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Abstract
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1 Introduction and preliminaries
In 1922, Banach [6] proposed the well-known Banach contraction principle (BCP), which
employed a contraction mapping in the domain of complete metric spaces. Later, it was
regarded as an effective approach for locating unique fixed points. According to the BCP,
in a complete metric space (M, d∗), a mapping f : M → M satisfying the contraction
condition on M, i.e.,

d∗(f ζ , f β) ≤ cd∗(ζ ,β),

for all ζ ,β ∈M, provided c ∈ [0, 1), has a unique fixed point.
The BCP was generalized using varieties of mappings on several extensions of metric

spaces. In 1969, Nadler [7] generalized the BCP for multivalued mappings. In order to op-
timize a variety of approximation theory problems, it is much more advantageous to use
proper fixed-point results for multivalued transformations. The notion of F-contractions
was introduced by Wardowski [15]. Altun et al. [2] focused on the existence of the fixed
point for multivalued F-contractions and proved certain fixed-point theorems on the set-
ting of metric spaces. Many extensions and generalizations of BCP were produced and
the existence and uniqueness of fixed-point were proved. Ali et al. [1] introduced the no-
tion of α-F-admissible type mappings in the setting of uniform spaces. One can see many
interesting results on α-F mappings in [3–5, 18].

In 2014, Shukla [12] gave a new direction for extending the metric space. He blended the
principles of a partial metric space [9] and a b-metric space [10, 11] together and proposed
a new notion of a partial b-metric space to present a fine interpretation of BCP in such
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a space. Kumar et al. [8] extended these results to partial metric spaces and proved fixed
point results for multivalued F-contraction mappings. Kumar et al. [8] presented an article
in April 2021, using multivalued F-mappings in partial metric spaces. A sound general-
ization of BCP under this new direction was given. One can see more work in the papers
[16, 17, 19] and the references therein. Motivated by his work, an idea of extending the
BCP in the globe of a partial b-metric space by integrating the notion of α-admissibility
introduced by Samet et al. [13] under multivalued F-contractions, is presented.

Take R
+ = [0,∞) and denote by N the set of positive integers. Throughout the article,

the compact subset of the underlying space M will be denoted by K(M). Let us now look
at some essential concepts and consequences that will set a foundation for our main result.

Definition 1.1 [12] Let M �= φ and b≥ 1 be any real number. A map pb : M×M→R
+

satisfying the following properties on M is called a partial b metric on M:
ṕb(1): pb(m1, m2) = pb(m1, m1) = pb(m2, m2) if and only if m1 = m2;
ṕb(2): pb(m1, m2) ≥ pb(m1, m1);
ṕb(3): pb(m1, m2) = pb(m2, m1);
ṕb(4): pb(m1, m2) ≤ b{pb(m1, m3) + pb(m3, m2)} – pb(m3, m3),for all m1, m2, m3 ∈M.
The pair (M, pb) is said to be a partial b-metric space (PbMS).

Example 1.2 Let M = R
+. We define pb : M×M→M by

pb(m1, m2) = |m1 – m2|q +
[
max{m1, m2}

]q, for all m1, m2 ∈M.

Let q > 1 be any constant, then (M, pb) is a PbMS with b = 2q–1.

Definition 1.3 Let (M, pb) be a PbMS with b ≥ 1. Let {mξ } be a sequence in M and
m0 ∈M be any arbitrary element.

(1) The sequence {mξ } is called a convergent sequence with limit m0 if

lim
ξ→∞ pb(mξ , m0) = pb(m0, m0).

As an example, consider M = [0, 1] and let mξ = { 1
ξ

: ξ ∈N}. Define a map
pb : M×M→R

+ by pb(m1, m2) = |m1 – m2|5 + v, where v > 0. It is easy to see that
(M, pb) is a PbMS with b = 24. Now,

lim
ξ→∞ pb(mξ , 0) = lim

ξ→∞ pb

(
1
ξ

, 0
)

= lim
ξ→∞

[∣
∣∣
∣
1
ξ

– 0
∣
∣∣
∣ + v

]
= pb(0, 0).

That is, {mξ } is a convergent sequence in (M, pb).
(2) A sequence {mk} in M becomes a Cauchy sequence if

lim
k,l→∞

pb(mk , ml)

exists and is finite.
(3) (M, pb) is called a complete PbMS if every Cauchy sequence converges in M.

