\Vert Ax-Ax^{\prime } \Vert \leq k \Vert x-x^{ \prime } \Vert \) with \(k<\frac{1-a_{3}}{1+a_{2}}\);

(3) \(Ap+Bq\in M\) for all \(p,q\in M\).

Then there exists a unique \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

Proof

Fix \(x\in M\) and define \(H:M\rightarrow M\) by \(H(y)=Ax+By\). Using (1), and since condition (1) holds for all \(v\in M\), we have

$$ \begin{aligned} \bigl\Vert H(y)-H\bigl(y^{\prime }\bigr) \bigr\Vert &= \bigl\Vert By-By^{\prime } \bigr\Vert \\ &\leq a_{1} \bigl\Vert Ax-(I-B)y \bigr\Vert +a_{2} \bigl\Vert Ax-(I-B)y^{ \prime } \bigr\Vert +a_{3} \bigl\Vert y-y^{\prime } \bigr\Vert \\ &=a_{1} \bigl\Vert y-H(y) \bigr\Vert +a_{2} \bigl\Vert y^{\prime }-H\bigl(y^{ \prime }\bigr) \bigr\Vert +a_{3} \bigl\Vert y-y^{\prime } \bigr\Vert . \end{aligned} $$

This shows that H is a Reich contraction. Hence by [29, Theorem 3], there is a unique \(Gx\in M\) that such that \(Gx=Ax+B(Gx)\). Now

$$ \begin{aligned} \bigl\Vert Gx-Gx^{\prime } \bigr\Vert ={}& \bigl\Vert Ax+B(Gx)-\bigl(Ax^{ \prime }+B\bigl(Gx^{\prime }\bigr) \bigr) \bigr\Vert \\ ={}& \bigl\Vert \bigl(B(Gx)-B\bigl(Gx^{\prime }\bigr)\bigr)- \bigl(Ax^{\prime }-Ax\bigr) \bigr\Vert \\ \leq{}& a_{1} \bigl\Vert Ax-(I-B)Gx \bigr\Vert +a_{2} \bigl\Vert Ax-(I-B)Gx^{ \prime } \bigr\Vert \\ &{} +a_{3} \bigl\Vert Gx-Gx^{\prime } \bigr\Vert + \bigl\Vert Ax^{ \prime }-Ax \bigr\Vert \\ ={}&a_{2} \bigl\Vert Ax-(I-B)Gx^{\prime } \bigr\Vert +a_{3} \bigl\Vert Gx-Gx^{\prime } \bigr\Vert + \bigl\Vert Ax^{\prime }-Ax \bigr\Vert \\ ={}&(a_{2}+1) \bigl\Vert Ax-Ax^{\prime } \bigr\Vert +a_{3} \bigl\Vert Gx-Gx^{ \prime } \bigr\Vert . \end{aligned} $$

Thus

$$ \bigl\Vert Gx-Gx^{\prime } \bigr\Vert \leq \biggl( \frac{a_{2}+1}{1-a_{3}}\biggr) \bigl\Vert Ax-Ax^{\prime } \bigr\Vert \leq k\biggl( \frac{a_{2}+1}{1-a_{3}}\biggr) \bigl\Vert x-x^{\prime } \bigr\Vert . $$

Thus \(G:M\rightarrow M\) is a contraction. Using Banach contraction principle, there is an \(x\in M\) such that \(Gx=x\). Since for this \(x\in M\) there is a \(Gx\in M\) such that \(Gx=Ax+B(Gx)\), this implies that \(x=Gx=Ax+B(Gx)=Ax+Bx \).

For uniqueness, suppose \(s,s^{\prime }\in M\) are such that \(s=As+Bs\) and \(s^{\prime }=As^{\prime }+Bs^{\prime }\). Then

$$\begin{aligned} \bigl\Vert s-s^{\prime } \bigr\Vert &= \bigl\Vert (As+Bs)-\bigl(As^{ \prime }+Bs^{\prime }\bigr) \bigr\Vert \\ &= \bigl\Vert \bigl(Bs-Bs^{\prime }\bigr)-\bigl(As^{\prime }-As \bigr) \bigr\Vert \\ &\leq \bigl\Vert Bs-Bs^{\prime } \bigr\Vert + \bigl\Vert As-As^{ \prime } \bigr\Vert \\ &\leq a_{1} \bigl\Vert As-(I-B)s \bigr\Vert +a_{2} \bigl\Vert As-(I-B)s^{ \prime } \bigr\Vert +a_{3} \bigl\Vert s-s^{\prime } \bigr\Vert +k \bigl\Vert s-s^{\prime } \bigr\Vert \\ &=a_{2} \bigl\Vert As-As^{\prime } \bigr\Vert +a_{3} \bigl\Vert s-s^{ \prime } \bigr\Vert +k \bigl\Vert s-s^{\prime } \bigr\Vert \\ &\leq a_{2}k \bigl\Vert s-s^{\prime } \bigr\Vert +a_{3} \bigl\Vert s-s^{ \prime } \bigr\Vert +k \bigl\Vert s-s^{\prime } \bigr\Vert \\ &=(a_{2}k+a_{3}+k) \bigl\Vert s-s^{\prime } \bigr\Vert . \end{aligned}$$

This means that

$$ \bigl(1-(a_{2}k+a_{3}+k)\bigr) \bigl\Vert s-s^{\prime } \bigr\Vert \leq 0, $$

showing that \(s=s^{\prime }\). □

Remark 17

If we substitute \(A=O\) in conditions (1), (2), and (3) of Theorem 16, we obtain the well-known theorem of Reich (see [29, Theorem 3]).

