Skip to main content

New multivalued F-contraction mappings involving α-admissibility with an application

Abstract

In this article, we obtain some fixed-point results involving α-admissibility for multivalued F-contractions in the framework of partial \(\mathfrak{b}\)-metric spaces. Appropriate illustrations are provided to support the main results. Finally, an application is developed by demonstrating the existence of a solution to an integral equation.

1 Introduction and preliminaries

In 1922, Banach [6] proposed the well-known Banach contraction principle (BCP), which employed a contraction mapping in the domain of complete metric spaces. Later, it was regarded as an effective approach for locating unique fixed points. According to the BCP, in a complete metric space \((\mathcal{M}, d^{*})\), a mapping \(f : \mathcal{M} \to \mathcal{M}\) satisfying the contraction condition on \(\mathcal{M}\), i.e.,

$$ d^{*}(f\zeta , f\beta ) \leq c d^{*}(\zeta , \beta ), $$

for all \(\zeta ,\beta \in \mathcal{M,}\) provided \(c \in [0,1)\), has a unique fixed point.

The BCP was generalized using varieties of mappings on several extensions of metric spaces. In 1969, Nadler [7] generalized the BCP for multivalued mappings. In order to optimize a variety of approximation theory problems, it is much more advantageous to use proper fixed-point results for multivalued transformations. The notion of F-contractions was introduced by Wardowski [15]. Altun et al. [2] focused on the existence of the fixed point for multivalued F-contractions and proved certain fixed-point theorems on the setting of metric spaces. Many extensions and generalizations of BCP were produced and the existence and uniqueness of fixed-point were proved. Ali et al. [1] introduced the notion of α-F-admissible type mappings in the setting of uniform spaces. One can see many interesting results on α-F mappings in [35, 18].

In 2014, Shukla [12] gave a new direction for extending the metric space. He blended the principles of a partial metric space [9] and a \(\mathfrak{b}\)-metric space [10, 11] together and proposed a new notion of a partial \(\mathfrak{b}\)-metric space to present a fine interpretation of BCP in such a space. Kumar et al. [8] extended these results to partial metric spaces and proved fixed point results for multivalued F-contraction mappings. Kumar et al. [8] presented an article in April 2021, using multivalued F-mappings in partial metric spaces. A sound generalization of BCP under this new direction was given. One can see more work in the papers [16, 17, 19] and the references therein. Motivated by his work, an idea of extending the BCP in the globe of a partial \(\mathfrak{b}\)-metric space by integrating the notion of α-admissibility introduced by Samet et al. [13] under multivalued F-contractions, is presented.

Take \(\mathbb{R}^{+}=[0,\infty )\) and denote by \(\mathbb{N}\) the set of positive integers. Throughout the article, the compact subset of the underlying space \(\mathcal{M}\) will be denoted by \(K(\mathcal{M})\). Let us now look at some essential concepts and consequences that will set a foundation for our main result.

Definition 1.1

[12] Let \(\mathcal{M} \neq \phi \) and \(\mathfrak{b}\geq 1\) be any real number. A map \(p_{\mathfrak{b}}: \mathcal{M} \times \mathcal{M} \to \mathbb{R}^{+}\) satisfying the following properties on \(\mathcal{M}\) is called a partial \(\mathfrak{b}\) metric on \(\mathcal{M}\):

\(\acute{p}_{b}(1)\)::

\(p_{\mathfrak{b}}(m_{1},m_{2})= p_{\mathfrak{b}}(m_{1},m_{1})=p_{ \mathfrak{b}}(m_{2},m_{2})\) if and only if \(m_{1}=m_{2}\);

\(\acute{p}_{b}(2)\)::

\(p_{\mathfrak{b}}(m_{1},m_{2})\geq p_{\mathfrak{b}}(m_{1},m_{1})\);

\(\acute{p}_{b}(3)\)::

\(p_{\mathfrak{b}}(m_{1},m_{2})=p_{\mathfrak{b}}(m_{2},m_{1})\);

\(\acute{p}_{b}(4)\)::

\(p_{\mathfrak{b}}(m_{1},m_{2})\leq \mathfrak{b}\{p_{\mathfrak{b}}(m_{1},m_{3})+p_{ \mathfrak{b}}(m_{3},m_{2})\}-p_{\mathfrak{b}}(m_{3},m_{3})\),for all \(m_{1},m_{2},m_{3} \in \mathcal{M}\).

The pair \((\mathcal{M},p_{\mathfrak{b}})\) is said to be a partial \(\mathfrak{b}\)-metric space (P\(\mathfrak{b}\)MS).

Example 1.2

Let \(\mathcal{M}=\mathbb{R}^{+}\). We define \(p_{\mathfrak{b}}: \mathcal{M} \times \mathcal{M} \to \mathcal{M}\) by

$$ p_{\mathfrak{b}}(m_{1}, m_{2}) = \vert m_{1}-m_{2} \vert ^{q}+\bigl[\max \{m_{1}, m_{2}\}\bigr]^{q}, \quad \text{for all } m_{1}, m_{2} \in \mathcal{M}. $$

Let \(q>1\) be any constant, then \((\mathcal{M},p_{\mathfrak{b}})\) is a P\(\mathfrak{b}\)MS with \(\mathfrak{b}= 2^{q-1}\).

Definition 1.3

Let \((\mathcal{M},p_{\mathfrak{b}})\) be a P\(\mathfrak{b}\)MS with \(\mathfrak{b}\geq 1\). Let \(\{m_{\xi}\}\) be a sequence in \(\mathcal{M}\) and \(m_{0} \in \mathcal{M}\) be any arbitrary element.

  1. (1)

    The sequence \(\{m_{\xi}\}\) is called a convergent sequence with limit \(m_{0}\) if

    $$ \lim_{\xi \to \infty} p_{\mathfrak{b}}(m_{\xi},m_{0})=p_{ \mathfrak{b}}(m_{0},m_{0}). $$

    As an example, consider \(\mathcal{M}=[0,1]\) and let \(m_{\xi}= \{\frac{1}{\xi}: \xi \in \mathbb{N} \} \). Define a map \(p_{\mathfrak{b}}: \mathcal{M} \times \mathcal{M} \to \mathbb{R}^{+}\) by \(p_{\mathfrak{b}}(m_{1},m_{2})=|m_{1}-m_{2}|^{5}+v\), where \(v >0\). It is easy to see that \((\mathcal{M},p_{\mathfrak{b}})\) is a P\(\mathfrak{b}\)MS with \(\mathfrak{b}=2^{4}\). Now,

    $$ \lim_{\xi \to \infty}p_{\mathfrak{b}}(m_{\xi},0)=\lim _{\xi \to \infty}p_{\mathfrak{b}} \biggl(\frac{1}{\xi},0 \biggr)=\lim _{\xi \to \infty} \biggl[ \biggl\vert \frac{1}{\xi}-0 \biggr\vert +v \biggr]=p_{\mathfrak{b}}(0,0). $$

    That is, \(\{m_{\xi}\}\) is a convergent sequence in \((\mathcal{M},p_{\mathfrak{b}})\).

  2. (2)

    A sequence \(\{m_{k}\}\) in \(\mathcal{M}\) becomes a Cauchy sequence if

    $$ \lim_{k,l \to \infty} p_{\mathfrak{b}}(m_{k},m_{l}) $$

    exists and is finite.

  3. (3)

    \((\mathcal{M},p_{\mathfrak{b}})\) is called a complete P\(\mathfrak{b}\)MS if every Cauchy sequence converges in \(\mathcal{M}\).

Some useful ideas concerning Hausdorff distance under the structure of P\(\mathfrak{b}\)MSs have been suggested by Felhi [14] and recently revised by Anwar et al. [3].

Definition 1.4

Let \((\mathcal{M},p_{\mathfrak{b}})\) be a P\(\mathfrak{b}\)MS with \(\mathfrak{b}\geq 1\), and \(CB_{p_{\mathfrak{b}}}(\mathcal{M})\) be the collection of all nonempty bounded and closed subsets of \(\mathcal{M}\). For \(\mathcal{P}, \mathcal{Q} \in CB_{p_{\mathfrak{b}}}(\mathcal{M})\), the partial Hausdorff \(\mathfrak{b}\)-metric on \(CB_{p_{\mathfrak{b}}}(\mathcal{M})\) induced by \(p_{\mathfrak{b}}\) is given as follows:

$$ \mathcal{H}_{p_{\mathfrak{b}}}(\mathcal{P},\mathcal{Q})=\max \bigl\{ \delta _{p_{\mathfrak{b}}}(\mathcal{P},\mathcal{Q}),\delta _{p_{ \mathfrak{b}}}(\mathcal{Q}, \mathcal{P})\bigr\} , $$

where \(\delta _{p_{\mathfrak{b}}}(\mathcal{P},\mathcal{Q})=\sup \{p_{ \mathfrak{b}}(p,\mathcal{Q}) :p \in \mathcal{P}\}\) and \(\delta _{p_{\mathfrak{b}}}(\mathcal{Q},\mathcal{P})=\sup \{ p_{ \mathfrak{b}}(q,\mathcal{P}): q \in \mathcal{Q} \} \).

