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Abstract
In this paper, motivated by Reich contraction and tool of measure of
noncompactness, some generalizations of Reich, Kannan, Darbo, Sadovskii, and
Krasnoselskii type fixed point results are presented by considering a pair of maps A, B
on a nonempty closed subsetM of a Banach space X into X . The existence of a
solution to the equation Ax + Bx = x, where A is k-set contractive and B is a
generalized Reich contraction, is established. As applications, it is established that the
main result of this paper can be applied to learn conditions under which a solution of
a nonlinear integral equation exists. Further we explain this phenomenon with the
help of a practical example to approximate such solutions by using fixed point
techniques. The graphs of exact and approximate solutions are also given to attract
readers for further research activities.
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1 Introduction
Fixed point theory is one of the most developed and applicable branches of nonlinear
mathematical analysis. It based on the well-known principle that every operator equation
can be transformed into a fixed point problem, and vice versa.

In essence, the fixed point theory has two branches, namely the metric fixed point theory
and topological fixed point theory. Topological fixed point theory is the most important
branch of nonlinear analysis. It has a strong and useful history of more than a century. In
1912 Brouwer proved his well-known fixed point theorem. Later in 1922, Banach proved
the most versatile result known as Banach contraction principle [38]. The most applicable
generalization of Brouwer’s theorem was presented in 1930 by Schauder using compact
operators. Banach and Schauder’s results remain most celebrated results in fixed point
theory. The following two results of Brouwer and Banach were established in 1912 and
1922, respectively, and are given as follows.

Theorem BR (Brouwer, [31]) Every compact convex nonempty subset B of Rn has a fixed-
point property.
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Theorem BC (Banach, [31]) Any contraction mapping of a complete nonempty metric
space �1 into �1 has a unique fixed point in �1.

Both theorems are crucial in the existence theory of differential and integral equations.
In the literature, there are many generalizations of these results. The most famous gener-
alization of Theorem BR is Schauder’s fixed point theorem.

Theorem SH (Schauder’s second theorem, [31]) Let �1 be a nonempty convex subset of a
normed space L and S be a continuous operator of �1 into a compact set B ⊆ �1. Then S
has a fixed point.

A variety of generalizations of these results can be seen in [8, 13, 15, 18, 20, 21, 33, 35],
and in the references therein.

Writing the physical problems into mathematical form produces mathematical equa-
tions like differential, integral, linear, and nonlinear equations. All these equations can
be solved by fixed point techniques. Before solving them, the existence theory for the
fixed points of operators plays very a important role. A number of results regarding dif-
ferential and integral equations in connection with their existence theory can be seen in
[1, 2, 6, 9, 11, 17, 23, 24, 28, 32].

In 1958, while studying the existence theory of neutral and delayed differential equa-
tions, it was observed that the solution might be expressed as a sum of compact and
contractive operators. Working on this idea, Krasnoselskii proved his fixed point results
for the sum of compact and contractive operators. The importance and applications of
such theorems for the existence of solutions to the equation x = Ax + Bx can be seen in
[10, 12, 14, 25–27, 30, 36, 37].

The Krasnoselskii fixed point theorem can be stated as:

Theorem 1 ([31]) Consider a Banach space X and let M be its nonempty convex closed
subset. Suppose A and B map M into X such that

(1) y,κ ∈ M implies Ay + Bκ ∈ M;
(2) B is a contraction mapping;
(3) A is compact and continuous.

Then there is x ∈ M such that Ax + Bx = x.

This Krasnoselskii’s theorem is a generalization of Schauder’s fixed point theorem and
Banach contraction principle, as we can see by taking B = O and A = O, respectively.

To weaken the compactness condition used in Schauder’s fixed point theorem, Darbo
and Sadovskii [38, p. 500] generalized Schauder’s fixed point theorem by introducing k-set
contractive and condensing operators (noncompact operators) in the following way.

Theorem 2 (Darbo) Assume that
(i) the mapping T : M ⊆ X → M is k-set contractive,
(ii) M is a nonempty, convex, bounded, and closed subset of a Banach space X.
Then there exists p ∈ M such that p = Tp.

Remark 3 Since every compact operator is k-set contractive with k = 0, Darbo’s theorem
is a generalization of Schauder’s fixed point theorem.
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Theorem 4 (Sadovskii) Assume that
(i) T : M ⊆ X → M is a condensing operator,
(ii) M is a nonempty, convex, bounded, and closed subset of a Banach space X.
Then T has a fixed point.

Remark 5 Since every k-set contractive operator with 0 ≤ k < 1 is condensing, Sadovskii’s
theorem is an extension of Darbo’s theorem. For more about the above discussed results,
one can see the related monographs and articles [3, 4, 16, 34].