Corollary 18

Let X be a Banach space and M be a nonempty closed subset of X. Consider mappings \(A:M\rightarrow X\) and \(B:M\rightarrow X\) such that

(1) \(\Vert By-By^{\prime } \Vert \leq \alpha ( \Vert Ax-(I-B)y \Vert + \Vert Ax-(I-B)y^{\prime } \Vert )\) with \(\alpha <\frac{1}{2}\) and for all \(x,y,y^{\prime }\in M\);

(2) \(\Vert Ax-Ax^{\prime } \Vert \leq k \Vert x-x^{ \prime } \Vert \) with \(k<\frac{1}{1+\alpha }\);

(3) \(Ap+Bq\in M\) for all \(p,q\in M\).

Then there exists a unique \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

Remark 19

Letting \(A=O\) in conditions (1), (2), and (3), we obtain Kannan fixed point theorem (see [19, p. 406]). The above corollary is a combined form of contraction mapping and generalized Kannan contraction mapping.

Corollary 20

Let X be a Banach space and M be a nonempty closed subset of X. Consider mappings \(A:M\rightarrow X\) and \(B:M\rightarrow X\) such that

(1) \(\Vert By-By^{\prime } \Vert \leq \alpha \Vert Av-(I-B)y \Vert \) with \(\alpha <1\) and for all \(v,y,y^{\prime }\in M\);

(2) \(\Vert Ax-Ax^{\prime } \Vert \leq k \Vert x-x^{ \prime } \Vert \) with \(k<1\);

(3) \(Ap+Bq\in M\) for all \(p,q\in M\).

Then there is a unique \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

Corollary 21

Let X be a Banach space and M be a nonempty closed subset of X. Consider mappings \(A:M\rightarrow X\) and \(B:M\rightarrow X\) such that

(1) \(\Vert By-By^{\prime } \Vert \leq c \Vert y-y^{ \prime } \Vert \) with \(c<1\) and for all \(y,y^{\prime }\in M\);

(2) \(\Vert Ax-Ax^{\prime } \Vert \leq k \Vert x-x^{ \prime } \Vert \) with \(k<1-c\);

(3) \(Ap+Bq\in M\) for all \(p,q\in M\).

Then there is a unique \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

In the next result, with the help of Sadovskii fixed point theorem and Reich contraction theorem, we find that a solution of the operator equation \(x=Ax+Bx\) exists, where A is a strictly k-set contractive mapping and B is a generalized Reich contraction.

Theorem 22

Consider a Banach space X and let M be a subset of X such that M is closed, nonempty, convex, and bounded. Consider mappings \(A:M\rightarrow X\) and \(B:M\rightarrow X\) such that

(1) \(\Vert By-By^{\prime } \Vert \leq a_{1} \Vert Ax-(I-B)y \Vert +a_{2} \Vert Ax-(I-B)y^{\prime } \Vert +a_{3} \Vert y-y^{\prime } \Vert \) for \(a_{1}+a_{2}+a_{3}<1\) and for all \(x,y^{\prime },y\in M\);

(2) A is strictly \((\frac{1-a_{3}}{1+a_{2}})\)-set contractive mapping;

(3) \(Ax+By\in M\).

Then there exists \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

Proof

Fix \(Ax\in A(M)\) and define \(H:M\rightarrow M\) by \(H(y)=Ax+By\). Using (1),

$$ \begin{aligned} \bigl\Vert H(y)-H\bigl(y^{\prime }\bigr) \bigr\Vert &= \bigl\Vert By-By^{\prime } \bigr\Vert \\ &\leq a_{1} \bigl\Vert Ax-(I-B)y \bigr\Vert +a_{2} \bigl\Vert Ax-(I-B)y^{ \prime } \bigr\Vert +a_{3} \bigl\Vert y-y^{\prime } \bigr\Vert \\ &=a_{1} \bigl\Vert y-H(y) \bigr\Vert +a_{2} \bigl\Vert y^{\prime }-H\bigl(y^{ \prime }\bigr) \bigr\Vert +a_{3} \bigl\Vert y-y^{\prime } \bigr\Vert . \end{aligned} $$

This shows that H is a Reich contraction. Hence by [29, Theorem 3], there is a unique \(G(Ax)\in M\) such that \(G(Ax)=Ax+B(G(Ax))\). Now

$$\begin{aligned} \bigl\Vert G(Ax)-G\bigl(Ax^{\prime }\bigr) \bigr\Vert ={}& \bigl\Vert Ax+B\bigl(G(Ax)\bigr)-\bigl(Ax^{\prime }+B \bigl(G\bigl(Ax^{\prime }\bigr)\bigr)\bigr) \bigr\Vert \\ ={}& \bigl\Vert \bigl(B\bigl(G(Ax)\bigr)-B\bigl(G\bigl(Ax^{\prime }\bigr) \bigr)\bigr)-\bigl(Ax^{\prime }-Ax\bigr) \bigr\Vert \\ \leq{}& \bigl(a_{1} \bigl\Vert Ax-(I-B)G(Ax) \bigr\Vert +a_{2} \bigl\Vert Ax-(I-B)G\bigl(Ax^{ \prime }\bigr) \bigr\Vert \\ &{} +a_{3} \bigl\Vert G(Ax)-G\bigl(Ax^{\prime }\bigr) \bigr\Vert + \bigl\Vert Ax^{\prime }-Ax \bigr\Vert \bigr) \\ ={}&a_{2} \bigl\Vert Ax-(I-B)G\bigl(Ax^{\prime }\bigr) \bigr\Vert \\ &{} +a_{3} \bigl\Vert G(Ax)-G\bigl(Ax^{\prime }\bigr) \bigr\Vert + \bigl\Vert Ax^{\prime }-Ax \bigr\Vert \\ ={}&(a_{2}+1) \bigl\Vert Ax-Ax^{\prime } \bigr\Vert +a_{3} \bigl\Vert G(Ax)-G\bigl(Ax^{ \prime }\bigr) \bigr\Vert . \end{aligned}$$

Thus

$$ \bigl\Vert (G\circ A)x-(G\circ A)x^{\prime } \bigr\Vert \leq \biggl( \frac{a_{2}+1}{1-a_{3}}\biggr) \bigl\Vert Ax-Ax^{\prime } \bigr\Vert . $$

This shows that \(G\circ A\) is a continuous function of M into X.