Lemma 1.5

Let \((\mathcal{M},p_{\mathfrak{b}})\) be a P\(\mathfrak{b}\)MS with \(\mathfrak{b}\geq 1\). Consider two nonempty subsets \(\mathcal{P},\mathcal{P^{*}} \in CB_{p_{\mathfrak{b}}}(\mathcal{M})\), and \(k^{*}>1\). For some \(p \in \mathcal{P}\), there exists \(q \in \mathcal{P^{*}}\) so that

$$ {p_{\mathfrak{b}}}(p,q) \leq k^{*}\mathcal{H}_{p_{\mathfrak{b}}}\bigl( \mathcal{P},\mathcal{P^{*}}\bigr). $$

Lemma 1.6

Let \((\mathcal{M},p_{\mathfrak{b}})\) be a P\(\mathfrak{b}\)MS with \(\mathfrak{b}\geq 1\), then for two nonempty subsets \(\mathcal{P},\mathcal{P^{*}} \in CB_{p_{\mathfrak{b}}}(\mathcal{M})\), and for each \(p \in \mathcal{P}\), we have

$$ p_{\mathfrak{b}}\bigl(p,\mathcal{P^{*}}\bigr) \leq \mathcal{H}_{p_{\mathfrak{b}}}\bigl( \mathcal{P},\mathcal{P^{*}}\bigr). $$

A new concept was given by Wardowski [15] in 2012 by introducing \(\Delta _{f}\)-family.

Definition 1.7

A mapping \(\mathcal{F}\) from \((0,\infty )\) to \(\mathbb{R}\) is a member of \(\Delta _{f}\)-family if \(\mathcal{F}\) satisfies these properties:

\((F_{1})\): \(\mathcal{F}\) is strictly increasing, i.e.,

$$ m_{1}< m_{2} \quad \implies\quad \mathcal{F}(m_{1})< \mathcal{F}(m_{2}), \quad \text{for all } m_{1},m_{2} \in \mathbb{R}. $$

\((F_{2})\): For every positive term sequence {\(m_{\xi} :\xi \in \mathbb{N}\)},

$$ \lim_{n \to \infty}m_{\xi}=0 \quad \iff \quad \lim_{n \to \infty} \mathcal{F}(m_{\xi})=-\infty . $$

\((F_{3})\): If we have \(\gamma \in (0,1)\), then \(\lim_{\xi \to 0^{+}}\xi ^{\gamma} \mathcal{F}(\xi )=0\).

Example 1.8

Let \(\mathcal{F}: (0,\infty ) \to \mathbb{R}\) be defined as \(\mathcal{F}(m)=\ln (m)\). \(\mathcal{F}\) is a member of \(\Delta _{f}\)-family.

Let \((\mathcal{M},p_{\mathfrak{b}})\) be a P\(\mathfrak{b}\)MS with \(\mathfrak{b}\geq 1\). This paper initiates the concept of new multivalued contraction mappings involving the \(\Delta _{f}\)-family and a given function \(\alpha :\mathcal{M} \times \mathcal{M} \to \mathbb{R}^{+}\) in the context of a P\(\mathfrak{b}\)MS. We develop some fixed point results for such contractions. Furthermore, we illustrate our main result with concrete examples. An application is also presented for a deeper understanding of the obtained result.

2 Main results

We start with the following definition.

Definition 2.1

Consider a set \(\mathcal{M}\neq \phi \) and let \(S:\mathcal{M} \to 2^{\mathcal{M}}\) be a multivalued mapping. Given a function \(\alpha :\mathcal{M} \times \mathcal{M} \to \mathbb{R}^{+}\). S is called a multivalued α-admissible mapping if for \(m,n \in \mathcal{M}\), we have

$$ \alpha (m,n) \geq 1 \quad \implies\quad \alpha (m_{0},n_{0}) \geq 1, $$

where \(m_{0} \in S(m)\) and \(n_{0} \in S(n)\).

Definition 2.2

Let \((\mathcal{M},p_{\mathfrak{b}})\) be a P\(\mathfrak{b}\)MS with \(\mathfrak{b}\geq 1\) and define a map \(S: \mathcal{M} \to K(\mathcal{M})\). Then S is said to be a MV\(\mathcal{F}\)-contraction mapping if there are \(\mathcal{F} \in \Delta _{f}-\text{family}\) and \(\tau >0\) such that

$$ \mathcal{H}_{p{\mathfrak{b}}}(Sm_{1},Sm_{2})>0 \quad \implies \quad {}\tau + \mathcal{F}\bigl(\mathfrak{b}\mathcal{H}_{p{\mathfrak{b}}}(Sm_{1},Sm_{2}) \bigr) \leq \mathcal{F}\bigl(\mathbb{M}(m_{1},m_{2})\bigr), $$
(2.1)

where

$$\begin{aligned} \mathbb{M}(m_{1},m_{2}) =&\max \biggl\{ p_{\mathfrak{b}}(m_{1},m_{2}),p_{ \mathfrak{b}}(m_{1},Sm_{1}),p_{\mathfrak{b}}(m_{2},Sm_{2}), \\ & \frac{p_{\mathfrak{b}}(m_{1},Sm_{2})+p_{\mathfrak{b}}(m_{2},Sm_{1})}{2\mathfrak{b}} \biggr\} . \end{aligned}$$

Definition 2.3

Let \((\mathcal{M},p_{\mathfrak{b}})\) be a P\(\mathfrak{b}\)MS with \(\mathfrak{b}\geq 1\). Given a function \(\alpha :\mathcal{M} \times \mathcal{M} \to \mathbb{R}^{+}\). The mapping \(S: \mathcal{M} \to K(\mathcal{M})\) is said to be a MV\(\alpha \mathcal{F}\)-contraction if there are \(\mathcal{F} \in \Delta _{f}-\text{family}\) and \(\tau >0\) such that

$$\begin{aligned}& \mathcal{H}_{p{\mathfrak{b}}}(Sm_{1},Sm_{2})>0 \\& \quad \implies\quad \tau + \mathcal{F}\bigl(\alpha (m_{1},m_{2}) \bigl(\mathfrak{b}\mathcal{H}_{p{ \mathfrak{b}}}(Sm_{1},Sm_{2}) \bigr)\bigr)\leq \mathcal{F}\bigl(\mathbb{M}(m_{1},m_{2}) \bigr), \end{aligned}$$
(2.2)

where

$$\begin{aligned} \mathbb{M}(m_{1},m_{2}) =&\max \biggl\{ p_{\mathfrak{b}}(m_{1},m_{2}),p_{ \mathfrak{b}}(m_{1},Sm_{1}),p_{\mathfrak{b}}(m_{2},Sm_{2}), \\ &{} \frac{p_{\mathfrak{b}}(m_{1},Sm_{2})+p_{\mathfrak{b}}(m_{2},Sm_{1})}{2\mathfrak{b}} \biggr\} . \end{aligned}$$

Lemma 2.4

Let \((\mathcal{M},p_{\mathfrak{b}})\) be a complete P\(\mathfrak{b}\)MS with \(\mathfrak{b}\geq 1\) and \(S: \mathcal{M} \to K(\mathcal{M})\) be a MV\(\mathcal{F}\)-contraction mapping, then

$$ \lim_{\xi \to \infty}\mathfrak{b}^{\xi} v_{\xi}=0, $$

where \(v_{\xi}=p_{\mathfrak{b}}(m_{\xi +1}, m_{\xi +2})\) and \(\xi =0,1,2,\ldots \) .

Proof

We take an arbitrary \(m_{0} \in \mathcal{M}\). As \(Sm_{0}\) is compact, it is nonempty, so we can choose \(m_{1} \in Sm_{0}\). If \(m_{1} \in Sm_{1}\), this means that \(m_{1}\) is a fixed point of S trivially. Suppose \(m_{1} \notin Sm_{1}\). As \(Sm_{1}\) is closed, so we have \(p_{\mathfrak{b}}(m_{1},Sm_{1}) >0\). Also, we know that

$$ p_{\mathfrak{b}}(m_{1},Sm_{1}) \leq \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{0},Sm_{1}). $$
(2.3)

As \(Sm_{1}\) is compact, so there exists \(m_{2} \in Sm_{1}\) such that

$$ p_{\mathfrak{b}}(m_{1},m_{2})= p_{\mathfrak{b}}(m_{1},Sm_{1}). $$

Thus,

$$ p_{\mathfrak{b}}(m_{1},m_{2}) \leq \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{0},Sm_{1}). $$

Similarly for \(m_{3} \in Sm_{2}\), we get

$$ p_{\mathfrak{b}}(m_{2},m_{3}) \leq \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{1},Sm_{2}), $$

which ultimately gives

$$ p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2}) \leq \mathcal{H}_{p_{ \mathfrak{b}}}(Sm_{\xi},Sm_{\xi +1}). $$

This leads to

$$ \mathfrak{b}\bigl(p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2})\bigr) \leq \mathfrak{b}\bigl(\mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\xi},Sm_{\xi +1}) \bigr). $$

The condition \((F_{1})\) implies that

$$ \mathcal{F}\bigl(\mathfrak{b}\bigl(p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2}) \bigr)\bigr) \leq \mathcal{F}\bigl(\mathfrak{b}\bigl(\mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\xi},Sm_{ \xi +1}) \bigr)\bigr). $$
(2.4)