Since Krasnoselskii combined the results of Banach and Schauder, in the above results
Darbo and Sadovskii generalized Schauder’s theorem. The next result was established by
Reich [29], which is a generalization of Kannan fixed point theorem and Banach contrac-
tion principle.

Theorem 6 ([29]) Consider a complete metric space X with metric d on it and let T : X →
X be a mapping with the following property:

d(Tq, Tp) ≤ a1d(q, Tq) + a2d(p, Tp) + a3d(q, p), q, p ∈ X,

where a1, a2, a3 are nonnegative and satisfy a1 + a2 + a3 < 1. Then T has a unique fixed
point.

Remark 7 Letting a1 = a2 = 0 gives Banach fixed point theorem, and taking a1 = a2, a3 = 0
gives Kannan fixed point theorem [19].

To combine the generalized Reich contraction and k-set contractive mappings in the
form of operator equation x = Ax + Bx and generalize Reich, Kannan, Darbo, Sadovskii,
and Krasnoselskii type fixed point results, we need the following definitions.

Definition 8 ([5, 7]) Let X be a Banach space and B(X) be the collection of all bounded
subsets of X. A mapping μ of B(X) into [0, +∞) is called a measure of noncompactness if
the following conditions hold for all E, F ∈ B(X):

(1) μ(F) = μ(F);
(2) μ(F ∪ E) = max{μ(F),μ(E)};
(3) μ(F) = 0 ⇔ F is precompact.

The following conditions can also be deduced:
(4) μ(E + F) ≤ μ(E) + μ(F);
(5) E ⊆ F implies μ(E) ≤ μ(F).

Definition 9 ([37]) Let X be a Banach space and T : M ⊆ X −→ X be a mapping. Then T
is called k-set contractive if the following conditions hold for any bounded subset E of M:

(1) T is continuous and bounded;
(2) μ(T(E)) ≤ kμ(E).

Also T is strictly k-set contractive if
(1) T is k-set contractive;
(2) μ(T(E)) < kμ(E) with μ(E) 	= 0.

Finally, T is condensing if T is strictly 1-set contractive.
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Now we define generalized Kannan contractions in Banach spaces.

Definition 10 Consider a Banach space X and let M be its nonempty subset. Suppose A
and B map M into X. Then B is called a generalized Kannan contraction if

∥
∥By – By′∥∥ ≤ α

(∥
∥Ax – (I – B)y

∥
∥ +

∥
∥Ax – (I – B)y′∥∥)

,

with α < 1
2 and all x, y, y′ ∈ M.

Remark 11 If A = O (the zero operator), we obtain a Kannan contraction.

To investigate the novelty of the above definition, the following example is important.

Example 12 Let B : R→ R be the mapping defined by

Bx =

⎧

⎪⎪⎨

⎪⎪⎩

x
3 if 0 ≤ x < 1,
1
6 if x = 1,

0 elsewhere.

Then with usual metric induced from the usual norm | · | on R, we have

1
9

= d
(

B(0), B
(

1
3

))

=
1
2

[

d
(

0, B(0)
)

+ d
(

1
3

, B
(

1
3

))]

=
1
9

so the condition of a Kannan mapping fails, but if we define Ax = 2
3 , then the condition of

a generalized Kannan contraction holds.

The above example and definition motivated us to define the following.

Definition 13 Consider a Banach space X and let M be its nonempty subset. Suppose A
and B map M into X. Then B is called a generalized Reich contraction if

∥
∥By – By′∥∥ ≤ a1

∥
∥Ax – (I – B)y

∥
∥ + a2

∥
∥Ax – (I – B)y′∥∥ + a3

∥
∥y – y′∥∥,

for nonnegative numbers a1, a2, and a3 with a1 + a2 + a3 < 1 and all y, y′, x ∈ M.

Remark 14 Taking A = O (the zero operator), we obtain a Reich contraction.

Lemma 15 ([37]) Let M be a subset of a Banach space X and A be a Lipschitz mapping of
M into X such that

‖Ax – Ay‖ ≤ k‖x – y‖

for x, y ∈ M. Then μ(A(E)) ≤ kμ(E) holds for every bounded subset E of M.
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2 Main results
The following theorem shows that a unique solution exists for the operator equation x =
Ax + Bx if A is a contraction and B is a generalized Reich contraction.

Theorem 16 Let X be a Banach space and M be its nonempty closed subset. Consider the
mappings A : M → X and B : M → X such that

(1) ‖By – By′‖ ≤ a1‖Av – (I – B)y‖ + a2‖Av – (I – B)y′‖ + a3‖y – y′‖ with a1 + a2 + a3 < 1
and all y, y′, v ∈ M;

(2) ‖Ax – Ax′‖ ≤ k‖x – x′‖ with k < 1–a3
1+a2

;
(3) Ap + Bq ∈ M for all p, q ∈ M.
Then there exists a unique κ ∈ M such that Aκ + Bκ = κ.