From (2), the above inequality, and Lemma 15, we deduce

$$ \mu \bigl(G\circ A(N)\bigr)=\mu \bigl(G\bigl(A(N)\bigr)\bigr)\leq \biggl( \frac{a_{2}+1}{1-a_{3}}\biggr)\mu \bigl(A(N)\bigr)< \mu (N)). $$

Using Sadovskii fixed point theorem, there is \(x\in M\) such that \((G\circ A)x=x\). Also for \(Ax\in A(M)\) there is a unique \(G(Ax)\) such that \(G(Ax)=Ax+B(G(Ax))\), therefore \(x=G(Ax)=Ax+B(G(Ax))=Ax+Bx\). □

Remark 23

If we take \(A=O\), we obtain Reich contraction theorem which is a generalization of Banach contraction principle and Kannan contraction theorem (see [22, p. 400]). Also taking \(B=O\) with \(b=c=0\), we get Sadovskii fixed point theorem which is a generalization Schauder’s fixed point theorem.

Corollary 24

Consider a Banach space X and let M be a subset of X such that M is closed, nonempty, convex, and bounded. Consider mappings \(A:M\rightarrow X\) and \(B:M\rightarrow X\) such that

(1) B is a contraction mapping for \(c<1\);

(2) A is a strictly \((1-c)\)-set contractive mapping;

(3) \(Ax+By\in M\).

Then there is \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

Proof

Letting \(a_{2}=0=a_{1}\) and \(a_{3}=c\) in Theorem 22, we obtain the above corollary. □

Remark 25

Since every compact operator is a strictly \((1-c)\)-set contractive mapping, Corollary 24 and Theorem 22 are generalizations of Krasnoselskii’s fixed point theorem.

Remark 26

Theorem 22 is a generalization of Theorem 2.11 in [37].

Corollary 27

Consider a Banach space X and let M be a subset of X such that M is closed, nonempty, convex, and bounded. Consider mappings \(A:M\rightarrow X\) and \(B:M\rightarrow X\) such that

(1) \(\Vert By-By^{\prime } \Vert \leq \alpha ( \Vert Ax-(I-B)y \Vert +b \Vert Ax-(I-B)y^{\prime } \Vert )\) for \(\alpha <\frac{1}{2}\) and for all \(x,y,y^{\prime }\in M\);

(2) A is a strictly \((\frac{1}{1+\alpha })\)-set contractive mapping;

(3) \(Ax+By\in M\).

Then there exists \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

Corollary 28

Consider a Banach space X and let M be a subset of X such that M is closed non-empty convex and bounded. Consider the mappings \(A:M\longrightarrow X\) and \(B:M\longrightarrow X\) such that

(1) \(\Vert By-By^{\prime } \Vert \leq b \Vert Ax-(I-B)y^{ \prime } \Vert \) for \(b<1\), all x \(y,y^{\prime }\in M\);

(2) A is condensing mapping of M into X;

(3) \(Ax+By\in M\).

Then there exists \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

Suppose A and B are two operators of M into X. By using a measure of noncompactness, it makes sense to impose a condition on the operators A and B such that

$$ \mu \bigl(A(E)+B(F)\bigr)< \mu (E)\quad \text{for all }E\subseteq F\text{ with }\mu (E) \neq 0. $$

For example, if A and B are compact operators, then

$$ \mu \bigl(A(E)+B(F)\bigr)\leq \mu (A(E)+\mu \bigl(B(F)\bigr)=0< \mu (E)\quad \text{for all }E \subseteq F\text{ with }\mu (F)\neq 0. $$

Also, if A is a condensing operator and \(B(F)\) lies in a compact subset of X, then

$$ \mu \bigl(A(E)+B(F)\bigr)\leq \mu (A(E)+\mu \bigl(B(F)\bigr)=\mu (A(E)< \mu (E) $$

for all \(E\subseteq F\) with \(\mu (E)\neq 0\).

Theorem 29

Consider a Banach space X and let M be a subset of X such that M is closed, nonempty, convex, and bounded. Consider mappings \(B:M\rightarrow X\) and \(A:M\rightarrow X\) such that

(1) \(\Vert By-By^{\prime } \Vert \leq a_{1} \Vert Ax-(I-B)y \Vert +a_{2} \Vert Ax-(I-B)y^{\prime } \Vert +a_{3} \Vert y-y^{\prime } \Vert \) for \(a_{1}+a_{2}+a_{3}<1\) and for all \(x,y,y^{\prime }\in M\);

(2) \(\mu (A(E)+B(M))<\mu (E)\) for all \(E\subseteq M\) with \(\mu (E)\neq 0 \);

(3) \(Ax+By\in M\) for all \(x,y\in M\), where \(A:M\rightarrow X\) is a continuous mapping.

Then there is \(x\in M\) such that \(x=Ax+Bx\).