By (2.1), we have

$$ \mathcal{F}\bigl(\mathfrak{b}\bigl(p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2}) \bigr)\bigr) \leq \mathcal{F}\bigl(\mathbb{M}(m_{\xi +1},m_{\xi}) \bigr) - \tau , $$
(2.5)

where

$$\begin{aligned} \mathbb{M}(m_{\xi},m_{\xi +1}) =&\max \biggl\{ p_{\mathfrak{b}}(m_{\xi},m_{ \xi +1}), p_{\mathfrak{b}}(m_{\xi},Sm_{\xi}), p_{\mathfrak{b}}(m_{ \xi +1},Sm_{\xi +1}), \\ & {}\frac{p_{\mathfrak{b}}(m_{\xi},Sm_{\xi +1})+p_{\mathfrak{b}}(m_{\xi +1},Sm_{\xi})}{2\mathfrak{b}} \biggr\} \\ =&\max \biggl\{ p_{\mathfrak{b}}(m_{\xi},m_{\xi +1}), p_{\mathfrak{b}}(m_{ \xi},m_{\xi +1}), p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2}), \\ &{} \frac{p_{\mathfrak{b}}(m_{\xi},m_{\xi +1})+p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2})}{2\mathfrak{b}} \biggr\} \\ \leq & \max \biggl\{ p_{\mathfrak{b}}(m_{\xi},m_{\xi +1}), p_{\mathfrak{b}}(m_{ \xi},m_{\xi +1}), p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2}), \\ &{} \mathfrak{b}\biggl[ \frac{p_{\mathfrak{b}}(m_{\xi},m_{\xi +1})+p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2})}{2\mathfrak{b}}\biggr] \biggr\} . \\ =&\max \bigl\{ p_{\mathfrak{b}}(m_{\xi},m_{\xi +1}), p_{\mathfrak{b}}(m_{ \xi +1},m_{\xi +2})\bigr\} . \end{aligned}$$

Assume that

$$ \max \bigl\{ p_{\mathfrak{b}}(m_{\xi},m_{\xi +1}), p_{\mathfrak{b}}(m_{ \xi +1},m_{\xi +2})\bigr\} =p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2}). $$

The inequality (2.5) yields

$$ \tau +\mathcal{F}\bigl(\mathfrak{b}\bigl(p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2}) \bigr)\bigr) \leq \mathcal{F}\bigl(p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2}) \bigr), $$

which is a contradiction. Therefore,

$$ \max \bigl\{ p_{\mathfrak{b}}(m_{\xi},m_{\xi +1}), p_{\mathfrak{b}}(m_{ \xi +1},m_{\xi +2})\bigr\} =p_{\mathfrak{b}}(m_{\xi},m_{\xi +1}). $$

It implies that

$$ \mathcal{F}\bigl(\mathfrak{b}\bigl(p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2}) \bigr)\bigr) \leq \mathcal{F}\bigl(p_{\mathfrak{b}}(m_{\xi},m_{\xi +1}) \bigr). $$

For convenience, we are setting \(v_{\xi}=p_{\mathfrak{b}}(m_{\xi +1}, m_{\xi +2})\), where \(\xi =0,1,\ldots \) . Clearly, \(v_{\xi} >0\) for all \(\xi \in \mathbb{N}\). Now, substituting this into the above equation, we have

$$ \tau +\mathcal{F}\bigl(\mathfrak{b} (v_{\xi})\bigr) \leq \mathcal{F}(v_{\xi -1}). $$

Iteratively,

$$ \tau +\mathcal{F}\bigl(\mathfrak{b}^{\xi} (v_{\xi})\bigr)\leq \mathcal{F}\bigl( \mathfrak{b}^{\xi -1} (v_{\xi -1})\bigr). $$

We will get

$$ \mathcal{F}(\mathfrak{b}^{\xi}(v_{\xi}) \leq \mathcal{F}\bigl(\mathfrak{b}^{ \xi -1}(v_{\xi -1})\bigr)-\tau \leq \mathcal{F}\bigl(\mathfrak{b}^{\xi -2}(v_{ \xi -2})\bigr)-2\tau \leq \cdots \leq \mathcal{F}(v_{0})-\xi \tau . $$
(2.6)

Hence,

$$ \lim_{\xi \to \infty}\mathcal{F}\mathfrak{b}^{\xi} (v_{\xi}) = - \infty , $$

we have

$$ \lim_{\xi \to \infty}\mathfrak{b}^{\xi} v_{\xi}=0, \quad \text{by } (F_{2}). $$

 □

Theorem 2.5

Let \((\mathcal{M},p_{\mathfrak{b}})\) be a complete P\(\mathfrak{b}\)MS with \(\mathfrak{b}\geq 1\), such that \(p_{\mathfrak{b}}\) is a continuous mapping and \(S: \mathcal{M} \to K(\mathcal{M})\) is a multivalued \(\alpha \mathcal{F}\)-contraction mapping. Suppose that

  1. (1)

    S is continuous;

  2. (2)

    S is an α-admissible mapping;

  3. (3)

    there exist \(m_{0} \in \mathcal{M}\) and \(m_{1} \in Sm_{0}\) such that \(\alpha (m_{0},m_{1})\geq 1\).

Then S has a fixed point.

Proof

For \(m_{0} \in \mathcal{M}\), we have by assumption \(\alpha (m_{0},m_{1}) \geq 1 \) for some \(m_{1}\in Sm_{0}\). Similarly, for \(m_{2}\in Sm_{1}\), we have \(\alpha (m_{1},m_{2}) \geq 1 \) and for any sequence \(m_{\xi +1} \in Sm_{\xi}\), we get

$$ \alpha (m_{\xi},m_{\xi +1}) \geq 1 \quad \text{for all } \xi \in \mathbb{N}\cup \{0\}. $$
(2.7)

Now, by the contraction condition (2.2), we have

$$ \tau + \mathcal{F}\bigl(\alpha (m_{\xi},m_{\xi +1})\mathfrak{b} \bigl( \mathcal{H}_{p{\mathfrak{b}}}(m_{\xi +1},m_{\xi +2})\bigr)\bigr) \leq \mathcal{F}\bigl(\mathbb{M}(m_{\xi +1},m_{\xi})\bigr). $$

The inequality (2.7) implies that

$$ \tau + \mathcal{F}\bigl(\mathfrak{b}\bigl(\mathcal{H}_{p{\mathfrak{b}}}(m_{\xi +1},m_{ \xi +2}) \bigr)\bigr)\leq \mathcal{F}\bigl(\mathbb{M}(m_{\xi +1},m_{\xi}) \bigr), $$

where \(\mathfrak{b} \geq 1\). We have

$$ \mathcal{F}\bigl(\mathfrak{b}\bigl(p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2}) \bigr)\bigr) \leq \mathcal{F}\bigl(\mathbb{M}(m_{\xi +1},m_{\xi}) \bigr) - \tau . $$
(2.8)

By lemma 2.4, one writes

$$ \lim_{\xi \to \infty}\mathfrak{b}^{\xi} v_{\xi}=0. $$

By \((F_{3})\), for any \(\gamma \in (0,1)\)

$$ \lim_{\xi \to \infty}\bigl(\mathfrak{b}^{\xi} v_{\xi} \bigr)^{\gamma} \mathcal{F}\mathfrak{b}^{\xi}(v_{\xi})=0,\quad \forall \xi \in \mathbb{N}. $$

Using (2.6), one writes

$$ \bigl(\mathfrak{b}^{\xi} v_{\xi}\bigr)^{\gamma}\bigl( \mathcal{F}\mathfrak{b}^{\xi} (v_{ \xi})-\mathcal{F}(v_{0}) \bigr) \leq -\bigl(\mathfrak{b}^{\xi} {v_{\xi}} \bigr)^{ \gamma}\xi \tau \leq 0. $$
(2.9)

Now, as \(\tau >0\), we have

$$ \lim_{\xi \to \infty }\bigl({\mathfrak{b}^{\xi}v_{\xi}} \bigr)^{\gamma}\xi = 0. $$

So, there exists \(\xi _{1} \in \mathbb{N}\), such that

$$ \bigl(\mathfrak{b}^{\xi}v_{\xi}\bigr)^{\gamma}\xi \leq 1,\quad \forall \xi \geq \xi _{1}. $$

It implies that

$$ \mathfrak{b}^{\xi} v_{\xi} \leq \frac{1}{\xi ^{\frac{1}{\gamma}}}. $$
(2.10)