Some useful ideas concerning Hausdorff distance under the structure of PbMSs have
been suggested by Felhi [14] and recently revised by Anwar et al. [3].
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Definition 1.4 Let (M, pb) be a PbMS with b ≥ 1, and CBpb (M) be the collection of all
nonempty bounded and closed subsets of M. For P ,Q ∈ CBpb (M), the partial Hausdorff
b-metric on CBpb (M) induced by pb is given as follows:

Hpb (P ,Q) = max
{
δpb (P ,Q), δpb (Q,P)

}
,

where δpb (P ,Q) = sup{pb(p,Q) : p ∈P} and δpb (Q,P) = sup{pb(q,P) : q ∈Q}.

Lemma 1.5 Let (M, pb) be a PbMS with b ≥ 1. Consider two nonempty subsets P ,P∗ ∈
CBpb (M), and k∗ > 1. For some p ∈P , there exists q ∈P∗ so that

pb(p, q) ≤ k∗Hpb
(
P ,P∗).

Lemma 1.6 Let (M, pb) be a PbMS with b ≥ 1, then for two nonempty subsets P ,P∗ ∈
CBpb (M), and for each p ∈P , we have

pb

(
p,P∗) ≤Hpb

(
P ,P∗).

A new concept was given by Wardowski [15] in 2012 by introducing �f -family.

Definition 1.7 A mapping F from (0,∞) to R is a member of �f -family if F satisfies
these properties:

(F1): F is strictly increasing, i.e.,

m1 < m2 	⇒ F (m1) < F (m2), for all m1, m2 ∈R.

(F2): For every positive term sequence {mξ : ξ ∈ N},

lim
n→∞ mξ = 0 ⇐⇒ lim

n→∞F (mξ ) = –∞.

(F3): If we have γ ∈ (0, 1), then limξ→0+ ξγF (ξ ) = 0.

Example 1.8 Let F : (0,∞) →R be defined as F (m) = ln(m). F is a member of �f -family.

Let (M, pb) be a PbMS with b ≥ 1. This paper initiates the concept of new multivalued
contraction mappings involving the �f -family and a given function α : M×M → R

+ in
the context of a PbMS. We develop some fixed point results for such contractions. Fur-
thermore, we illustrate our main result with concrete examples. An application is also
presented for a deeper understanding of the obtained result.

2 Main results
We start with the following definition.

Definition 2.1 Consider a set M �= φ and let S : M → 2M be a multivalued mapping.
Given a function α : M×M→R

+. S is called a multivalued α-admissible mapping if for
m, n ∈M, we have

α(m, n) ≥ 1 	⇒ α(m0, n0) ≥ 1,

where m0 ∈ S(m) and n0 ∈ S(n).
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Definition 2.2 Let (M, pb) be a PbMS with b≥ 1 and define a map S : M→ K(M). Then
S is said to be a MVF -contraction mapping if there are F ∈ �f – family and τ > 0 such
that

Hpb(Sm1, Sm2) > 0 	⇒ τ + F
(
bHpb(Sm1, Sm2)

) ≤F
(
M(m1, m2)

)
, (2.1)

where

M(m1, m2) = max

{
pb(m1, m2), pb(m1, Sm1), pb(m2, Sm2),

pb(m1, Sm2) + pb(m2, Sm1)
2b

}
.

Definition 2.3 Let (M, pb) be a PbMS with b ≥ 1. Given a function α : M × M → R
+.

The mapping S : M → K(M) is said to be a MVαF -contraction if there are F ∈ �f –
family and τ > 0 such that

Hpb(Sm1, Sm2) > 0

	⇒ τ + F
(
α(m1, m2)

(
bHpb(Sm1, Sm2)

)) ≤F
(
M(m1, m2)

)
, (2.2)

where

M(m1, m2) = max

{
pb(m1, m2), pb(m1, Sm1), pb(m2, Sm2),

pb(m1, Sm2) + pb(m2, Sm1)
2b

}
.

Lemma 2.4 Let (M, pb) be a complete PbMS with b≥ 1 and S : M→ K(M) be a MVF -
contraction mapping, then

lim
ξ→∞b

ξ vξ = 0,

where vξ = pb(mξ+1, mξ+2) and ξ = 0, 1, 2, . . . .

Proof We take an arbitrary m0 ∈M. As Sm0 is compact, it is nonempty, so we can choose
m1 ∈ Sm0. If m1 ∈ Sm1, this means that m1 is a fixed point of S trivially. Suppose m1 /∈ Sm1.
As Sm1 is closed, so we have pb(m1, Sm1) > 0. Also, we know that

pb(m1, Sm1) ≤Hpb (Sm0, Sm1). (2.3)

As Sm1 is compact, so there exists m2 ∈ Sm1 such that

pb(m1, m2) = pb(m1, Sm1).