Proof

Fix \(Ax\in A(M)\) and define \(H:M\rightarrow M\) by \(H(y)=Ax+By\). Using (1),

$$ \begin{aligned} \bigl\Vert H(y)-H\bigl(y^{\prime }\bigr) \bigr\Vert &= \bigl\Vert By-By^{\prime } \bigr\Vert \\ &\leq a_{1} \bigl\Vert Ax-(I-B)y \bigr\Vert +a_{2} \bigl\Vert Ax-(I-B)y^{ \prime } \bigr\Vert +a_{3} \bigl\Vert y-y^{\prime } \bigr\Vert \\ &=a_{1} \bigl\Vert y-H(y) \bigr\Vert +a_{2} \bigl\Vert y^{\prime }-H\bigl(y^{ \prime }\bigr) \bigr\Vert +a_{3} \bigl\Vert y-y^{\prime } \bigr\Vert . \end{aligned} $$

Thus by [29, Theorem 3], there is a unique \(G(Ax)\in M\) that such that \(G(Ax)=Ax+B(G(Ax))\). Now

$$ \begin{aligned} \bigl\Vert G(Ax)-G\bigl(Ax^{\prime }\bigr) \bigr\Vert ={}& \bigl\Vert Ax+B\bigl(G(Ax)\bigr)-\bigl(Ax^{\prime }+B \bigl(G\bigl(Ax^{\prime }\bigr)\bigr)\bigr) \bigr\Vert \\ ={}& \bigl\Vert \bigl(B\bigl(G(Ax)\bigr)-B\bigl(G\bigl(Ax^{\prime }\bigr) \bigr)\bigr)-\bigl(Ax^{\prime }-Ax\bigr) \bigr\Vert \\ \leq{}& \bigl(a_{1} \bigl\Vert Ax-(I-B)G(Ax) \bigr\Vert +a_{2} \bigl\Vert Ax-(I-B)G\bigl(Ax^{ \prime }\bigr) \bigr\Vert \\ &{}+a_{3} \bigl\Vert G(Ax)-G\bigl(Ax^{\prime }\bigr) \bigr\Vert + \bigl\Vert Ax^{\prime }-Ax \bigr\Vert \bigr) \\ ={}&a_{2} \bigl\Vert Ax-(I-B)G\bigl(Ax^{\prime }\bigr) \bigr\Vert \\ &{}+a_{3} \bigl\Vert G(Ax)-G\bigl(Ax^{\prime }\bigr) \bigr\Vert + \bigl\Vert Ax^{\prime }-Ax \bigr\Vert \\ ={}&(a_{2}+1) \bigl\Vert Ax-Ax^{\prime } \bigr\Vert +a_{3} \bigl\Vert G(Ax)-G\bigl(Ax^{ \prime }\bigr) \bigr\Vert . \end{aligned} $$

Thus

$$ \bigl\Vert (G\circ A)x-(G\circ A)x^{\prime } \bigr\Vert \leq \biggl( \frac{a_{2}+1}{1-a_{3}}\biggr) \bigl\Vert Ax-Ax^{\prime } \bigr\Vert . $$

This shows that \(G\circ A\) is a continuous function of M into M. Using (2),

$$ \mu \bigl((G\circ A)E\bigr))=\mu \bigl(G\bigl(A(E)\bigr)\bigr)=\mu \bigl(A(E)+B \bigl(G\bigl(A(E)\bigr)\bigr)\bigr)\leq \mu \bigl(A(E)+B(M)\bigr)< \mu (E). $$

Using Sadovskii fixed point theorem, there is \(x\in M\) such that \((G\circ A)x=x\). Also for \(Ax\in A(M)\), there is a unique \(G(Ax)\) such that \(G(Ax)=Ax+B(G(Ax))\), therefore \(x=Ax+Bx\). □

Corollary 30

Consider a Banach space X and let M be a subset of X such that M is closed, nonempty, convex, and bounded. Consider mappings \(B:M\rightarrow X\) and \(A:M\rightarrow X\) such that \(B(M)\) lies in a compact subset of X and

(1) \(\Vert By-By^{\prime } \Vert \leq a_{1} \Vert Ax-(I-B)y \Vert +a_{2} \Vert Ax-(I-B)y^{\prime } \Vert +a_{3} \Vert y-y^{\prime } \Vert \) for \(a_{1}+a_{2}+a_{3}<1\) and for all \(y^{\prime },y,x\in M\);

(2) A is a condensing mapping;

(3) \(Aq+Bp\in M\) for all \(q,p\in M\).

Then there exists \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

Proof

Since A is a condensing mapping and \(B(M)\) lies in a compact subset of X,

$$ \mu \bigl(A(E)+B(M)\bigr)\leq \mu \bigl(A(E)\bigr)+\mu \bigl(B(M)\bigr)=\mu \bigl(A(E)\bigr)< \mu (E). $$

Hence, by Theorem 29, the proof is complete. □

Corollary 31

Consider a Banach space X and let M be a subset of X such that M is closed, nonempty, convex, and bounded. Consider mappings \(B:M\rightarrow X\) and \(A:M\rightarrow X\) such that

(1) \(Ax+By\in M\);

(2) B is a contraction mapping and \(B(M)\) lies in a compact subset of X;

(3) A is a condensing mapping.

Then there exists \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

Proof

Putting \(a_{1}=a_{2}=0\) in Corollary 30, we obtain the required result. □

Remark 32

Corollary 31 is a variant of Krasnoselskii fixed point theorem and Theorem 2.6 in [37].

Corollary 33

Consider a Banach space X and let M be a subset of X such that M is closed, nonempty, convex, and bounded. Consider mappings \(B:M\rightarrow X\) and \(A:M\rightarrow X\) such that

(1) A is a k-set contractive mapping for \(0\leq k<1\);

(2) B is a contraction mapping and \(B(M)\) lies in a compact subset of X;

(3) \(Ax+By\in M\).