Now, we will prove that \(\{m_{\xi}\}\) is a Cauchy sequence in \(\mathcal{M}\). For this, let \(\xi ,l \in \mathbb{N}\) provided that \(\xi >l\geq \xi _{1}\). Using the triangular inequality of a P\(\mathfrak{b}\)MS, we have

$$\begin{aligned} p_{\mathfrak{b}}(m_{\xi},m_{\eta}) \leq & \mathfrak{b}\bigl\{ p_{ \mathfrak{b}}(m_{\xi},m_{\xi +1})+p_{\mathfrak{b}}(m_{\xi +1},m_{\eta}) \bigr\} -p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +1}) \\ \leq & \mathfrak{b}\bigl\{ p_{\mathfrak{b}}(m_{\xi},m_{\xi +1})+ p_{ \mathfrak{b}}(m_{\xi +1},m_{\eta})\bigr\} \\ \leq & \mathfrak{b}p_{\mathfrak{b}}(m_{\xi},m_{\xi +1})+ \mathfrak{b}^{2} \bigl\{ p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2})+ p_{\mathfrak{b}}(m_{\xi +2},m_{ \eta})\bigr\} \\ &{} -p_{\mathfrak{b}}(m_{\xi +2},m_{\xi +2}) \\ \leq & \mathfrak{b}p_{\mathfrak{b}}(m_{\xi},m_{\xi +1})+ \mathfrak{b}^{2} \bigl\{ p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2})+ p_{\mathfrak{b}}(m_{\xi +2},m_{ \eta})\bigr\} \\ &{}\vdots \\ =&\mathfrak{b}p_{\mathfrak{b}}(m_{\xi},m_{\xi +1})+ \mathfrak{b}^{2} \{p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2})+ \cdots +\mathfrak{b}^{l- \xi}p_{\mathfrak{b}}(m_{\eta -1},m_{\eta}) \\ =& \sum_{\beta =\xi}^{\eta -1}\mathfrak{b}^{\beta -\xi +1}p_{ \mathfrak{b}}(m_{\beta},m_{\beta +1}) \\ \leq & \sum_{\beta =\xi}^{\infty} \mathfrak{b}^{\beta}p_{ \mathfrak{b}}(m_{\beta +1},m_{\beta +2}) \\ =&\sum_{\beta =\xi}^{\infty}\mathfrak{b}^{\beta}v_{\beta} \\ \leq & \sum_{\beta =\xi}^{\infty} \frac{1}{\beta ^{\frac{1}{\gamma}}}. \end{aligned}$$

The convergence of the series \(\sum_{\beta =1}^{\infty} \frac{1}{\beta ^{\frac{1}{\gamma}}}\) implies that \(\lim_{\xi \to \infty} p_{\mathfrak{b}}(m_{\xi},m_{\eta}) =0\), which shows \(\{m_{\xi}\}\) is a Cauchy sequence in \(\mathcal{M}\). Since \(\mathcal{M}\) is complete, there exists \(m^{*} \in \mathcal{M}\) such that

$$ \lim_{\xi \to \infty} p_{\mathfrak{b}} \bigl(m_{\xi},m^{*}\bigr) = p_{ \mathfrak{b}} \bigl(m^{*},m^{*}\bigr)=0 . $$
(2.11)

We claim that \(m^{*}\) is a fixed point of S, that is,

$$ p_{\mathfrak{b}}\bigl(m^{*},Sm^{*}\bigr) =p_{\mathfrak{b}} \bigl(m^{*},m^{*}\bigr). $$

Suppose \(p_{\mathfrak{b}}(m^{*},Sm^{*}) > 0\). So, there exists \(k_{0} \in \mathbb{N}\) such that \(p_{\mathfrak{b}}(m_{\xi},Sm^{*}) > 0\) for all \(\xi > k_{0}\). We have

$$ p_{\mathfrak{b}}\bigl(m_{\xi},Sm^{*}\bigr) \leq \mathcal{H}_{p{\mathfrak{b}}}\bigl(Sm_{ \xi +1},Sm^{*}\bigr). $$

By using our contraction condition and taking limit \(\xi \to \infty \), we have

$$ \begin{aligned} \tau +{\mathcal{F}}\bigl(p_{\mathfrak{b}} \bigl(m^{*},Sm^{*}\bigr)\bigr)& \leq \tau +{\mathcal{F}}\bigl( \alpha \bigl(m^{*},m^{*}\bigr)\mathcal{H}_{p{ \mathfrak{b}}} \bigl(Sm^{*},Sm^{*}\bigr)\bigr) \\ & \leq {\mathcal{F}}\bigl(\mathbb{M}\bigl(m^{*},m^{*}\bigr) \bigr) \\ &\leq {\mathcal{F}}\bigl(p_{\mathfrak{b}}\bigl(m^{*},Sm^{*} \bigr)\bigr), \end{aligned} $$

where,

$$\begin{aligned} \mathbb{M}\bigl(m^{*},m^{*}\bigr) =&\max \biggl\{ p_{\mathfrak{b}}\bigl(m^{*},m^{*}\bigr), p_{ \mathfrak{b}} \bigl(m^{*},Sm^{*}\bigr), p_{\mathfrak{b}} \bigl(m^{*},Sm^{*}\bigr), \\ &{} \frac{p_{\mathfrak{b}}(m^{*},Sm^{*})+p_{\mathfrak{b}}(Sm^{*},m^{*})}{2\mathfrak{b}} \biggr\} \\ \leq & p_{\mathfrak{b}}\bigl(m^{*},Sm^{*}\bigr). \end{aligned}$$

It yields that

$$ \tau +{\mathcal{F}}\bigl(p_{\mathfrak{b}}\bigl(m^{*},Sm^{*} \bigr)\bigr) \leq {\mathcal{F}}\bigl(p_{ \mathfrak{b}}\bigl(m^{*},Sm^{*} \bigr)\bigr). $$

Since \(\tau > 0\), the above relation yields a contradiction, therefore \(p_{\mathfrak{b}}(m^{*},Sm^{*}) =0\). Also,

$$ p_{\mathfrak{b}}\bigl(m^{*},m^{*}\bigr)=0. $$

This gives \(m^{*} \in \bar{S}m^{*} =Sm^{*}\). Proving that \(m^{*}\) is a fixed point of S. □

Example 2.6

Let \(\mathcal{M}=\{0,1,2,3, \ldots\}\) and \(p_{\mathfrak{b}}:\mathcal{M} \times \mathcal{M} \to \mathbb{R}^{+}\) be defined as

$$ p_{\mathfrak{b}}(\zeta , \nu ) = \vert \zeta -\nu \vert ^{q}+ \bigl[\max \{ \zeta , \nu \}\bigr]^{q}\quad \text{for all } \zeta , \nu \in \mathcal{M}. $$

It is easy to check that \((\mathcal{M},p_{\mathfrak{b}})\) is a complete P\(\mathfrak{b}\)MS with \(\mathfrak{b}=2^{q-1}\), where \(q >1\). We also define a multivalued map \(S:\mathcal{M} \to 2^{\mathcal{M}}\) by

$$ S\zeta = \textstyle\begin{cases} \{0,1\} , & \text{if } \zeta =0,1, \\ \{\zeta -1,\zeta \} & \text{otherwise}. \end{cases} $$

Consider \(\alpha :\mathcal{M} \times \mathcal{M} \to [0,\infty )\) as

$$ \alpha (\zeta ,\nu )= \textstyle\begin{cases} 2, & \text{if } \zeta ,\nu \in \{0,1\}, \\ \frac{1}{2}, & \text{otherwise}. \end{cases} $$

Let \(\zeta _{0}=0\), \(\zeta _{1}=1\), then \(S\zeta _{0}= \{0,1\}\) and \(\zeta _{1}= \{0,1\}\). Giving \(\alpha (\zeta _{0},\zeta _{1})=\alpha (0,1)=2 > 1\), for some \(\zeta _{2}=0 \in S\zeta _{1}\), we get \(\alpha (\zeta _{1},\zeta _{2})=\alpha (1,0)=2 > 1\). That is, S is an α-admissible map.

Define \(\mathcal{F}: (0,\infty ) \to \mathbb{R}\) as \(\mathcal{F}(\zeta )=\ln (\zeta )+\zeta \). It can be observed easily that \(\mathcal{F}\) is a member of \(\Delta _{f}\)-family. Now, applying \(\mathcal{F}\) on our contraction condition, one gets

$$ \tau + \mathcal{F}\bigl(\alpha (\zeta ,\nu )\mathcal{H}_{p_{\mathfrak{b}}}(S \zeta ,S\nu )\bigr) \leq \mathcal{F}\bigl(\mathbb{M}(\zeta ,\nu )\bigr). $$

That is,

$$ \begin{aligned} &\tau + \ln \bigl\{ \alpha (\zeta ,\nu ) \mathcal{H}_{p_{ \mathfrak{b}}}(S\zeta ,S\nu )\bigr\} +\alpha (\zeta ,\nu ) \mathcal{H}_{p_{ \mathfrak{b}}}(S\zeta ,S\nu ) \\ &\quad \leq \ln \bigl(\mathbb{M}(\zeta ,\nu )\bigr)+\mathbb{M}(\zeta ,\nu ). \end{aligned} $$

Hence,

$$ \tau +\alpha (\zeta ,\nu )\mathcal{H}_{p_{\mathfrak{b}}}(S\zeta ,S \nu )- \mathbb{M}(\zeta ,\nu ) \leq \ln \bigl(\mathbb{M}(\zeta ,\nu )\bigr)- \ln \bigl\{ \alpha (\zeta ,\nu )\mathcal{H}_{p_{\mathfrak{b}}}(S\zeta ,S \nu )\bigr\} . $$

Therefore,

$$ e^{ \tau +\alpha (\zeta ,\nu )\mathcal{H}_{p_{\mathfrak{b}}}(S\zeta ,S \nu )- \mathbb{M}(\zeta ,\nu )} \leq \frac{\mathbb{M}(\zeta ,\nu )}{\alpha (\zeta ,\nu )\mathcal{H}_{p_{\mathfrak{b}}}(S\zeta ,S\nu )} $$