Proof Fix x ∈ M and define H : M → M by H(y) = Ax + By. Using (1), and since condition
(1) holds for all v ∈ M, we have

∥
∥H(y) – H

(

y′)∥∥ =
∥
∥By – By′∥∥

≤ a1
∥
∥Ax – (I – B)y

∥
∥ + a2

∥
∥Ax – (I – B)y′∥∥ + a3

∥
∥y – y′∥∥

= a1
∥
∥y – H(y)

∥
∥ + a2

∥
∥y′ – H

(

y′)∥∥ + a3
∥
∥y – y′∥∥.

This shows that H is a Reich contraction. Hence by [29, Theorem 3], there is a unique
Gx ∈ M that such that Gx = Ax + B(Gx). Now

∥
∥Gx – Gx′∥∥ =

∥
∥Ax + B(Gx) –

(

Ax′ + B
(

Gx′))∥∥

=
∥
∥
(

B(Gx) – B
(

Gx′)) –
(

Ax′ – Ax
)∥
∥

≤ a1
∥
∥Ax – (I – B)Gx

∥
∥ + a2

∥
∥Ax – (I – B)Gx′∥∥

+ a3
∥
∥Gx – Gx′∥∥ +

∥
∥Ax′ – Ax

∥
∥

= a2
∥
∥Ax – (I – B)Gx′∥∥ + a3

∥
∥Gx – Gx′∥∥ +

∥
∥Ax′ – Ax

∥
∥

= (a2 + 1)
∥
∥Ax – Ax′∥∥ + a3

∥
∥Gx – Gx′∥∥.

Thus

∥
∥Gx – Gx′∥∥ ≤

(
a2 + 1
1 – a3

)
∥
∥Ax – Ax′∥∥ ≤ k

(
a2 + 1
1 – a3

)
∥
∥x – x′∥∥.

Thus G : M → M is a contraction. Using Banach contraction principle, there is an x ∈ M
such that Gx = x. Since for this x ∈ M there is a Gx ∈ M such that Gx = Ax + B(Gx), this
implies that x = Gx = Ax + B(Gx) = Ax + Bx.

For uniqueness, suppose s, s′ ∈ M are such that s = As + Bs and s′ = As′ + Bs′. Then

∥
∥s – s′∥∥ =

∥
∥(As + Bs) –

(

As′ + Bs′)∥∥

=
∥
∥
(

Bs – Bs′) –
(

As′ – As
)∥
∥

≤ ∥
∥Bs – Bs′∥∥ +

∥
∥As – As′∥∥

≤ a1
∥
∥As – (I – B)s

∥
∥ + a2

∥
∥As – (I – B)s′∥∥ + a3

∥
∥s – s′∥∥ + k

∥
∥s – s′∥∥
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= a2
∥
∥As – As′∥∥ + a3

∥
∥s – s′∥∥ + k

∥
∥s – s′∥∥

≤ a2k
∥
∥s – s′∥∥ + a3

∥
∥s – s′∥∥ + k

∥
∥s – s′∥∥

= (a2k + a3 + k)
∥
∥s – s′∥∥.

This means that

(

1 – (a2k + a3 + k)
)∥
∥s – s′∥∥ ≤ 0,

showing that s = s′. �

Remark 17 If we substitute A = O in conditions (1), (2), and (3) of Theorem 16, we obtain
the well-known theorem of Reich (see [29, Theorem 3]).

Corollary 18 Let X be a Banach space and M be a nonempty closed subset of X. Consider
mappings A : M → X and B : M → X such that

(1) ‖By – By′‖ ≤ α(‖Ax – (I – B)y‖ + ‖Ax – (I – B)y′‖) with α < 1
2 and for all x, y, y′ ∈ M;

(2) ‖Ax – Ax′‖ ≤ k‖x – x′‖ with k < 1
1+α

;
(3) Ap + Bq ∈ M for all p, q ∈ M.
Then there exists a unique κ ∈ M such that Aκ + Bκ = κ.

Remark 19 Letting A = O in conditions (1), (2), and (3), we obtain Kannan fixed point
theorem (see [19, p. 406]). The above corollary is a combined form of contraction mapping
and generalized Kannan contraction mapping.

Corollary 20 Let X be a Banach space and M be a nonempty closed subset of X. Consider
mappings A : M → X and B : M → X such that

(1) ‖By – By′‖ ≤ α‖Av – (I – B)y‖ with α < 1 and for all v, y, y′ ∈ M;
(2) ‖Ax – Ax′‖ ≤ k‖x – x′‖ with k < 1;
(3) Ap + Bq ∈ M for all p, q ∈ M.
Then there is a unique κ ∈ M such that Aκ + Bκ = κ.