Then there exists \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

Proof

Since every k-set contractive mapping for \(0\leq k<1\) is condensing, by Corollary 31, we have the required result. □

Remark 34

If \(B=O\) (the zero operator) in Corollary 33, we obtain Darbo fixed point theorem.

Corollary 35

Consider a Banach space X and let M be a subset of X such that M is closed, nonempty, convex, and bounded. Consider mappings \(B:M\rightarrow X\) and \(A:M\rightarrow X\) such that

(1) \(Ax+By\in M\);

(2) B is a contraction mapping and \(B(M)\) lies in a compact subset of X;

(3) A is a compact operator.

Then there exists \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

Proof

As every compact operator is k-set contractive for \(0\leq k<1\), by Corollary 33, we have a fixed point for the operator equation \(A\varkappa +B\varkappa =\varkappa \). □

Remark 36

If \(B=O\) (the zero operator), we obtain Schauder’s fixed point theorem (see [38, p. 56]).

Theorem 37

Consider a Banach space X and let M be a subset of X such that M is closed, nonempty, convex, and bounded. Consider mappings \(B:M\rightarrow X\) and \(A:M\rightarrow X\) such that

(1) \(\Vert By-By^{\prime } \Vert \leq q \Vert Ax-(y-By^{\prime }) \Vert \) for all \(x,y,y^{\prime }\in M\) with \(q<\frac{1}{2}\);

(2) \(\mu (A(E)+B(M))<\mu (E)\) for all \(E\subseteq M\) with \(\mu (E)\neq 0\).

Then there is \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

Proof

Fix \(x\in M\) and define a mapping \(H:M\rightarrow M\) by \(H(y)=Ax+By\). Now (1) implies that

$$ \begin{aligned} \bigl\Vert H(y)-H\bigl(y^{\prime }\bigr) \bigr\Vert &= \bigl\Vert By-By^{\prime } \bigr\Vert \\ &\leq q \bigl\Vert y-\bigl(Ax+By^{\prime }\bigr) \bigr\Vert \\ &=q \bigl\Vert y-H\bigl(y^{\prime }\bigr) \bigr\Vert . \end{aligned} $$

Thus by [22, p. 394], there is a unique \(Gx\in M\) that such that \(Gx=Ax+B(Gx)\), where \(G:M\rightarrow M\) is a function. Now

$$\begin{aligned} \bigl\Vert Gx-Gx^{\prime } \bigr\Vert &= \bigl\Vert Ax+B(Gx)-\bigl(Ax^{ \prime }+B\bigl(Gx^{\prime }\bigr) \bigr) \bigr\Vert \\ &= \bigl\Vert \bigl(B(Gx)-B\bigl(Gx^{\prime }\bigr)\bigr)- \bigl(Ax^{\prime }-Ax\bigr) \bigr\Vert \\ &\leq \bigl\Vert B(Gx)-B\bigl(Gx^{\prime }\bigr) \bigr\Vert +\Vert Ax^{ \prime }-Ax)\Vert \\ &\leq q \bigl\Vert Ax^{\prime }-\bigl(Gx-B\bigl(Gx^{\prime }\bigr) \bigr) \bigr\Vert + \bigl\Vert Ax^{\prime }-Ax \bigr\Vert \\ &=q \bigl\Vert Gx-\bigl(Ax^{\prime }+B\bigl(Gx^{\prime }\bigr) \bigr) \bigr\Vert + \bigl\Vert Ax-Ax^{\prime } \bigr\Vert \\ &=q \bigl\Vert Gx-Gx^{\prime } \bigr\Vert + \bigl\Vert Ax-Ax^{ \prime } \bigr\Vert . \end{aligned}$$

Thus

$$ \bigl\Vert Gx-Gx^{\prime } \bigr\Vert \leq \frac{1}{1-q} \bigl\Vert Ax-Ax^{\prime } \bigr\Vert . $$

This shows that G is continuous.

Using (2), we deduce that

$$ \mu \bigl(G(E)\bigr)=\mu \bigl(A(E)+B\bigl(G(E)\bigr)\bigr)\leq \mu \bigl(A(E)+B(M)\bigr)< \mu (E). $$

By Sadovskii fixed point theorem, there is \(x\in M\) such that \(Gx=x\). Also for \(x\in M\), there is a unique Gx such that \(Gx=Ax+B(Gx)\), therefore \(x=Ax+Bx\). □

Corollary 38

Consider a Banach space X and let M be a subset of X such that M is closed, nonempty, convex, and bounded. Consider mappings \(B:M\rightarrow X\) and \(A:M\rightarrow X\) such that \(B(M)\) lies in a compact subset of X and

(1) \(\Vert By-By^{\prime } \Vert \leq q \Vert Ax-(y-By^{\prime }) \Vert \) for all \(x,y,y^{\prime }\in M\) with \(q<\frac{1}{2}\);

(2) A is a condensing mapping.

Then there is \(\varkappa \in M\) such that \(A\varkappa +B\varkappa =\varkappa \).

3 Application

Let \(X=C [ 0,1 ] \), the Banach space of all continuous functions defined on \([ 0,1 ] \) with \(\Vert \cdot \Vert _{\infty }\). Consider the following nonlinear integral equation;

figure a

where \(g: [ 0,1 ] \times \mathbb{R} \rightarrow \mathbb{R} \) and \(c: [ 0,1 ] \rightarrow \mathbb{R} \) are continuous.