Thus,

pb(m1, m2) ≤Hpb (Sm0, Sm1).
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Similarly for m3 ∈ Sm2, we get

pb(m2, m3) ≤Hpb (Sm1, Sm2),

which ultimately gives

pb(mξ+1, mξ+2) ≤Hpb (Smξ , Smξ+1).

This leads to

b
(
pb(mξ+1, mξ+2)

) ≤ b
(
Hpb (Smξ , Smξ+1)

)
.

The condition (F1) implies that

F
(
b
(
pb(mξ+1, mξ+2)

)) ≤F
(
b
(
Hpb (Smξ , Smξ+1)

))
. (2.4)

By (2.1), we have

F
(
b
(
pb(mξ+1, mξ+2)

)) ≤F
(
M(mξ+1, mξ )

)
– τ , (2.5)

where

M(mξ , mξ+1) = max

{
pb(mξ , mξ+1), pb(mξ , Smξ ), pb(mξ+1, Smξ+1),

pb(mξ , Smξ+1) + pb(mξ+1, Smξ )
2b

}

= max

{
pb(mξ , mξ+1), pb(mξ , mξ+1), pb(mξ+1, mξ+2),

pb(mξ , mξ+1) + pb(mξ+1, mξ+2)
2b

}

≤ max

{
pb(mξ , mξ+1), pb(mξ , mξ+1), pb(mξ+1, mξ+2),

b

[
pb(mξ , mξ+1) + pb(mξ+1, mξ+2)

2b

]}
.

= max
{

pb(mξ , mξ+1), pb(mξ+1, mξ+2)
}

.

Assume that

max
{

pb(mξ , mξ+1), pb(mξ+1, mξ+2)
}

= pb(mξ+1, mξ+2).

The inequality (2.5) yields

τ + F
(
b
(
pb(mξ+1, mξ+2)

)) ≤F
(
pb(mξ+1, mξ+2)

)
,

which is a contradiction. Therefore,

max
{

pb(mξ , mξ+1), pb(mξ+1, mξ+2)
}

= pb(mξ , mξ+1).
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It implies that

F
(
b
(
pb(mξ+1, mξ+2)

)) ≤F
(
pb(mξ , mξ+1)

)
.

For convenience, we are setting vξ = pb(mξ+1, mξ+2), where ξ = 0, 1, . . . . Clearly, vξ > 0 for
all ξ ∈N. Now, substituting this into the above equation, we have

τ + F
(
b(vξ )

) ≤F (vξ–1).

Iteratively,

τ + F
(
b

ξ (vξ )
) ≤F

(
b

ξ–1(vξ–1)
)
.

We will get

F (bξ (vξ ) ≤F
(
b

ξ–1(vξ–1)
)

– τ ≤F
(
b

ξ–2(vξ–2)
)

– 2τ ≤ · · · ≤F (v0) – ξτ . (2.6)

Hence,

lim
ξ→∞Fb

ξ (vξ ) = –∞,

we have

lim
ξ→∞b

ξ vξ = 0, by (F2). �

Theorem 2.5 Let (M, pb) be a complete PbMS with b ≥ 1, such that pb is a continuous
mapping and S : M→ K(M) is a multivalued αF -contraction mapping. Suppose that

(1) S is continuous;
(2) S is an α-admissible mapping;
(3) there exist m0 ∈M and m1 ∈ Sm0 such that α(m0, m1) ≥ 1.

Then S has a fixed point.

Proof For m0 ∈ M, we have by assumption α(m0, m1) ≥ 1 for some m1 ∈ Sm0. Similarly,
for m2 ∈ Sm1, we have α(m1, m2) ≥ 1 and for any sequence mξ+1 ∈ Smξ , we get

α(mξ , mξ+1) ≥ 1 for all ξ ∈N∪ {0}. (2.7)

Now, by the contraction condition (2.2), we have

τ + F
(
α(mξ , mξ+1)b

(
Hpb(mξ+1, mξ+2)

)) ≤F
(
M(mξ+1, mξ )

)
.

The inequality (2.7) implies that

τ + F
(
b
(
Hpb(mξ+1, mξ+2)

)) ≤F
(
M(mξ+1, mξ )

)
,

where b≥ 1. We have

F
(
b
(
pb(mξ+1, mξ+2)

)) ≤F
(
M(mξ+1, mξ )

)
– τ . (2.8)
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By lemma 2.4, one writes

lim
ξ→∞b

ξ vξ = 0.