That is,

$$ \frac{\alpha (\zeta ,\nu )\mathcal{H}_{p_{\mathfrak{b}}}(S\zeta ,S\nu )}{\mathbb{M}(\zeta ,\nu )}e^{ \alpha (\zeta ,\nu )\mathcal{H}_{p_{\mathfrak{b}}}(S\zeta ,S\nu )- \mathbb{M}(\zeta ,\nu )} \leq e^{ -\tau}. $$
(2.12)

Now,

$$ \begin{aligned} \delta _{p_{\mathfrak{b}}}\bigl(\mathcal{P}, \mathcal{P^{*}}\bigr)&= \delta _{p_{\mathfrak{b}}}(S\zeta ,S\nu ) \\ &= \max \bigl\{ p_{\mathfrak{b}}(\zeta ,S\nu ),p_{\mathfrak{b}}(\zeta -1,S \nu ) \bigr\} \\ &= \max \bigl\{ \inf \bigl\{ p_{\mathfrak{b}}(\zeta ,\nu ),{p_{\mathfrak{b}}( \zeta ,\nu -1)}\bigr\} ,\inf \bigl\{ p_{\mathfrak{b}}(\zeta -1,\nu ),{p_{ \mathfrak{b}}(\zeta -1,\nu -1)}\bigr\} \bigr\} \\ &= \max \bigl\{ \vert \zeta -\nu \vert ^{q}+\zeta ^{q}, \vert \zeta -\nu -2 \vert ^{q}+\zeta ^{q} \bigr\} \\ & = \vert \zeta -\nu \vert ^{q}+\zeta ^{q}. \end{aligned} $$

Similarly, we can calculate

$$ \delta _{p_{\mathfrak{b}}}\bigl(\mathcal{P^{*}},\mathcal{P}\bigr)= \vert \zeta -\nu \vert ^{q}+ \zeta ^{q}. $$

Hence,

$$ \begin{aligned} \mathcal{H}_{p_{\mathfrak{b}}}\bigl( \mathcal{P}, \mathcal{P^{*}}\bigr)&=\max \bigl\{ \vert \zeta -\nu \vert ^{q}+\zeta ^{q}, \vert \zeta -\nu \vert ^{q}+ \zeta ^{q}\bigr\} \\ &= \vert \zeta -\nu \vert ^{q}+\zeta ^{q}. \end{aligned} $$
(2.13)

Also,

$$ \mathbb{M}(\zeta ,\nu )\geq p_{\mathfrak{b}}(\zeta ,\nu )= \vert \zeta - \nu \vert ^{q}+\zeta ^{q}. $$
(2.14)

Setting these both in the contraction condition, we get

$$\begin{aligned}& \frac{\alpha (\zeta ,\nu )\mathcal{H}_{p_{\mathfrak{b}}}(S\zeta ,S\nu )}{\mathbb{M}(\zeta ,\nu )}e^{( \alpha (\zeta ,\nu )\mathcal{H}_{p_{\mathfrak{b}}}(S\zeta ,S\nu ))- \mathbb{M}(\zeta ,\nu )} \\& \quad = \frac{ \vert \zeta -\nu \vert ^{q}+\zeta ^{q}}{2\mathbb{M}(\zeta ,\nu )} e^{ \frac{1}{2}( \vert \zeta -\nu \vert ^{q}+\zeta ^{q})- \mathbb{M}(\zeta ,\nu )} \quad \text{using (2.25)} \\& \quad \leq \frac{ \vert \zeta -\nu \vert ^{q}+\zeta ^{q}}{2 \vert \zeta -\nu \vert ^{q}+\zeta ^{q}} e^{ \frac{1}{2}( \vert \zeta -\nu \vert ^{q}+\zeta ^{q})- \vert \zeta -\nu \vert ^{q}+\zeta ^{q}} \quad \text{using (2.26)} \\& \quad = \frac{1}{2} e^{\frac{-1}{2}( \vert \zeta -\nu \vert ^{q}+\zeta ^{q})} \\& \quad = \frac{1}{2} e^{-\tau} \\& \quad < e^{-\tau}. \end{aligned}$$

This implies that (2.12) is satisfied with \(\tau = {\frac{1}{2}(|\zeta -\nu |^{q}+\zeta ^{q})}\), which is a positive number for \(\zeta \neq \nu \). All conditions of Theorem 2.5 are true, and 0 and 1 are two fixed points of S.

Theorem 2.7

Let \((\mathcal{M},p_{\mathfrak{b}})\) be a complete P\(\mathfrak{b}\)MS with \(\mathfrak{b}\geq 1\) such that \(p_{\mathfrak{b}}\) is a continuous mapping. Let \(S :\mathcal{M} \to CB_{p_{\mathfrak{b}}}(\mathcal{M})\) be a MV\(\alpha \mathcal{F}\)-contraction mapping and \(B \subset (0, \infty )\) with \(\inf B > 0\). Suppose that

  1. (1)

    S is continuous;

  2. (2)

    S is an α-admissible mapping;

  3. (3)

    there exist \(m_{0} \in \mathcal{M}\) and \(m_{1} \in Sm_{0}\) such that \(\alpha (m_{0},m_{1})\geq 1\);

  4. (4)

    \(\mathcal{F}(\inf B)= \inf \mathcal{F}(B)\), where \(\mathcal{F} \in \Delta _{f}-\textit{family}\).

Then S has a fixed point.

Proof

We take an arbitrary \(m_{0} \in \mathcal{M}\). As Sm, the set of all images of \(m \in \mathcal{M}\), is nonempty for all values in \(\mathcal{M}\), we can choose \(m_{1} \in Sm_{0}\). If \(m_{1} \in Sm_{1}\), this means that \(m_{1}\) is a fixed point of S. So suppose \(m_{1} \notin Sm_{1}\). As \(Sm_{1}\) is closed, we have

$$ p_{\mathfrak{b}}(m_{1},Sm_{1}) >0. $$

Also, we know that

$$ p_{\mathfrak{b}}(m_{1},Sm_{1}) \leq \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{0},Sm_{1}). $$

We have

$$ \mathcal{F}\bigl(p_{\mathfrak{b}}(m_{1},Sm_{1}) \bigr) \leq \mathcal{F}\bigl( \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{0},Sm_{1}) \bigr), \text{by} F_{2}. $$
(2.15)

Using (4)

$$ \mathcal{F}\bigl(p_{\mathfrak{b}}(m_{1},Sm_{1})\bigr)=\inf _{g \in Sm_{1}} \mathcal{F}\bigl(p_{\mathfrak{b}}(m_{1},g) \bigr). $$

That is,

$$ \inf_{g \in Sm_{1}}\mathcal{F}\bigl(p_{\mathfrak{b}}(m_{1},g) \bigr) \leq \mathcal{F}\bigl(\mathcal{H}_{p_{\mathfrak{b}}}(Sm_{0},Sm_{1}) \bigr). $$
(2.16)

As \(Sm_{1}\) is compact, so we can find a \(m_{2} \in Sm_{1}\) such that

$$ \inf_{g \in Sm_{1}}\mathcal{F}\bigl(p_{\mathfrak{b}}(m_{1},g) \bigr)= \mathcal{F}\bigl(p_{\mathfrak{b}}(m_{1},m_{2}) \bigr). $$

From (2.15),

$$ \mathcal{F}\bigl(p_{\mathfrak{b}}(m_{1},m_{2})\bigr) \leq \mathcal{F}\bigl( \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{0},Sm_{1}) \bigr). $$
(2.17)

Similarly, for \(m_{3} \in Sm_{2}\), we get

$$ \mathcal{F}\bigl(p_{\mathfrak{b}}(m_{2},m_{3})\bigr) \leq \mathcal{F}\bigl( \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{1},Sm_{2}) \bigr), $$

which ultimately gives

$$ \mathcal{F}\bigl(p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2})\bigr) \leq \mathcal{F}\bigl( \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\xi},Sm_{\xi +1}) \bigr). $$

As \(\mathfrak{b}\geq 1\), so we can write

$$ \mathcal{F}\bigl(\mathfrak{b}\bigl(p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2}) \bigr)\bigr) \leq \mathcal{F}\bigl(\mathfrak{b}\bigl(\mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\xi},Sm_{ \xi +1}) \bigr)\bigr). $$
(2.18)

For \(m_{0} \in \mathcal{M}\) by assumption, \(\alpha (m_{0},m_{1}) \geq 1 \) for some \(m_{1}\in Sm_{0}\). Similarly, for some \(m_{2}\in Sm_{1}\), we have \(\alpha (m_{1},m_{2}) \geq 1 \) and for any sequence \(m_{\xi +1} \in Sm_{\xi}\), we may write

$$ \alpha (m_{\xi},m_{\xi +1}) \geq 1 \quad \text{for all } \xi \in \mathbb{N}\cup \{0\}. $$
(2.19)

Using (2.2), we have

$$ \tau + \mathcal{F}\bigl(\alpha (m_{\xi},m_{\xi +1}) \bigl( \mathcal{H}_{p{ \mathfrak{b}}}(m_{\xi +1},m_{\xi +2})\bigr)\bigr)\leq \mathcal{F}\bigl(\mathbb{M}(m_{ \xi +1},m_{\xi})\bigr), $$