As

$$ \frac{1}{ ( 1-a ) }=1+\frac{a}{ ( 1-a ) }, $$

equation (I) can be written as

$$ y ( t ) = \int _{0}^{t}g \bigl( s,y ( s ) \bigr) \,ds+ \frac{a}{ ( 1-a ) } \int _{0}^{t}g \bigl( s,y ( s ) \bigr) \,ds+ \biggl( \frac{c ( y ) -a}{1-a} \biggr) y ( t ). $$

We decompose the above integral equation into a sum of two operators

$$ y ( t ) =Ay ( t ) +By ( t ), $$

where

$$ Ay ( t ) = \int _{0}^{t}g \bigl( s,y ( s ) \bigr) \,ds $$

and

$$ B \bigl( y ( t ) \bigr) =\frac{a}{ ( 1-a ) } \int _{0}^{t}g \bigl( s,y ( s ) \bigr) \,ds+ \biggl( \frac{c ( y ) -a}{1-a} \biggr) y ( t ) . $$

Let us assume the following conditions first:

(C1) \(\vert g ( s,y ( s ) ) -g ( s,y^{ \prime } ( s ) ) \vert \leq \lambda \vert y ( s ) -y^{\prime } ( s ) \vert \),

(C2) \(c+2a<1\) and \(\lambda +c\leq 1\), where \(\max \vert c ( t ) \vert =c\).

(C3) \(\max \vert g ( s,0 ) \vert =\beta \).

First, we prove (3) of Theorem 16 and for this we define

$$ S= \biggl\{ y\in X: \Vert y \Vert \leq r\text{, where }r \geq \frac{2\beta }{a ( 1-c ) } \biggr\} $$

and consider for \(y\in S\),

$$\begin{aligned} \bigl\vert Ay ( t ) +By ( t ) \bigr\vert ={}& \biggl\vert \frac{1}{ ( 1-a ) } \int _{0}^{t}g \bigl( s,y ( s ) \bigr) \,ds+ \biggl( \frac{c ( y ) -a}{1-a} \biggr) y ( t ) \biggr\vert \\ \leq{}& \biggl\vert \frac{1}{ ( 1-a ) } \int _{0}^{t}g \bigl( s,y ( s ) \bigr) \,ds- \frac{1}{ ( 1-a ) } \int _{0}^{t}g ( s,0 ) \,ds+ \frac{1}{ ( 1-a ) }\int _{0}^{t}g ( s,0 ) \,ds \biggr\vert \\ &{}+ \biggl\vert \biggl( \frac{c ( y ) -a}{1-a} \biggr) y ( t ) \biggr\vert \\ \leq{}& \frac{1}{ ( 1-a ) } \biggl\vert \int _{0}^{t} \bigl\{ g \bigl( s,y ( s ) \bigr) -g ( s,0 ) \bigr\} \,ds \biggr\vert \\ &{}+ \biggl\vert \frac{1}{ ( 1-a ) } \int _{0}^{t}g ( s,0 ) \,ds \biggr\vert + \biggl\vert \biggl( \frac{c ( y ) -a}{1-a} \biggr) y ( t ) \biggr\vert \\ \leq{}& \frac{1}{1-a} \int _{0}^{t}\lambda \bigl\vert y ( t ) \bigr\vert \,ds+ \frac{1}{ ( 1-a ) } \int _{0}^{t} \bigl\vert g ( s,0 ) \bigr\vert \,ds+ \biggl( \frac{c-a}{1-a} \biggr) \bigl\vert y ( t ) \bigr\vert . \end{aligned}$$

Now taking the supremum and using (C2) and (C3), we have

$$ \bigl\Vert Ay ( t ) +By ( t ) \bigr\Vert \leq \frac{1}{1-a}\beta + \biggl( \frac{\lambda +c-a}{1-a} \biggr) r\leq r, $$

proving (3).

We will show that the operators A and B satisfy (2) and (1) of our Theorem 16.

Claim: B satisfies (2) of Theorem 16.

For this, consider

$$\begin{aligned} B \bigl( y ( t ) \bigr) -B \bigl( y^{\prime } ( t ) \bigr) =& \biggl\{ \frac{a}{ ( 1-a ) } \int _{0}^{t}g \bigl( s,y ( s ) \bigr) \,ds+ \biggl( \frac{c ( y ) -a}{1-a} \biggr) y ( t ) \biggr\} \\ &{}- \biggl\{ \frac{a}{ ( 1-a ) } \int _{0}^{t}g \bigl( s,y^{\prime } ( s ) \bigr) \,ds+ \biggl( \frac{c ( y^{\prime } ) -a}{1-a} \biggr) y^{\prime } ( t ) \biggr\} , \end{aligned}$$

which gives

$$\begin{aligned} ( 1-a ) \bigl\{ B \bigl( y ( t ) \bigr) -B \bigl( y^{\prime } ( t ) \bigr) \bigr\} =& \biggl\{ a \int _{0}^{t}g \bigl( s,y ( s ) \bigr) \,ds+ \bigl( c ( y ) -a \bigr) y ( t ) \biggr\} \\ &{}- \biggl\{ a \int _{0}^{t}g \bigl( s,y^{\prime } ( s ) \bigr) \,ds+ \bigl( c ( y ) -a \bigr) y^{ \prime } ( t ) \biggr\} , \end{aligned}$$

further implying

$$\begin{aligned} \bigl\{ B \bigl( y ( t ) \bigr) -B \bigl( y^{\prime } ( t ) \bigr) \bigr\} =& \biggl\{ a \int _{0}^{t}g \bigl( s,y ( s ) \bigr) \,ds+ \bigl( c ( y ) -a \bigr) y ( t ) +aBy ( t ) \biggr\} \\ &{}- \biggl\{ a \int _{0}^{t}g \bigl( s,y^{\prime } ( s ) \bigr) \,ds+ \bigl( c ( y ) -a \bigr) y^{ \prime } ( t ) +aBy^{\prime } ( t ) \biggr\} \\ =&a \biggl\{ \int _{0}^{t}g \bigl( s,y ( s ) \bigr) \,ds- ( I-B ) y ( t ) \biggr\} +c ( y ) y ( t ) \\ &{}-a \biggl\{ \int _{0}^{t}g \bigl( s,y^{\prime } ( s ) \bigr) \,ds- ( I-B ) y^{\prime } ( t ) \biggr\} -c \bigl( y^{\prime } \bigr) y^{\prime } ( t ). \end{aligned}$$