By (F3), for any γ ∈ (0, 1)

lim
ξ→∞

(
b

ξ vξ

)γFb
ξ (vξ ) = 0, ∀ξ ∈N.

Using (2.6), one writes

(
b

ξ vξ

)γ (
Fb

ξ (vξ ) – F (v0)
) ≤ –

(
b

ξ vξ

)γ
ξτ ≤ 0. (2.9)

Now, as τ > 0, we have

lim
ξ→∞

(
b

ξ vξ

)γ
ξ = 0.

So, there exists ξ1 ∈ N, such that

(
b

ξ vξ

)γ
ξ ≤ 1, ∀ξ ≥ ξ1.

It implies that

b
ξ vξ ≤ 1

ξ
1
γ

. (2.10)

Now, we will prove that {mξ } is a Cauchy sequence in M. For this, let ξ , l ∈ N provided
that ξ > l ≥ ξ1. Using the triangular inequality of a PbMS, we have

pb(mξ , mη) ≤ b
{

pb(mξ , mξ+1) + pb(mξ+1, mη)
}

– pb(mξ+1, mξ+1)

≤ b
{

pb(mξ , mξ+1) + pb(mξ+1, mη)
}

≤ bpb(mξ , mξ+1) + b
2{pb(mξ+1, mξ+2) + pb(mξ+2, mη)

}

– pb(mξ+2, mξ+2)

≤ bpb(mξ , mξ+1) + b
2{pb(mξ+1, mξ+2) + pb(mξ+2, mη)

}

...

= bpb(mξ , mξ+1) + b
2{pb(mξ+1, mξ+2) + · · · + b

l–ξ pb(mη–1, mη)

=
η–1∑

β=ξ

b
β–ξ+1pb(mβ , mβ+1)

≤
∞∑

β=ξ

b
βpb(mβ+1, mβ+2)

=
∞∑

β=ξ

b
βvβ
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≤
∞∑

β=ξ

1

β
1
γ

.

The convergence of the series
∑∞

β=1
1

β
1
γ

implies that limξ→∞ pb(mξ , mη) = 0, which shows

{mξ } is a Cauchy sequence in M. Since M is complete, there exists m∗ ∈M such that

lim
ξ→∞ pb

(
mξ , m∗) = pb

(
m∗, m∗) = 0. (2.11)

We claim that m∗ is a fixed point of S, that is,

pb

(
m∗, Sm∗) = pb

(
m∗, m∗).

Suppose pb(m∗, Sm∗) > 0. So, there exists k0 ∈ N such that pb(mξ , Sm∗) > 0 for all ξ > k0.
We have

pb

(
mξ , Sm∗) ≤Hpb

(
Smξ+1, Sm∗).

By using our contraction condition and taking limit ξ → ∞, we have

τ + F
(
pb

(
m∗, Sm∗)) ≤ τ + F

(
α
(
m∗, m∗)Hpb

(
Sm∗, Sm∗))

≤F
(
M

(
m∗, m∗))

≤F
(
pb

(
m∗, Sm∗)),

where,

M
(
m∗, m∗) = max

{
pb

(
m∗, m∗), pb

(
m∗, Sm∗), pb

(
m∗, Sm∗),

pb(m∗, Sm∗) + pb(Sm∗, m∗)
2b

}

≤ pb

(
m∗, Sm∗).

It yields that

τ + F
(
pb

(
m∗, Sm∗)) ≤F

(
pb

(
m∗, Sm∗)).

Since τ > 0, the above relation yields a contradiction, therefore pb(m∗, Sm∗) = 0. Also,

pb

(
m∗, m∗) = 0.

This gives m∗ ∈ S̄m∗ = Sm∗. Proving that m∗ is a fixed point of S. �

Example 2.6 Let M = {0, 1, 2, 3, . . .} and pb : M×M→R
+ be defined as

pb(ζ ,ν) = |ζ – ν|q +
[
max{ζ ,ν}]q for all ζ ,ν ∈M.
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It is easy to check that (M, pb) is a complete PbMS with b = 2q–1, where q > 1. We also
define a multivalued map S : M→ 2M by

Sζ =

⎧
⎨

⎩
{0, 1}, if ζ = 0, 1,

{ζ – 1, ζ } otherwise.

Consider α : M×M→ [0,∞) as

α(ζ ,ν) =

⎧
⎨

⎩
2, if ζ ,ν ∈ {0, 1},
1
2 , otherwise.

Let ζ0 = 0, ζ1 = 1, then Sζ0 = {0, 1} and ζ1 = {0, 1}. Giving α(ζ0, ζ1) = α(0, 1) = 2 > 1, for some
ζ2 = 0 ∈ Sζ1, we get α(ζ1, ζ2) = α(1, 0) = 2 > 1. That is, S is an α-admissible map.