Corollary 21 Let X be a Banach space and M be a nonempty closed subset of X. Consider
mappings A : M → X and B : M → X such that

(1) ‖By – By′‖ ≤ c‖y – y′‖ with c < 1 and for all y, y′ ∈ M;
(2) ‖Ax – Ax′‖ ≤ k‖x – x′‖ with k < 1 – c;
(3) Ap + Bq ∈ M for all p, q ∈ M.
Then there is a unique κ ∈ M such that Aκ + Bκ = κ.

In the next result, with the help of Sadovskii fixed point theorem and Reich contraction
theorem, we find that a solution of the operator equation x = Ax + Bx exists, where A is a
strictly k-set contractive mapping and B is a generalized Reich contraction.

Theorem 22 Consider a Banach space X and let M be a subset of X such that M is closed,
nonempty, convex, and bounded. Consider mappings A : M → X and B : M → X such that

(1) ‖By – By′‖ ≤ a1‖Ax – (I – B)y‖ + a2‖Ax – (I – B)y′‖ + a3‖y – y′‖ for a1 + a2 + a3 < 1
and for all x, y′, y ∈ M;
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(2) A is strictly ( 1–a3
1+a2

)-set contractive mapping;
(3) Ax + By ∈ M.
Then there exists κ ∈ M such that Aκ + Bκ = κ.

Proof Fix Ax ∈ A(M) and define H : M → M by H(y) = Ax + By. Using (1),

∥
∥H(y) – H

(

y′)∥∥ =
∥
∥By – By′∥∥

≤ a1
∥
∥Ax – (I – B)y

∥
∥ + a2

∥
∥Ax – (I – B)y′∥∥ + a3

∥
∥y – y′∥∥

= a1
∥
∥y – H(y)

∥
∥ + a2

∥
∥y′ – H

(

y′)∥∥ + a3
∥
∥y – y′∥∥.

This shows that H is a Reich contraction. Hence by [29, Theorem 3], there is a unique
G(Ax) ∈ M such that G(Ax) = Ax + B(G(Ax)). Now

∥
∥G(Ax) – G

(

Ax′)∥∥ =
∥
∥Ax + B

(

G(Ax)
)

–
(

Ax′ + B
(

G
(

Ax′)))∥∥

=
∥
∥
(

B
(

G(Ax)
)

– B
(

G
(

Ax′))) –
(

Ax′ – Ax
)∥
∥

≤ (

a1
∥
∥Ax – (I – B)G(Ax)

∥
∥ + a2

∥
∥Ax – (I – B)G

(

Ax′)∥∥

+ a3
∥
∥G(Ax) – G

(

Ax′)∥∥ +
∥
∥Ax′ – Ax

∥
∥
)

= a2
∥
∥Ax – (I – B)G

(

Ax′)∥∥

+ a3
∥
∥G(Ax) – G

(

Ax′)∥∥ +
∥
∥Ax′ – Ax

∥
∥

= (a2 + 1)
∥
∥Ax – Ax′∥∥ + a3

∥
∥G(Ax) – G

(

Ax′)∥∥.

Thus

∥
∥(G ◦ A)x – (G ◦ A)x′∥∥ ≤

(
a2 + 1
1 – a3

)
∥
∥Ax – Ax′∥∥.

This shows that G ◦ A is a continuous function of M into X.
From (2), the above inequality, and Lemma 15, we deduce

μ
(

G ◦ A(N)
)

= μ
(

G
(

A(N)
)) ≤

(
a2 + 1
1 – a3

)

μ
(

A(N)
)

< μ(N)).

Using Sadovskii fixed point theorem, there is x ∈ M such that (G ◦ A)x = x. Also for Ax ∈
A(M) there is a unique G(Ax) such that G(Ax) = Ax + B(G(Ax)), therefore x = G(Ax) =
Ax + B(G(Ax)) = Ax + Bx. �

Remark 23 If we take A = O, we obtain Reich contraction theorem which is a generaliza-
tion of Banach contraction principle and Kannan contraction theorem (see [22, p. 400]).
Also taking B = O with b = c = 0, we get Sadovskii fixed point theorem which is a general-
ization Schauder’s fixed point theorem.

Corollary 24 Consider a Banach space X and let M be a subset of X such that M is closed,
nonempty, convex, and bounded. Consider mappings A : M → X and B : M → X such that

(1) B is a contraction mapping for c < 1;
(2) A is a strictly (1 – c)-set contractive mapping;
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(3) Ax + By ∈ M.
Then there is κ ∈ M such that Aκ + Bκ = κ.