Thus we have

$$ \begin{aligned} \bigl\vert B \bigl( y ( t ) \bigr) -B \bigl( y^{\prime } ( t ) \bigr) \bigr\vert ={}& \biggl\vert a \biggl\{ \int _{0}^{t}g \bigl( s,y ( s ) \bigr) \,ds- ( I-B ) y ( t ) \biggr\} +c ( y ) y ( t ) \\ &{}-a \biggl\{ \int _{0}^{t}g \bigl( s,y^{ \prime } ( s ) \bigr) \,ds- ( I-B ) y^{\prime } ( t ) \biggr\} -c \bigl( y^{\prime } \bigr) y^{\prime } ( t ) \biggr\vert \\ \leq{}& a \bigl\vert Ay ( t ) - ( I-B ) y ( t ) \bigr\vert +a \bigl\vert Ay^{\prime } ( t ) - ( I-B ) y^{\prime } ( t ) \bigr\vert \\ &{}+ \bigl\vert c ( y ) \bigr\vert \bigl\vert y ( t ) -y^{\prime } ( t ) \bigr\vert . \end{aligned} $$

Finally,

$$ \bigl\Vert By-By^{\prime } \bigr\Vert \leq a \bigl\Vert Ay- ( I-B ) y \bigr\Vert +a \bigl\Vert Ay^{\prime }- ( I-B ) y^{ \prime } \bigr\Vert +c \bigl\Vert y-y^{\prime } \bigr\Vert , $$

which shows that B satisfies (1).

Claim: A satisfies (2).

For this, we write

$$ \bigl\Vert Ay ( t ) -Ay^{\prime } ( t ) \bigr\Vert \leq \biggl\vert \int _{0}^{t} \lambda \,ds \biggr\vert \bigl\Vert y-y^{\prime } \bigr\Vert \leq \lambda \bigl\Vert y-y^{\prime } \bigr\Vert , $$

where \(\lambda <\frac{1-c}{1+a}\).

Hence all the conditions of Theorem 16 are satisfied, so we obtain \(w\in S\) such that \(w=Aw+Bw\), which is a solution of the integral equation (I).

We summarize all the above in the form of a theorem as follows.

Theorem 39

If g satisfies (C1)(C3), then a solution to the integral equation (I) exists in S.

In the next example, we apply our main Theorem 16 to obtain an approximate solution of a given nonlinear integral equation.

Example 40

Consider a special case of the integral equation

figure b

namely

figure c

which has an exact solution \(y ( t ) =e^{-t}\), \(t\in [ 0,1 ] \), for \(\lambda =\frac{8}{10c}=4\) and \(c=\frac{2}{10}\). Clearly, \(2a+c<1\) for \(a=0.2\), so using these values, (C2) is satisfied. From (I) and (J), one can see that

$$ \bigl\vert g \bigl( t,y ( t ) \bigr) -g \bigl( t,y^{ \prime } ( t ) \bigr) \bigr\vert \leq \frac{1}{\lambda e^{-1/2}} \bigl\vert y ( t ) -y^{\prime } ( t ) \bigr\vert , $$

which implies that

$$ \bigl\Vert g \bigl( t,y ( t ) \bigr) -g \bigl( t,y^{ \prime } ( t ) \bigr) \bigr\Vert \leq \frac{\sqrt{e}}{4} \bigl\Vert y-y^{\prime } \bigr\Vert $$

holds since \(\frac{\sqrt{e}}{4}<1\). Therefore all the conditions of the above theorem are satisfied. Now we consider the iterative procedure

$$ y_{n+1} ( t ) = \int _{0}^{t} \frac{\sqrt{y_{n} ( s ) }y_{n} ( t ) }{\lambda e^{-s/2}}\,ds+ \biggl( \frac{ \{ 0.2-ct \} -0.2}{0.8} \biggr) y_{n} ( t ), $$

with an initial approximation \(y_{0} ( t ) =1-t\).

The graphs of exact and approximate solutions and absolute error are given below after two iterations.

It can be seen that after two iterations the absolute error is not significant.

Figure 1
figure 1

Show graphs of exact and approximate solutions

Figure 2
figure 2

Shows the absolute error obtained from exact and approximate solutions

4 Conclusion

In this article, Kannan and Reich contractions are generalized and used to obtain different variants of Krasnoselskii’s fixed point theorem for compact and noncompact operators. Examples and applications in the existence theory of integral equations are given to validate our presented work.

Availability of data and materials

No data was used from any repository.