Define F : (0,∞) →R as F (ζ ) = ln(ζ ) + ζ . It can be observed easily that F is a member
of �f -family. Now, applying F on our contraction condition, one gets

τ + F
(
α(ζ ,ν)Hpb (Sζ , Sν)

) ≤F
(
M(ζ ,ν)

)
.

That is,

τ + ln
{
α(ζ ,ν)Hpb (Sζ , Sν)

}
+ α(ζ ,ν)Hpb (Sζ , Sν)

≤ ln
(
M(ζ ,ν)

)
+ M(ζ ,ν).

Hence,

τ + α(ζ ,ν)Hpb (Sζ , Sν) – M(ζ ,ν) ≤ ln
(
M(ζ ,ν)

)
– ln

{
α(ζ ,ν)Hpb (Sζ , Sν)

}
.

Therefore,

eτ+α(ζ ,ν)Hpb (Sζ ,Sν)–M(ζ ,ν) ≤ M(ζ ,ν)
α(ζ ,ν)Hpb (Sζ , Sν)

That is,

α(ζ ,ν)Hpb (Sζ , Sν)
M(ζ ,ν)

eα(ζ ,ν)Hpb (Sζ ,Sν)–M(ζ ,ν) ≤ e–τ . (2.12)

Now,

δpb
(
P ,P∗) = δpb (Sζ , Sν)

= max
{

pb(ζ , Sν), pb(ζ – 1, Sν)
}

= max
{
inf

{
pb(ζ ,ν), pb(ζ ,ν – 1)

}
, inf

{
pb(ζ – 1,ν), pb(ζ – 1,ν – 1)

}}

= max
{|ζ – ν|q + ζ q, |ζ – ν – 2|q + ζ q}

= |ζ – ν|q + ζ q.
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Similarly, we can calculate

δpb
(
P∗,P

)
= |ζ – ν|q + ζ q.

Hence,

Hpb
(
P ,P∗) = max

{|ζ – ν|q + ζ q, |ζ – ν|q + ζ q}

= |ζ – ν|q + ζ q.
(2.13)

Also,

M(ζ ,ν) ≥ pb(ζ ,ν) = |ζ – ν|q + ζ q. (2.14)

Setting these both in the contraction condition, we get

α(ζ ,ν)Hpb (Sζ , Sν)
M(ζ ,ν)

e(α(ζ ,ν)Hpb (Sζ ,Sν))–M(ζ ,ν)

=
|ζ – ν|q + ζ q

2M(ζ ,ν)
e

1
2 (|ζ–ν|q+ζq)–M(ζ ,ν) using (2.25)

≤ |ζ – ν|q + ζ q

2|ζ – ν|q + ζ q e
1
2 (|ζ–ν|q+ζq)–|ζ–ν|q+ζq using (2.26)

=
1
2

e
–1
2 (|ζ–ν|q+ζq)

=
1
2

e–τ

< e–τ .

This implies that (2.12) is satisfied with τ = 1
2 (|ζ – ν|q + ζ q), which is a positive number for

ζ �= ν . All conditions of Theorem 2.5 are true, and 0 and 1 are two fixed points of S.

Theorem 2.7 Let (M, pb) be a complete PbMS with b ≥ 1 such that pb is a continuous
mapping. Let S : M → CBpb (M) be a MVαF -contraction mapping and B ⊂ (0,∞) with
inf B > 0. Suppose that

(1) S is continuous;
(2) S is an α-admissible mapping;
(3) there exist m0 ∈M and m1 ∈ Sm0 such that α(m0, m1) ≥ 1;
(4) F (inf B) = infF (B), where F ∈ �f – family.

Then S has a fixed point.

Proof We take an arbitrary m0 ∈ M. As Sm, the set of all images of m ∈ M, is nonempty
for all values in M, we can choose m1 ∈ Sm0. If m1 ∈ Sm1, this means that m1 is a fixed
point of S. So suppose m1 /∈ Sm1. As Sm1 is closed, we have

pb(m1, Sm1) > 0.

Also, we know that

pb(m1, Sm1) ≤Hpb (Sm0, Sm1).
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We have

F
(
pb(m1, Sm1)

) ≤F
(
Hpb (Sm0, Sm1)

)
, byF2. (2.15)

Using (4)

F
(
pb(m1, Sm1)

)
= inf

g∈Sm1
F

(
pb(m1, g)

)
.