Proof Letting a2 = 0 = a1 and a3 = c in Theorem 22, we obtain the above corollary. �

Remark 25 Since every compact operator is a strictly (1 – c)-set contractive mapping,
Corollary 24 and Theorem 22 are generalizations of Krasnoselskii’s fixed point theorem.

Remark 26 Theorem 22 is a generalization of Theorem 2.11 in [37].

Corollary 27 Consider a Banach space X and let M be a subset of X such that M is closed,
nonempty, convex, and bounded. Consider mappings A : M → X and B : M → X such that

(1) ‖By – By′‖ ≤ α(‖Ax – (I – B)y‖ + b‖Ax – (I – B)y′‖) for α < 1
2 and for all x, y, y′ ∈ M;

(2) A is a strictly ( 1
1+α

)-set contractive mapping;
(3) Ax + By ∈ M.
Then there exists κ ∈ M such that Aκ + Bκ = κ.

Corollary 28 Consider a Banach space X and let M be a subset of X such that M is closed
non-empty convex and bounded. Consider the mappings A : M −→ X and B : M −→ X such
that

(1) ‖By – By′‖ ≤ b‖Ax – (I – B)y′‖ for b < 1, all x y, y′ ∈ M;
(2) A is condensing mapping of M into X;
(3) Ax + By ∈ M.
Then there exists κ ∈ M such that Aκ + Bκ = κ.

Suppose A and B are two operators of M into X. By using a measure of noncompactness,
it makes sense to impose a condition on the operators A and B such that

μ
(

A(E) + B(F)
)

< μ(E) for all E ⊆ F with μ(E) 	= 0.

For example, if A and B are compact operators, then

μ
(

A(E) + B(F)
) ≤ μ(A(E) + μ

(

B(F)
)

= 0 < μ(E) for all E ⊆ F with μ(F) 	= 0.

Also, if A is a condensing operator and B(F) lies in a compact subset of X, then

μ
(

A(E) + B(F)
) ≤ μ(A(E) + μ

(

B(F)
)

= μ(A(E) < μ(E)

for all E ⊆ F with μ(E) 	= 0.

Theorem 29 Consider a Banach space X and let M be a subset of X such that M is closed,
nonempty, convex, and bounded. Consider mappings B : M → X and A : M → X such that

(1) ‖By – By′‖ ≤ a1‖Ax – (I – B)y‖ + a2‖Ax – (I – B)y′‖ + a3‖y – y′‖ for a1 + a2 + a3 < 1
and for all x, y, y′ ∈ M;

(2) μ(A(E) + B(M)) < μ(E) for all E ⊆ M with μ(E) 	= 0;
(3) Ax + By ∈ M for all x, y ∈ M, where A : M → X is a continuous mapping.
Then there is x ∈ M such that x = Ax + Bx.
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Proof Fix Ax ∈ A(M) and define H : M → M by H(y) = Ax + By. Using (1),

∥
∥H(y) – H

(

y′)∥∥ =
∥
∥By – By′∥∥

≤ a1
∥
∥Ax – (I – B)y

∥
∥ + a2

∥
∥Ax – (I – B)y′∥∥ + a3

∥
∥y – y′∥∥

= a1
∥
∥y – H(y)

∥
∥ + a2

∥
∥y′ – H

(

y′)∥∥ + a3
∥
∥y – y′∥∥.

Thus by [29, Theorem 3], there is a unique G(Ax) ∈ M that such that G(Ax) = Ax +
B(G(Ax)). Now

∥
∥G(Ax) – G

(

Ax′)∥∥ =
∥
∥Ax + B

(

G(Ax)
)

–
(

Ax′ + B
(

G
(

Ax′)))∥∥

=
∥
∥
(

B
(

G(Ax)
)

– B
(

G
(

Ax′))) –
(

Ax′ – Ax
)∥
∥

≤ (

a1
∥
∥Ax – (I – B)G(Ax)

∥
∥ + a2

∥
∥Ax – (I – B)G

(

Ax′)∥∥

+ a3
∥
∥G(Ax) – G

(

Ax′)∥∥ +
∥
∥Ax′ – Ax

∥
∥
)

= a2
∥
∥Ax – (I – B)G

(

Ax′)∥∥

+ a3
∥
∥G(Ax) – G

(

Ax′)∥∥ +
∥
∥Ax′ – Ax

∥
∥

= (a2 + 1)
∥
∥Ax – Ax′∥∥ + a3

∥
∥G(Ax) – G

(

Ax′)∥∥.

Thus

∥
∥(G ◦ A)x – (G ◦ A)x′∥∥ ≤

(
a2 + 1
1 – a3

)
∥
∥Ax – Ax′∥∥.