References

  1. Abdeljawad, T., Agarwal, R.P., Karapınar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11(5), 686 (2019)

    Article  MATH  Google Scholar 

  2. Ahmad, N., Mehmood, N., Akgül, A.: Applications of some new Krasnoselskii-type fixed-point results for generalized expansive and equiexpansive mappings. Adv. Cont. Discr. Mod. 2022(1), 1–9 (2022)

    Article  MathSciNet  Google Scholar 

  3. Akhmerov, R.R., Kamenskii, M.I., Potapov, A.S., Rodkina, A.E., Sadovskii, B.N.: Measures of Noncompactness and Condensing Operators. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  4. Alotaibi, A., Mursaleen, M., Mohiuddine, S.A.: Application of measures of noncompactness to infinite system of linear equations in sequence spaces. Bull. Iran. Math. Soc. 41(2), 519–527 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Ayerbe Toledano, J.M., Dominguez Benavides, T., López Acedo, G.: Measures of Noncompactness in Metric Fixed Point Theory. Oper. Theory Adv. Appl., vol. 99 (1997)

    Book  MATH  Google Scholar 

  6. Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal., Theory Methods Appl. 72(2), 916–924 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Banaś, J., Jleli, M., Mursaleen, M., Samet, B., Vetro, C. (eds.): Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness. Springer, Singapore (2017)

    MATH  Google Scholar 

  8. Bharucha-Reid, A.T.: Fixed point theorems in probabilistic analysis. Bull. Am. Math. Soc. 82(5), 641–657 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhaskar, T.G., Lakshmikantham, V.: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal., Theory Methods Appl. 65(7), 1379–1393 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burton, T.A.: A fixed-point theorem of Krasnoselskii. Appl. Math. Lett. 11(1), 85–88 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burton, T.A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Courier Corporation (2014)

    Google Scholar 

  12. Burton, T.A., Purnaras, I.K.: A unification theory of Krasnoselskii for differential equations. Nonlinear Anal., Theory Methods Appl. 89, 121–133 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241–251 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Y.Z.: Krasnoselskii-type fixed point theorems using α-concave operators. J. Fixed Point Theory Appl. 22, 52 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ćirić, L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45(2), 267–273 (1974)

    MathSciNet  MATH  Google Scholar 

  16. Gabeleh, M., Malkowsky, E., Mursaleen, M., Rakočević, V.: A new survey of measures of noncompactness and their applications. Axioms 11(6), 299 (2022)

    Article  Google Scholar 

  17. Gul, R., Shah, K., Khan, Z.A., Jarad, F.: On a class of boundary value problems under ABC fractional derivative. Adv. Differ. Equ. 2021(1), 437 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jleli, M., Samet, B.: A generalized metric space and related fixed point theorems. Fixed Point Theory Appl. 2015(1), 61 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kannan, R.: Some results on fixed points—II. Am. Math. Mon. 76(4), 405–408 (1969)

    MathSciNet  MATH  Google Scholar 

  20. Karapınar, E.: Edelstein type fixed point theorems. Fixed Point Theory Appl. 2012(1), 107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khamsi, M.A.: Remarks on Caristi’s fixed point theorem. Nonlinear Anal., Theory Methods Appl. 71(1–2), 227–231 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Malkowsky, E., Rakočević, V.:. Advanced Functional Analysis. CRC Press (2019)

    Book  MATH  Google Scholar 

  23. Mehmood, N., Abbas, A., Abdeljawad, T., Akgül, A.: Existence results for ABC-fractional differential equations with non-separated and integral type of boundary conditions. Fractals 29(05), 2140016 (2021)

    Article  MATH  Google Scholar 

  24. Mehmood, N., Ahmad, N.: Existence results for fractional order boundary value problem with nonlocal non-separated type multi-point integral boundary conditions. AIMS Math. 5, 385–398 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Park, S.: Generalizations of the Krasnoselskii fixed point theorem. Nonlinear Anal., Theory Methods Appl. 67(12), 3401–3410 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pourhadi, E., Saadati, R., Some, K.Z.: Krasnosel’skii-type fixed point theorems for Meir–Keeler-type mappings. Nonlinear Anal., Model. Control 25(2), 257–265 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Przeradzki, B.: A generalization of Krasnosel’skii fixed point theorem for sums of compact and contractible maps with application. Cent. Eur. J. Math. 10(6), 2012–2018 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Ran, A.C., Reurings, M.C.: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 1, 1435–1443 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14(1), 121–124 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reich, S.: Fixed points of condensing functions. J. Math. Anal. Appl. 41(2), 460–467 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Smart, D.R.:. Fixed Point Theorems. Cup Archive (1980)

    MATH  Google Scholar 

  32. Sun, S., Zhao, Y., Han, Z., Li, Y.: The existence of solutions for boundary value problem of fractional hybrid differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4961–4967 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Suzuki, T.: A new type of fixed point theorem in metric spaces. Nonlinear Anal., Theory Methods Appl. 71(11), 5313–5317 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Toledano, J.M., Benavides, T.D., Acedo, G.L.: Measures of Noncompactness in Metric Fixed Point Theory. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  35. Valero, O.: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Topol. 6(2), 229–240 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xiang, T., Georgiev, S.G.: Noncompact-type Krasnoselskii fixed-point theorems and their applications. Math. Methods Appl. Sci. 39(4), 833–863 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xiang, T., Yuan, R.: A class of expansive-type Krasnosel’skii fixed point theorems. Nonlinear Anal., Theory Methods Appl. 71(7–8), 3229–3239 (2009)

    Article  MATH  Google Scholar 

  38. Zeidler, E., Wadsack, P.R.: Nonlinear Functional Analysis and Its Applications: Fixed-Point Theorems. Springer, Berlin (1993). Transl. by Peter R. Wadsack.

    Google Scholar 

Download references

Funding

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23070).

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript and contributed equally. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Akbar Azam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, A., Mehmood, N., Ahmad, N. et al. Reich–Krasnoselskii-type fixed point results with applications in integral equations. J Inequal Appl 2023, 131 (2023). https://doi.org/10.1186/s13660-023-03022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-03022-z

Mathematics Subject Classification

Keywords