The inequality (2.19) implies that

$$ \tau + \mathcal{F}\bigl(\mathfrak{b}\bigl(\mathcal{H}_{p{\mathfrak{b}}}(m_{\xi +1},m_{ \xi +2}) \bigr)\bigr)\leq \mathcal{F}\bigl(\mathbb{M}(m_{\xi +1},m_{\xi}) \bigr). $$

Using (2.18), we have

$$ \mathcal{F}\bigl(\mathfrak{b}\bigl(p_{\mathfrak{b}}(m_{\xi +1},m_{\xi +2}) \bigr)\bigr) \leq \mathcal{F}\bigl(\mathbb{M}(m_{\xi +1},m_{\xi}) \bigr) - \tau . $$
(2.20)

Now, using Lemma 2.4, one writes

$$ \lim_{\xi \to \infty}\mathfrak{b}^{\xi} v_{\xi}=0, $$

Now, by \((F_{3})\), for any \(\gamma \in (0,1)\) and for all \(\xi \in \mathbb{N}\),

$$ \lim_{\xi \to \infty}\bigl(\mathfrak{b}^{\xi} v_{\xi} \bigr)^{\gamma} \mathcal{F}\mathfrak{b}^{\xi}(v_{\xi})=0. $$

It implies that

$$ \bigl(\mathfrak{b}^{\xi} v_{\xi}\bigr)^{\gamma}\bigl( \mathcal{F}\mathfrak{b}^{\xi} (v_{ \xi})-\mathcal{F}(v_{0}) \bigr) \leq -\bigl(\mathfrak{b}^{\xi} {v_{\xi}} \bigr)^{ \gamma}\xi \tau \leq 0. $$
(2.21)

As \(\tau > 0\), we have

$$ \lim_{\xi \rightarrow \infty}\bigl({\mathfrak{b}^{\xi}v_{\xi}} \bigr)^{\gamma} \xi = 0. $$

So there exists \(\xi _{1} \in \mathbb{N}\) such that \((\mathfrak{b}^{\xi}v_{\xi})^{\gamma}\xi \leq 1\) for all \(\xi \geq \xi _{1}\). Then

$$ \mathfrak{b}^{\xi} v_{\xi} \leq \frac{1}{\xi ^{\frac{1}{\gamma}}}. $$
(2.22)

Next, we prove that \(\{m_{\xi}\}\) is a Cauchy sequence in \(\mathcal{M}\). For this, following the same steps as done in Theorem 2.5, one can easily have

$$ \lim_{\xi \to \infty} p_{\mathfrak{b}} \bigl(m_{\xi},m^{*}\bigr) = p_{ \mathfrak{b}} \bigl(m^{*},m^{*}\bigr)=0 . $$
(2.23)

We claim that \(m^{*}\) is a fixed point of S. Suppose that \(p_{\mathfrak{b}}(m^{*},Sm^{*}) > 0\), this means there exists \(k_{0} \in \mathbb{N}\) such that we have \(p_{\mathfrak{b}}(m_{\xi},Sm^{*}) > 0\) for all \(\xi > k_{0}\). One writes

$$ p_{\mathfrak{b}}\bigl(m_{\xi},Sm^{*}\bigr) \leq \mathcal{H}_{p{\mathfrak{b}}}\bigl(Sm_{ \xi +1},Sm^{*}\bigr) . $$

Using (2.2) and taking limit \(\xi \to \infty \), we have

$$ \begin{aligned} \tau +{\mathcal{F}}\bigl(p_{\mathfrak{b}} \bigl(m^{*},Sm^{*}\bigr)\bigr)& \leq \tau +{\mathcal{F}}\bigl( \alpha \bigl(m^{*},m^{*}\bigr)\mathcal{H}_{p{ \mathfrak{b}}} \bigl(Sm^{*},Sm^{*}\bigr)\bigr) \\ & \leq {\mathcal{F}}\bigl(\mathbb{M}\bigl(m^{*},m^{*}\bigr) \bigr) \\ &\leq {\mathcal{F}}\bigl(p_{\mathfrak{b}}\bigl(m^{*},Sm^{*} \bigr)\bigr), \end{aligned} $$

where

$$\begin{aligned} \mathbb{M}\bigl(m^{*},m^{*}\bigr) =&\max \biggl\{ p_{\mathfrak{b}}\bigl(m^{*},m^{*}\bigr), p_{ \mathfrak{b}} \bigl(m^{*},Sm^{*}\bigr), p_{\mathfrak{b}} \bigl(m^{*},Sm^{*}\bigr), \\ &{} \frac{p_{\mathfrak{b}}(m^{*},Sm^{*})+p_{\mathfrak{b}}(Sm^{*},m^{*})}{2\mathfrak{b}} \biggr\} \\ \leq & p_{\mathfrak{b}}\bigl(m^{*},Sm^{*}\bigr). \end{aligned}$$

It implies that

$$ \tau +{\mathcal{F}}\bigl(p_{\mathfrak{b}}\bigl(m^{*},Sm^{*} \bigr)\bigr) \leq {\mathcal{F}}\bigl(p_{ \mathfrak{b}}\bigl(m^{*},Sm^{*} \bigr)\bigr). $$

Since \(\tau > 0\), the above relation yields a contradiction. Thus,

$$ p_{\mathfrak{b}}\bigl(m^{*},Sm^{*}\bigr) =0. $$

Also, \(p_{\mathfrak{b}}(m^{*},m^{*})=0\). This gives \(m^{*} \in \bar{S}m^{*} =Sm^{*}\). Hence, \(m^{*}\) is a fixed point of S. □

Example 2.8

Let \(\mathcal{M}= \{m_{\zeta} = 1- (\frac{1}{2} )^{\zeta} : \zeta \in \mathbb{N} \}\) and \(p_{\mathfrak{b}}:\mathcal{M} \times \mathcal{M} \to [0,\infty )\) be defined by

$$ p_{\mathfrak{b}}(\zeta , \nu ) = \vert \zeta -\nu \vert ^{2}+ \bigl[\max \{ \zeta , \nu \}\bigr]^{2} \text{for all} \zeta , \nu \in \mathcal{M}. $$

One can easily verify that \((\mathcal{M},p_{\mathfrak{b}})\) is a complete P\(\mathfrak{b}\)MS with \(\mathfrak{b}=2\). We also define a multivalued map \(S:\mathcal{M} \to 2^{\mathcal{M}}\) by

$$ Sm= \textstyle\begin{cases} \{m_{1}\} , & m=m_{1}, \\ \{m_{\zeta},m_{\zeta +1}\}, & m=m_{\zeta}, \zeta =2,3,\ldots . \end{cases} $$

Consider \(\alpha (m_{\zeta},m_{\nu})=1\) and \(\mathbb{M}(m_{\zeta},m_{\nu})= p_{\mathfrak{b}}(m_{\zeta},m_{\nu})\). Take \(\mathcal{F}: (0,\mathrm{infty})\to \mathbb{R}\) as \(\mathcal{F}(\zeta )=\ln (\zeta )+\zeta \). Hence, the contraction condition will take the following form:

$$ \frac{ \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\zeta},Sm_{\nu})}{\mathbb{M}(m_{\zeta},m_{\nu})}e^{ \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\zeta},Sm_{\nu})- \mathbb{M}(m_{ \zeta},m_{\nu})} \leq e^{ -\tau}. $$
(2.24)

Now, we verify this condition for the following two possible cases:

Case I

If \(\mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\zeta},Sm_{1}) >0\) and \(\nu =1\), we have

$$ \begin{aligned} \delta _{p_{\mathfrak{b}}}(Sm_{\zeta},Sm_{1}) &= \max \bigl\{ p_{ \mathfrak{b}}(m_{\zeta},Sm_{1}),p_{\mathfrak{b}}(m_{\zeta +1},Sm_{1}) \bigr\} \\ &= \max \bigl\{ \vert m_{\zeta}-m_{1} \vert ^{2}+(m_{\zeta})^{2}, \vert m_{\zeta +1}-m_{1} \vert ^{2}+(m_{ \zeta +1})^{2}\bigr\} \\ & = \vert m_{\zeta +1}-m_{1} \vert ^{2}+(m_{\zeta +1})^{2}. \end{aligned} $$

In the same manner,

$$ \delta _{p_{\mathfrak{b}}}(Sm_{1},Sm_{\zeta})= \vert m_{\zeta}-m_{1} \vert ^{2}+(m_{ \zeta})^{2}. $$

It implies that

$$ \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\zeta},Sm_{1})= \vert m_{\zeta +1}-m_{1} \vert ^{2}+({m_{ \zeta +1}})^{2}. $$
(2.25)

Also,

$$ \mathbb{M}(m_{\zeta},m_{1})= \vert m_{\zeta}-m_{1} \vert ^{2}+(m_{\zeta})^{2} \leq \vert m_{\zeta}-m_{1} \vert ^{2}+(m_{\zeta +2})^{2}. $$
(2.26)