This shows that G ◦ A is a continuous function of M into M. Using (2),

μ
(

(G ◦ A)E
)

) = μ
(

G
(

A(E)
))

= μ
(

A(E) + B
(

G
(

A(E)
))) ≤ μ

(

A(E) + B(M)
)

< μ(E).

Using Sadovskii fixed point theorem, there is x ∈ M such that (G ◦ A)x = x. Also for Ax ∈
A(M), there is a unique G(Ax) such that G(Ax) = Ax + B(G(Ax)), therefore x = Ax + Bx. �

Corollary 30 Consider a Banach space X and let M be a subset of X such that M is closed,
nonempty, convex, and bounded. Consider mappings B : M → X and A : M → X such that
B(M) lies in a compact subset of X and

(1) ‖By – By′‖ ≤ a1‖Ax – (I – B)y‖ + a2‖Ax – (I – B)y′‖ + a3‖y – y′‖ for a1 + a2 + a3 < 1
and for all y′, y, x ∈ M;

(2) A is a condensing mapping;
(3) Aq + Bp ∈ M for all q, p ∈ M.
Then there exists κ ∈ M such that Aκ + Bκ = κ.

Proof Since A is a condensing mapping and B(M) lies in a compact subset of X,

μ
(

A(E) + B(M)
) ≤ μ

(

A(E)
)

+ μ
(

B(M)
)

= μ
(

A(E)
)

< μ(E).

Hence, by Theorem 29, the proof is complete. �
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Corollary 31 Consider a Banach space X and let M be a subset of X such that M is closed,
nonempty, convex, and bounded. Consider mappings B : M → X and A : M → X such that

(1) Ax + By ∈ M;
(2) B is a contraction mapping and B(M) lies in a compact subset of X;
(3) A is a condensing mapping.
Then there exists κ ∈ M such that Aκ + Bκ = κ.

Proof Putting a1 = a2 = 0 in Corollary 30, we obtain the required result. �

Remark 32 Corollary 31 is a variant of Krasnoselskii fixed point theorem and Theorem 2.6
in [37].

Corollary 33 Consider a Banach space X and let M be a subset of X such that M is closed,
nonempty, convex, and bounded. Consider mappings B : M → X and A : M → X such that

(1) A is a k-set contractive mapping for 0 ≤ k < 1;
(2) B is a contraction mapping and B(M) lies in a compact subset of X;
(3) Ax + By ∈ M.
Then there exists κ ∈ M such that Aκ + Bκ = κ.

Proof Since every k-set contractive mapping for 0 ≤ k < 1 is condensing, by Corollary 31,
we have the required result. �

Remark 34 If B = O (the zero operator) in Corollary 33, we obtain Darbo fixed point the-
orem.

Corollary 35 Consider a Banach space X and let M be a subset of X such that M is closed,
nonempty, convex, and bounded. Consider mappings B : M → X and A : M → X such that

(1) Ax + By ∈ M;
(2) B is a contraction mapping and B(M) lies in a compact subset of X;
(3) A is a compact operator.
Then there exists κ ∈ M such that Aκ + Bκ = κ.

Proof As every compact operator is k-set contractive for 0 ≤ k < 1, by Corollary 33, we
have a fixed point for the operator equation Aκ + Bκ = κ. �

Remark 36 If B = O (the zero operator), we obtain Schauder’s fixed point theorem (see
[38, p. 56]).

Theorem 37 Consider a Banach space X and let M be a subset of X such that M is closed,
nonempty, convex, and bounded. Consider mappings B : M → X and A : M → X such that

(1) ‖By – By′‖ ≤ q‖Ax – (y – By′)‖ for all x, y, y′ ∈ M with q < 1
2 ;

(2) μ(A(E) + B(M)) < μ(E) for all E ⊆ M with μ(E) 	= 0.
Then there is κ ∈ M such that Aκ + Bκ = κ.
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Proof Fix x ∈ M and define a mapping H : M → M by H(y) = Ax + By. Now (1) implies
that

∥
∥H(y) – H

(

y′)∥∥ =
∥
∥By – By′∥∥

≤ q
∥
∥y –

(

Ax + By′)∥∥

= q
∥
∥y – H

(

y′)∥∥.

Thus by [22, p. 394], there is a unique Gx ∈ M that such that Gx = Ax + B(Gx), where
G : M → M is a function. Now

∥
∥Gx – Gx′∥∥ =

∥
∥Ax + B(Gx) –

(

Ax′ + B
(

Gx′))∥∥

=
∥
∥
(

B(Gx) – B
(

Gx′)) –
(

Ax′ – Ax
)∥
∥

≤ ∥
∥B(Gx) – B

(

Gx′)∥∥ + ‖Ax′ – Ax)‖
≤ q

∥
∥Ax′ –

(

Gx – B
(

Gx′))∥∥ +
∥
∥Ax′ – Ax

∥
∥

= q
∥
∥Gx –

(

Ax′ + B
(

Gx′))∥∥ +
∥
∥Ax – Ax′∥∥

= q
∥
∥Gx – Gx′∥∥ +

∥
∥Ax – Ax′∥∥.