That is,

inf
g∈Sm1

F
(
pb(m1, g)

) ≤F
(
Hpb (Sm0, Sm1)

)
. (2.16)

As Sm1 is compact, so we can find a m2 ∈ Sm1 such that

inf
g∈Sm1

F
(
pb(m1, g)

)
= F

(
pb(m1, m2)

)
.

From (2.15),

F
(
pb(m1, m2)

) ≤F
(
Hpb (Sm0, Sm1)

)
. (2.17)

Similarly, for m3 ∈ Sm2, we get

F
(
pb(m2, m3)

) ≤F
(
Hpb (Sm1, Sm2)

)
,

which ultimately gives

F
(
pb(mξ+1, mξ+2)

) ≤F
(
Hpb (Smξ , Smξ+1)

)
.

As b≥ 1, so we can write

F
(
b
(
pb(mξ+1, mξ+2)

)) ≤F
(
b
(
Hpb (Smξ , Smξ+1)

))
. (2.18)

For m0 ∈ M by assumption, α(m0, m1) ≥ 1 for some m1 ∈ Sm0. Similarly, for some m2 ∈
Sm1, we have α(m1, m2) ≥ 1 and for any sequence mξ+1 ∈ Smξ , we may write

α(mξ , mξ+1) ≥ 1 for all ξ ∈N∪ {0}. (2.19)

Using (2.2), we have

τ + F
(
α(mξ , mξ+1)

(
Hpb(mξ+1, mξ+2)

)) ≤F
(
M(mξ+1, mξ )

)
,

The inequality (2.19) implies that

τ + F
(
b
(
Hpb(mξ+1, mξ+2)

)) ≤F
(
M(mξ+1, mξ )

)
.
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Using (2.18), we have

F
(
b
(
pb(mξ+1, mξ+2)

)) ≤F
(
M(mξ+1, mξ )

)
– τ . (2.20)

Now, using Lemma 2.4, one writes

lim
ξ→∞b

ξ vξ = 0,

Now, by (F3), for any γ ∈ (0, 1) and for all ξ ∈N,

lim
ξ→∞

(
b

ξ vξ

)γFb
ξ (vξ ) = 0.

It implies that

(
b

ξ vξ

)γ (
Fb

ξ (vξ ) – F (v0)
) ≤ –

(
b

ξ vξ

)γ
ξτ ≤ 0. (2.21)

As τ > 0, we have

lim
ξ→∞

(
b

ξ vξ

)γ
ξ = 0.

So there exists ξ1 ∈N such that (bξ vξ )γ ξ ≤ 1 for all ξ ≥ ξ1. Then

b
ξ vξ ≤ 1

ξ
1
γ

. (2.22)

Next, we prove that {mξ } is a Cauchy sequence in M. For this, following the same steps
as done in Theorem 2.5, one can easily have

lim
ξ→∞ pb

(
mξ , m∗) = pb

(
m∗, m∗) = 0. (2.23)

We claim that m∗ is a fixed point of S. Suppose that pb(m∗, Sm∗) > 0, this means there
exists k0 ∈ N such that we have pb(mξ , Sm∗) > 0 for all ξ > k0. One writes

pb

(
mξ , Sm∗) ≤Hpb

(
Smξ+1, Sm∗).

Using (2.2) and taking limit ξ → ∞, we have

τ + F
(
pb

(
m∗, Sm∗)) ≤ τ + F

(
α
(
m∗, m∗)Hpb

(
Sm∗, Sm∗))

≤F
(
M

(
m∗, m∗))

≤F
(
pb

(
m∗, Sm∗)),

where

M
(
m∗, m∗) = max

{
pb

(
m∗, m∗), pb

(
m∗, Sm∗), pb

(
m∗, Sm∗),
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pb(m∗, Sm∗) + pb(Sm∗, m∗)
2b

}

≤ pb

(
m∗, Sm∗).

It implies that

τ + F
(
pb

(
m∗, Sm∗)) ≤F

(
pb

(
m∗, Sm∗)).

Since τ > 0, the above relation yields a contradiction. Thus,

pb

(
m∗, Sm∗) = 0.

Also, pb(m∗, m∗) = 0. This gives m∗ ∈ S̄m∗ = Sm∗. Hence, m∗ is a fixed point of S. �

Example 2.8 Let M = {mζ = 1 – ( 1
2 )ζ : ζ ∈N} and pb : M×M→ [0,∞) be defined by

pb(ζ ,ν) = |ζ – ν|2 +
[
max{ζ ,ν}]2for allζ ,ν ∈M.