One writes

$$ \begin{aligned} & \frac{ \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\zeta},Sm_{1})}{\mathbb{M}(m_{\zeta},m_{1})}e^{( \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\zeta},Sm_{1})- \mathbb{M}(m_{ \zeta},m_{1}))} \\ &\quad \leq \frac{ \vert m_{\zeta +1}-m_{1} \vert ^{2}+(m_{\zeta +1})^{2}}{ \vert m_{\zeta}-m_{1} \vert ^{2}+(m_{\zeta +2})^{2}} e^{( \vert m_{\zeta +1}-m_{1} \vert ^{2}+(m_{\zeta +1})^{2})-( \vert m_{\zeta}-m_{1} \vert ^{2}+(m_{ \zeta +2})^{2})} \\ &\quad = \frac{ \vert (\frac{1}{2} )- (\frac{1}{2} )^{\zeta +1} \vert ^{2} + (1- (\frac{1}{2} )^{\zeta +1})^{2} }{ \vert (\frac{1}{2} )- (\frac{1}{2} )^{\zeta} \vert ^{2}+ (1- (\frac{1}{2} )^{\zeta +2} )^{2}} e^{ \vert (\frac{1}{2} )- (\frac{1}{2} )^{\zeta +1} \vert ^{2} + (1- (\frac{1}{2} )^{\zeta +1} )^{2}- \vert (\frac{1}{2} )- (\frac{1}{2} )^{\zeta} \vert ^{2} - (1- (\frac{1}{2} )^{\zeta +2} ) ^{2}} \\ &\quad \leq e^{ ( 2 (\frac{1}{2} )^{2\zeta +2} + (\frac{1}{2} )^{\zeta} - [ (\frac{1}{2} )^{2\zeta}+ (\frac{1}{2} )^{2\zeta +4}+ 3 (\frac{1}{2} )^{\zeta +1}+2 ( \frac{1}{2} )^{\zeta +2} ] ) } \\ &\quad < e^{-\tau}, \end{aligned} $$

for some \(\tau >0\).

Case II

If \(\mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\zeta},Sm_{\nu}) >0\) with \(\zeta \geq \nu >1\), we have

$$ \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\zeta},Sm_{\nu})= \vert m_{\zeta +1}-m_{ \nu +1} \vert ^{2}+({m_{\zeta +1}})^{2}, $$

and

$$ \mathbb{M}(m_{\zeta},m_{\nu})= \vert m_{\zeta}-m_{\nu} \vert ^{2}+(m_{\zeta})^{2} \leq \vert m_{\zeta}-m_{\nu} \vert ^{2}+(m_{\zeta +2})^{2}. $$

From (2.24), we have

$$ \begin{aligned} & \frac{ \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\zeta},Sm_{\nu})}{\mathbb{M}(m_{\zeta},m_{\nu})}e^{( \mathcal{H}_{p_{\mathfrak{b}}}(Sm_{\zeta},Sm_{\nu})- \mathbb{M}(m_{ \zeta},m_{\nu}))} \\ &\quad \leq \frac{ \vert m_{\zeta +1}-m_{\nu +1} \vert ^{2}+(m_{\zeta +1})^{2}}{ \vert m_{\zeta}-m_{\nu} \vert ^{2}+(m_{\zeta +2})^{2}} e^{( \vert m_{\zeta +1}-m_{\nu +1} \vert ^{2}+(m_{\zeta +1})^{2})-( \vert m_{\zeta}-m_{ \nu} \vert ^{2}+(m_{\zeta +2})^{2})} \\ &\quad = \frac{ \vert (\frac{1}{2} )^{\nu +1}- (\frac{1}{2} )^{\zeta +1} \vert ^{2} + ( 1- (\frac{1}{2} )^{\zeta +1} ) ^{2} }{ \vert (\frac{1}{2} )^{\nu}- (\frac{1}{2} )^{\zeta} \vert ^{2}+ (1- (\frac{1}{2} )^{\zeta +2} ) ^{2}} e^{ \vert (\frac{1}{2} )^{\nu +1}- (\frac{1}{2} )^{ \zeta +1} \vert ^{2} + ( 1- (\frac{1}{2} )^{\zeta +1} ) ^{2}- \vert (\frac{1}{2} )^{\nu}- (\frac{1}{2} )^{\zeta} \vert ^{2} - (1- (\frac{1}{2} )^{\zeta +2} ) ^{2}} \\ &\quad \leq e^{ ( \vert (\frac{1}{2} )^{\nu +1}- (\frac{1}{2} )^{\zeta +1} \vert ^{2} + ( 1- (\frac{1}{2} )^{\zeta +1} ) ^{2} )- ( \vert (\frac{1}{2} )^{\nu}- ( \frac{1}{2} )^{\zeta} \vert ^{2} + (1- (\frac{1}{2} )^{ \zeta +2} ) ^{2} )} \\ &\quad < e^{-\tau}, \end{aligned} $$

which is true for all \(\zeta , \nu \in \mathbb{N}\) provided that \(\zeta \geq \nu >1\), where \(\tau >0\). Thus, all the required conditions of Theorem 2.7 are satisfied. Here, the mapping S has a fixed point (\(m_{1}\) and \(m_{\zeta}\) are fixed points).

3 An application

Here, we apply our main result to find a solution to an integral equation of Fredholm type. Take \(I=[0,1]\). Denote by \(\mathcal{M} =\mathcal{C}(I,\mathbb{R}^{2})\) the space of all continuous functions defined from I to \(\mathbb{R}^{2}\). We endow \(\mathcal{M}\) with the usual sup-norm. We consider a partial \(\mathfrak{b}\) metric on \(\mathcal{M}\) defined by

$$ p_{\mathfrak{b}}(\phi , \psi )= { \Vert \phi -\psi \Vert }_{ \infty}= \sup_{m \in I} \bigl\{ {e^{-mp}} { \bigl\vert \phi (m) - \psi (m) \bigr\vert }^{q}\bigr\} \quad p,q>1, $$

for all \(\phi , \psi \in \mathcal{M}\). It is easy to verify that \((\mathcal{M},p_{\mathfrak{b}})\) is a complete P\(\mathfrak{b}\)MS. Consider the Fredholm integral inclusion

$$ \phi (\zeta )\in f(\zeta )+ \int _{0}^{1}k_{\phi}\bigl(\zeta ,x^{*},\phi \bigl(x^{*}\bigr)\bigr)\,dx^{*}, $$
(3.1)

such that for every \(\mathcal{K_{\phi}}: I \times I \times \mathbb{R}^{2} \to K( \mathcal{M})\) there exists

$$ k_{\phi} \bigl(\zeta ,x^{*}, \phi ^{*}\bigr) \in \mathcal{K_{\phi}}\bigl(\zeta ,x^{*}, \phi ^{*}\bigr). $$

Define a multivalued mapping \(S :\mathcal{M} \to K(\mathcal{M}) \) as

$$ S\bigl(\phi (\zeta )\bigr)= \biggl\{ \phi ^{*}(\zeta ) : \phi ^{*}(\zeta ) \in \omega (\zeta )+ \int _{0}^{1}\mathcal{K_{\phi}}\bigl(\zeta ,x^{*},\phi \bigl(x^{*}\bigr)\bigr)\,dx^{*} \biggr\} . $$
(3.2)

Theorem 3.1

Suppose that the following conditions hold:

  1. (1)

    \(\mathcal{K_{\phi}}:I\times I \times \mathbb{R}^{2}\rightarrow \mathbb{R}^{2}\) and \(f:I\to \mathbb{R}^{2}\) are continuous;

  2. (2)

    there exists \(\phi _{0} \in \mathcal{M}\) such that \(\phi _{k} \in S\phi _{k-1}\);

  3. (3)

    there exists a continuous function \(\mathfrak{f}: I \times I \to I\) such that

    $$ \bigl\vert k_{\phi}\bigl(\zeta ,x^{*},\phi \bigl(x^{*}\bigr)\bigr) -k_{\psi}\bigl(\zeta ,x^{*}, \psi \bigl(x^{*}\bigr)\bigr) \bigr\vert ^{q} \leq \sup _{x^{*} \in I} \mathfrak{f}\bigl(\phi \bigl(x^{*}\bigr),\psi \bigl(x^{*}\bigr)\bigr) \bigl\vert \phi \bigl(x^{*}\bigr)- \psi \bigl(x^{*}\bigr) \bigr\vert ^{q}, $$

    for each \(\zeta ,x^{*} \in I\) and \(\mathfrak{f}(\phi (x^{*}),\psi (x^{*}))\leq \gamma \).

Then the integral inclusion (3.1) has a solution.