Thus

∥
∥Gx – Gx′∥∥ ≤ 1

1 – q
∥
∥Ax – Ax′∥∥.

This shows that G is continuous.
Using (2), we deduce that

μ
(

G(E)
)

= μ
(

A(E) + B
(

G(E)
)) ≤ μ

(

A(E) + B(M)
)

< μ(E).

By Sadovskii fixed point theorem, there is x ∈ M such that Gx = x. Also for x ∈ M, there is
a unique Gx such that Gx = Ax + B(Gx), therefore x = Ax + Bx. �

Corollary 38 Consider a Banach space X and let M be a subset of X such that M is closed,
nonempty, convex, and bounded. Consider mappings B : M → X and A : M → X such that
B(M) lies in a compact subset of X and

(1) ‖By – By′‖ ≤ q‖Ax – (y – By′)‖ for all x, y, y′ ∈ M with q < 1
2 ;

(2) A is a condensing mapping.
Then there is κ ∈ M such that Aκ + Bκ = κ.

3 Application
Let X = C[0, 1], the Banach space of all continuous functions defined on [0, 1] with ‖ · ‖∞.
Consider the following nonlinear integral equation;

y(t) =
1

(1 – a)

∫ t

0
g
(

s, y(s)
)

ds +
(

c(y) – a
1 – a

)

y(t), t ∈ [0, 1], (I)

where g : [0, 1] ×R →R and c : [0, 1] →R are continuous.
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As

1
(1 – a)

= 1 +
a

(1 – a)
,

equation (I) can be written as

y(t) =
∫ t

0
g
(

s, y(s)
)

ds +
a

(1 – a)

∫ t

0
g
(

s, y(s)
)

ds +
(

c(y) – a
1 – a

)

y(t).

We decompose the above integral equation into a sum of two operators

y(t) = Ay(t) + By(t),

where

Ay(t) =
∫ t

0
g
(

s, y(s)
)

ds

and

B
(

y(t)
)

=
a

(1 – a)

∫ t

0
g
(

s, y(s)
)

ds +
(

c(y) – a
1 – a

)

y(t).

Let us assume the following conditions first:
(C1) |g(s, y(s)) – g(s, y′(s))| ≤ λ|y(s) – y′(s)|,
(C2) c + 2a < 1 and λ + c ≤ 1, where max |c(t)| = c.
(C3) max |g(s, 0)| = β .
First, we prove (3) of Theorem 16 and for this we define

S =
{

y ∈ X : ‖y‖ ≤ r, where r ≥ 2β

a(1 – c)

}

and consider for y ∈ S,

∣
∣Ay(t) + By(t)

∣
∣ =

∣
∣
∣
∣

1
(1 – a)

∫ t

0
g
(

s, y(s)
)

ds +
(

c(y) – a
1 – a

)

y(t)
∣
∣
∣
∣

≤
∣
∣
∣
∣

1
(1 – a)

∫ t

0
g
(

s, y(s)
)

ds –
1

(1 – a)

∫ t

0
g(s, 0) ds +

1
(1 – a)

∫ t

0
g(s, 0) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

(
c(y) – a

1 – a

)

y(t)
∣
∣
∣
∣

≤ 1
(1 – a)

∣
∣
∣
∣

∫ t

0

{

g
(

s, y(s)
)

– g(s, 0)
}

ds
∣
∣
∣
∣

+
∣
∣
∣
∣

1
(1 – a)

∫ t

0
g(s, 0) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

(
c(y) – a

1 – a

)

y(t)
∣
∣
∣
∣

≤ 1
1 – a

∫ t

0
λ
∣
∣y(t)

∣
∣ds +

1
(1 – a)

∫ t

0

∣
∣g(s, 0)

∣
∣ds +

(
c – a
1 – a

)
∣
∣y(t)

∣
∣.
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Now taking the supremum and using (C2) and (C3), we have

∥
∥Ay(t) + By(t)

∥
∥ ≤ 1

1 – a
β +

(
λ + c – a

1 – a

)

r ≤ r,

proving (3).
We will show that the operators A and B satisfy (2) and (1) of our Theorem 16.
Claim: B satisfies (2) of Theorem 16.
For this, consider

B
(

y(t)
)

– B
(

y′(t)
)

=
{

a
(1 – a)

∫ t

0
g
(

s, y(s)
)

ds +
(

c(y) – a
1 – a

)

y(t)
}

–
{

a
(1 – a)