One can easily verify that (M, pb) is a complete PbMS with b = 2. We also define a multi-
valued map S : M→ 2M by

Sm =

⎧
⎨

⎩
{m1}, m = m1,

{mζ , mζ+1}, m = mζ , ζ = 2, 3, . . . .

Consider α(mζ , mν) = 1 and M(mζ , mν) = pb(mζ , mν). Take F : (0, infty) → R as F (ζ ) =
ln(ζ ) + ζ . Hence, the contraction condition will take the following form:

Hpb (Smζ , Smν)
M(mζ , mν)

eHpb (Smζ ,Smν )–M(mζ ,mν ) ≤ e–τ . (2.24)

Now, we verify this condition for the following two possible cases:
Case I
If Hpb (Smζ , Sm1) > 0 and ν = 1, we have

δpb (Smζ , Sm1) = max
{

pb(mζ , Sm1), pb(mζ+1, Sm1)
}

= max
{|mζ – m1|2 + (mζ )2, |mζ+1 – m1|2 + (mζ+1)2}

= |mζ+1 – m1|2 + (mζ+1)2.

In the same manner,

δpb (Sm1, Smζ ) = |mζ – m1|2 + (mζ )2.

It implies that

Hpb (Smζ , Sm1) = |mζ+1 – m1|2 + (mζ+1)2. (2.25)
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Also,

M(mζ , m1) = |mζ – m1|2 + (mζ )2 ≤ |mζ – m1|2 + (mζ+2)2. (2.26)

One writes

Hpb (Smζ , Sm1)
M(mζ , m1)

e(Hpb (Smζ ,Sm1)–M(mζ ,m1))

≤ |mζ+1 – m1|2 + (mζ+1)2

|mζ – m1|2 + (mζ+2)2 e(|mζ+1–m1|2+(mζ+1)2)–(|mζ –m1|2+(mζ+2)2)

=
|( 1

2 ) – ( 1
2 )ζ+1|2 + (1 – ( 1

2 )ζ+1)2

|( 1
2 ) – ( 1

2 )ζ |2 + (1 – ( 1
2 )ζ+2)2

e|( 1
2 )–( 1

2 )ζ+1|2+(1–( 1
2 )ζ+1)2–|( 1

2 )–( 1
2 )ζ |2–(1–( 1

2 )ζ+2)2

≤ e(2( 1
2 )2ζ+2+( 1

2 )ζ –[( 1
2 )2ζ +( 1

2 )2ζ+4+3( 1
2 )ζ+1+2( 1

2 )ζ+2])

< e–τ ,

for some τ > 0.
Case II
If Hpb (Smζ , Smν) > 0 with ζ ≥ ν > 1, we have

Hpb (Smζ , Smν) = |mζ+1 – mν+1|2 + (mζ+1)2,

and

M(mζ , mν) = |mζ – mν |2 + (mζ )2 ≤ |mζ – mν |2 + (mζ+2)2.

From (2.24), we have

Hpb (Smζ , Smν)
M(mζ , mν)

e(Hpb (Smζ ,Smν )–M(mζ ,mν ))

≤ |mζ+1 – mν+1|2 + (mζ+1)2

|mζ – mν |2 + (mζ+2)2 e(|mζ+1–mν+1|2+(mζ+1)2)–(|mζ –mν |2+(mζ+2)2)

=
|( 1

2 )ν+1 – ( 1
2 )ζ+1|2 + (1 – ( 1

2 )ζ+1)2

|( 1
2 )ν – ( 1

2 )ζ |2 + (1 – ( 1
2 )ζ+2)2

e|( 1
2 )ν+1–( 1

2 )ζ+1|2+(1–( 1
2 )ζ+1)2–|( 1

2 )ν–( 1
2 )ζ |2–(1–( 1

2 )ζ+2)2

≤ e(|( 1
2 )ν+1–( 1

2 )ζ+1|2+(1–( 1
2 )ζ+1)2)–(|( 1

2 )ν–( 1
2 )ζ |2+(1–( 1

2 )ζ+2)2)

< e–τ ,

which is true for all ζ ,ν ∈ N provided that ζ ≥ ν > 1, where τ > 0. Thus, all the required
conditions of Theorem 2.7 are satisfied. Here, the mapping S has a fixed point (m1 and mζ

are fixed points).