Proof

Let \((\mathcal{M},p_{\mathfrak{b}})\) be a complete P\(\mathfrak{b}\)MS. We choose

$$ \mathcal{F}(\zeta )=\ln (\zeta ), $$

for all \(\zeta \in (0,\infty )\). So after going through a natural logarithm, our condition will be

$$ \mathcal{H}_{p_{\mathfrak{b}}}\bigl(S\bigl(\phi (\zeta ),S\psi (\zeta )\bigr)\bigr) \leq e^{- \tau}M(\phi , \psi ), $$

with \(\alpha (\phi ,\psi )=1\). Next, to show that S satisfies this condition, let \(p >1 \) such that

$$ \frac{1}{p}+ \frac{1}{q}=1, $$

then for \(\phi ^{*} \in S(\phi )\), we have

$$\begin{aligned}& p_{\mathfrak{b}}\bigl(\bigl(\phi ^{*}(\zeta ),S\bigl(\psi (\zeta )\bigr)\bigr)\bigr) \leq p_{\mathfrak{b}}\bigl(\phi ^{*}(\zeta ),\bigl(\psi ^{*}(\zeta )\bigr)\bigr) \\& \quad = \sup_{\zeta \in I}{e^{-\zeta \gamma}} { \bigl\vert \phi ^{*}(\zeta ) -\psi ^{*}( \zeta ) \bigr\vert }^{q} \\& \quad =\sup_{ \zeta \in I}e^{-\zeta \gamma} \biggl\vert \int _{0}^{1}k_{\phi}\bigl( \zeta ,x^{*},\phi \bigl(x^{*}\bigr)\bigr)-k_{\psi}\bigl( \zeta ,x^{*},\psi \bigl(x^{*}\bigr)\bigr) \biggr\vert ^{q}\,dx^{*} \\& \quad \leq \sup_{ \zeta \in I}e^{-\zeta \gamma} \biggl[\biggl( \int _{0}^{1} \vert 1 \vert ^{p}\,dx^{*}\biggr)^{ \frac{1}{p}} \int _{0}^{1} \bigl( \bigl\vert k_{\phi} \bigl(\zeta ,x^{*},\phi \bigl(x^{*}\bigr)\bigr)-k_{ \psi} \bigl(\zeta ,x^{*},\psi \bigl(x^{*}\bigr)\bigr) \bigr\vert ^{q} \bigr)^{\frac{1}{q}} \biggr]^{q}\,dx^{*} \\& \quad =\sup_{ \zeta \in I}e^{-\zeta \gamma} \int _{0}^{1} \bigl\vert k_{\phi}\bigl( \zeta ,x^{*}, \phi \bigl(x^{*}\bigr)\bigr)-k_{\psi} \bigl(\zeta ,x^{*},\psi \bigl(x^{*}\bigr)\bigr) \bigr\vert ^{q}\,dx^{*} \\& \quad =\sup_{ \zeta \in I}e^{-\zeta \gamma} \int _{0}^{1} \bigl\vert e^{-x^{*}\gamma +x^{*} \gamma} k_{\phi}\bigl(\zeta ,x^{*},\phi \bigl(x^{*}\bigr) \bigr)-k_{\psi}\bigl(\zeta ,x^{*}, \psi \bigl(x^{*} \bigr)\bigr) \bigr\vert ^{q}\,dx^{*} \\& \quad \leq \sup_{ \zeta \in I}e^{-\zeta \gamma} \int _{0}^{1} e^{x^{*} \gamma}\mathfrak{f}\bigl( \phi \bigl(x^{*}\bigr),\psi \bigl(x^{*}\bigr)\bigr) \sup _{ x^{*} \in I}e^{-x^{*}\gamma} \bigl\vert \phi \bigl(x^{*} \bigr)-\psi \bigl(x^{*}\bigr) \bigr\vert ^{q}\,dx^{*} \\& \quad = \gamma \bigl\Vert \phi \bigl(x^{*}\bigr) - \psi \bigl(x^{*}\bigr) \bigr\Vert _{\infty} \sup_{ \zeta \in I} e^{-\zeta \gamma} \int _{0}^{1}e^{x^{*}\gamma}\,dx^{*} \\& \quad = p_{\mathfrak{b}}\bigl(\phi \bigl(x^{*}\bigr),\psi \bigl(x^{*}\bigr)\bigr) (1) \bigl(e^{\gamma} -1\bigr) \\& \quad \leq p_{\mathfrak{b}}\bigl(\phi \bigl(x^{*}\bigr),\psi \bigl(x^{*}\bigr)\bigr)e^{\gamma} \\& \quad \leq e^{\gamma} \mathbb{M}\bigl(\phi \bigl(x^{*}\bigr),\psi \bigl(x^{*}\bigr)\bigr), \end{aligned}$$

where

$$\begin{aligned}& \mathbb{M}\bigl(\phi \bigl(x^{*}\bigr),\psi \bigl(x^{*} \bigr)\bigr) \\& \quad = \max \biggl\{ p_{\mathfrak{b}}\bigl( \phi \bigl(x^{*} \bigr),\psi \bigl(x^{*}\bigr)\bigr),p_{\mathfrak{b}}\bigl(\phi \bigl(x^{*}\bigr),S\bigl(\phi \bigl(x^{*}\bigr)\bigr) \bigr),p_{ \mathfrak{b}}\bigl(\psi \bigl(x^{*}\bigr),S\bigl(\psi \bigl(x^{*}\bigr)\bigr)\bigr), \\& \qquad {} \frac{p_{\mathfrak{b}}(\phi (x^{*}),S(\psi (x^{*})))+p_{\mathfrak{b}}(\psi (x^{*}),S(\phi (x^{*})))}{2\mathfrak{b}} \biggr\} . \end{aligned}$$

Also, as \(\phi ^{*}\) is arbitrary, we have

$$ \delta _{p_{\mathfrak{b}}}\bigl(S(\phi ),S(\psi )\bigr) \leq e^{\gamma} \mathbb{M}(\phi ,\psi ). $$

Similarly, one finds

$$ \delta _{p_{\mathfrak{b}}}\bigl(S(\psi ),S(\phi )\bigr)\leq e^{\gamma} \mathbb{M}(\psi ,\phi ). $$

Then

$$ \mathcal{H}_{p_{\mathfrak{b}}}\bigl(S(\phi ),S(\psi )\bigr) \leq e^{\gamma} \mathbb{M}(\phi ,\psi ). $$

That is, \(\mathcal{H}_{p_{\mathfrak{b}}}(S(\phi ),S(\psi ))\leq e^{-\tau}M( \phi ,\psi )\).

Our desired contraction condition is then satisfied by choosing \(-\tau =\gamma \). Thus, all conditions of Theorem 2.5 are satisfied, and so the integral inclusion (3.1) has a solution, and 0 is a fixed point of S. □

Availability of data and materials

This clause is not applicable to this paper.

Code availability

There is no code required in this paper.

References

  1. Ali, M.U., Kamran, T., Uddin, F., Anwar, M.: Fixed and common fixed point theorems for Wardowski type mappings in uniform spaces. UPB Sci. Bull., Ser. A 80(1), 3–12 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Altun, I., Minak, G., Dag, H.: Multivalued F-contractions on complete metric space. J. Nonlinear Convex Anal. 16(4), 659–666 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Anwar, M., Shehwar, D., Ali, R., Hussain, N.: Wardowski type α-F-contractive approach for nonself multivalued mappings. UPB Sci. Bull., Ser. A 82(1), 69–78 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Anwar, M., Shehwar, D., Ali, R.: Fixed point theorems on α-F-contractive mapping in extended b-metric spaces. J. Math. Anal. 11(2), 43–51 (2020)

    MathSciNet  Google Scholar 

  5. Batul, S., Sagheer, D., Anwar, M., Aydi, H., Parvaneh, V.: Fuzzy fixed point results of fuzzy mappings on b-metric spaces via (α-F)-contractions. Adv. Math. Phys. 2022, Article ID 4511632 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Banach, S.: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrals. Fundam. Math. 3, 133–181 (1922)

    Article  MATH  Google Scholar 

  7. Nadler, S.B.: Multi-valued contraction mappings. Pac. J. Math. 30(2), 475–488 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kumar, S., Luambano, S.: On some fixed point theorems for multivalued F-contractions in partial metric spaces. Demonstr. Math. 54(1), 151–161 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bukatin, M., Kopperman, R., Matthews, S., Pajoohesh, H.: Partial metric spaces. Am. Math. Mon. 116(8), 708–718 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 11(1), 5–11 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Bakhtin, I.: The contraction mapping principle in quasi metric spaces. Funct. Anal. 30, 26–37 (1989)

    MATH  Google Scholar 

  12. Shukla, S.: Partial b-metric spaces and fixed point theorems. Mediterr. J. Math. 11, 703–711 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for αψ-contractive type mappings. Nonlinear Anal. 75, 2154–2165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Felhi, A.: Some fixed point results for multivalued contractive mappings in partial b-metric spaces. J. Adv. Math. Stud. 9(2), 208–225 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sholastica, L., Kumar, S., Kakiko, S.: Fixed points for F-contraction mappings in partial metric spaces. Lobachevskii J. Math. 40, 183–188 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wangwe, L., Kumar, S.: A common fixed point theorem for generalised F-Kannan mapping in metric space with applications. Abstr. Appl. Anal. 2021, Article ID 6619877 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wangwe, L., Kumar, S.: Fixed point theorems for multi-valued \(\alpha -F-\) contractions in partial metric spaces with an application. Results Nonlinear Anal. 4(3), 130–148 (2021)

    Google Scholar 

  19. Wangwe, L., Kumar, S.: A common fixed point theorem for generalized F-Kannan Suzuki type mapping in TVS valued cone metric space with applications. J. Math. 2022, Article ID 6504663 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the learned reviewers for their valuable comments.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and signicantly in writing this article. All authors read and approved the nal manuscript.

Corresponding author

Correspondence to Santosh Kumar.

Ethics declarations

Ethics approval and consent to participate

Not Applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagheer, DeS., Batul, S., Urooj, I. et al. New multivalued F-contraction mappings involving α-admissibility with an application. J Inequal Appl 2023, 109 (2023). https://doi.org/10.1186/s13660-023-03016-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-03016-x

Mathematics Subject Classification

Keywords