∫ t

0
g
(

s, y′(s)
)

ds +
(

c(y′) – a
1 – a

)

y′(t)
}

,

which gives

(1 – a)
{

B
(

y(t)
)

– B
(

y′(t)
)}

=
{

a
∫ t

0
g
(

s, y(s)
)

ds +
(

c(y) – a
)

y(t)
}

–
{

a
∫ t

0
g
(

s, y′(s)
)

ds +
(

c(y) – a
)

y′(t)
}

,

further implying

{

B
(

y(t)
)

– B
(

y′(t)
)}

=
{

a
∫ t

0
g
(

s, y(s)
)

ds +
(

c(y) – a
)

y(t) + aBy(t)
}

–
{

a
∫ t

0
g
(

s, y′(s)
)

ds +
(

c(y) – a
)

y′(t) + aBy′(t)
}

= a
{∫ t

0
g
(

s, y(s)
)

ds – (I – B)y(t)
}

+ c(y)y(t)

– a
{∫ t

0
g
(

s, y′(s)
)

ds – (I – B)y′(t)
}

– c
(

y′)y′(t).

Thus we have

∣
∣B

(

y(t)
)

– B
(

y′(t)
)∣
∣ =

∣
∣
∣
∣
a
{∫ t

0
g
(

s, y(s)
)

ds – (I – B)y(t)
}

+ c(y)y(t)

– a
{∫ t

0
g
(

s, y′(s)
)

ds – (I – B)y′(t)
}

– c
(

y′)y′(t)
∣
∣
∣
∣

≤ a
∣
∣Ay(t) – (I – B)y(t)

∣
∣ + a

∣
∣Ay′(t) – (I – B)y′(t)

∣
∣

+
∣
∣c(y)

∣
∣
∣
∣y(t) – y′(t)

∣
∣.

Finally,

∥
∥By – By′∥∥ ≤ a

∥
∥Ay – (I – B)y

∥
∥ + a

∥
∥Ay′ – (I – B)y′∥∥ + c

∥
∥y – y′∥∥,

which shows that B satisfies (1).
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Claim: A satisfies (2).
For this, we write

∥
∥Ay(t) – Ay′(t)

∥
∥ ≤

∣
∣
∣
∣

∫ t

0
λds

∣
∣
∣
∣

∥
∥y – y′∥∥ ≤ λ

∥
∥y – y′∥∥,

where λ < 1–c
1+a .

Hence all the conditions of Theorem 16 are satisfied, so we obtain w ∈ S such that w =
Aw + Bw, which is a solution of the integral equation (I).

We summarize all the above in the form of a theorem as follows.

Theorem 39 If g satisfies (C1)–(C3), then a solution to the integral equation (I) exists in S.

In the next example, we apply our main Theorem 16 to obtain an approximate solution
of a given nonlinear integral equation.

Example 40 Consider a special case of the integral equation

y(t) =
1

(1 – a)

∫ t

0
g
(

s, y(s)
)

ds +
(

ct – a
1 – a

)

y(t), t ∈ [0, 1], (I)

namely

y(t) =
∫ t

0

(√

y(s)y(t)
λe–s/2 +

(

tet)–1
)

ds +
(

0.2 + ct – 0.2
0.8

)

y(t), (J)

which has an exact solution y(t) = e–t , t ∈ [0, 1], for λ = 8
10c = 4 and c = 2

10 . Clearly, 2a + c < 1
for a = 0.2, so using these values, (C2) is satisfied. From (I) and (J), one can see that

∣
∣g

(

t, y(t)
)

– g
(

t, y′(t)
)∣
∣ ≤ 1

λe–1/2

∣
∣y(t) – y′(t)

∣
∣,

which implies that

∥
∥g

(

t, y(t)
)

– g
(

t, y′(t)
)∥
∥ ≤

√
e

4
∥
∥y – y′∥∥

holds since
√

e
4 < 1. Therefore all the conditions of the above theorem are satisfied. Now

we consider the iterative procedure

yn+1(t) =
∫ t

0

√

yn(s)yn(t)
λe–s/2 ds +

( {0.2 – ct} – 0.2
0.8

)

yn(t),

with an initial approximation y0(t) = 1 – t.

The graphs of exact and approximate solutions and absolute error are given below after
two iterations.

It can be seen that after two iterations the absolute error is not significant.
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Figure 1 Show graphs of exact and approximate solutions

Figure 2 Shows the absolute error obtained from exact and approximate solutions

4 Conclusion
In this article, Kannan and Reich contractions are generalized and used to obtain different
variants of Krasnoselskii’s fixed point theorem for compact and noncompact operators.
Examples and applications in the existence theory of integral equations are given to vali-
date our presented work.
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