3 An application
Here, we apply our main result to find a solution to an integral equation of Fredholm type.
Take I = [0, 1]. Denote by M = C(I,R2) the space of all continuous functions defined from
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I to R
2. We endow M with the usual sup-norm. We consider a partial b metric on M

defined by

pb(φ,ψ) = ‖φ – ψ‖∞ = sup
m∈I

{
e–mp∣∣φ(m) – ψ(m)

∣
∣q} p, q > 1,

for all φ,ψ ∈ M. It is easy to verify that (M, pb) is a complete PbMS. Consider the Fred-
holm integral inclusion

φ(ζ ) ∈ f (ζ ) +
∫ 1

0
kφ

(
ζ , x∗,φ

(
x∗))dx∗, (3.1)

such that for every Kφ : I × I ×R
2 → K(M) there exists

kφ

(
ζ , x∗,φ∗) ∈Kφ

(
ζ , x∗,φ∗).

Define a multivalued mapping S : M→ K(M) as

S
(
φ(ζ )

)
=

{
φ∗(ζ ) : φ∗(ζ ) ∈ ω(ζ ) +

∫ 1

0
Kφ

(
ζ , x∗,φ

(
x∗))dx∗

}
. (3.2)

Theorem 3.1 Suppose that the following conditions hold:
(1) Kφ : I × I ×R

2 →R
2 and f : I → R

2 are continuous;
(2) there exists φ0 ∈M such that φk ∈ Sφk–1;
(3) there exists a continuous function f : I × I → I such that

∣
∣kφ

(
ζ , x∗,φ

(
x∗)) – kψ

(
ζ , x∗,ψ

(
x∗))∣∣q ≤ sup

x∗∈I
f
(
φ
(
x∗),ψ

(
x∗))∣∣φ

(
x∗) – ψ

(
x∗)∣∣q,

for each ζ , x∗ ∈ I and f(φ(x∗),ψ(x∗)) ≤ γ .
Then the integral inclusion (3.1) has a solution.

Proof Let (M, pb) be a complete PbMS. We choose

F (ζ ) = ln(ζ ),

for all ζ ∈ (0,∞). So after going through a natural logarithm, our condition will be

Hpb
(
S
(
φ(ζ ), Sψ(ζ )

)) ≤ e–τ M(φ,ψ),

with α(φ,ψ) = 1. Next, to show that S satisfies this condition, let p > 1 such that

1
p

+
1
q

= 1,

then for φ∗ ∈ S(φ), we have

pb

((
φ∗(ζ ), S

(
ψ(ζ )

))) ≤ pb

(
φ∗(ζ ),

(
ψ∗(ζ )

))

= sup
ζ∈I

e–ζγ
∣
∣φ∗(ζ ) – ψ∗(ζ )

∣
∣q
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= sup
ζ∈I

e–ζγ

∣
∣∣
∣

∫ 1

0
kφ

(
ζ , x∗,φ

(
x∗)) – kψ

(
ζ , x∗,ψ

(
x∗))

∣
∣∣
∣

q

dx∗

≤ sup
ζ∈I

e–ζγ

[(∫ 1

0
|1|p dx∗

) 1
p
∫ 1

0

(∣∣kφ

(
ζ , x∗,φ

(
x∗)) – kψ

(
ζ , x∗,ψ

(
x∗))∣∣q) 1

q

]q

dx∗

= sup
ζ∈I

e–ζγ

∫ 1

0

∣
∣kφ

(
ζ , x∗,φ

(
x∗)) – kψ

(
ζ , x∗,ψ

(
x∗))∣∣q dx∗

= sup
ζ∈I

e–ζγ

∫ 1

0

∣∣e–x∗γ +x∗γ kφ

(
ζ , x∗,φ

(
x∗)) – kψ

(
ζ , x∗,ψ

(
x∗))∣∣q dx∗

≤ sup
ζ∈I

e–ζγ

∫ 1

0
ex∗γ

f
(
φ
(
x∗),ψ

(
x∗)) sup

x∗∈I
e–x∗γ

∣∣φ
(
x∗) – ψ

(
x∗)∣∣q dx∗

= γ
∥
∥φ

(
x∗) – ψ

(
x∗)∥∥∞ sup

ζ∈I
e–ζγ

∫ 1

0
ex∗γ dx∗

= pb

(
φ
(
x∗),ψ

(
x∗))(1)

(
eγ – 1

)

≤ pb

(
φ
(
x∗),ψ

(
x∗))eγ

≤ eγ
M

(
φ
(
x∗),ψ

(
x∗)),

where

M
(
φ
(
x∗),ψ

(
x∗))

= max

{
pb

(
φ
(
x∗),ψ

(
x∗)), pb

(
φ
(
x∗), S

(
φ
(
x∗))), pb

(
ψ

(
x∗), S

(
ψ

(
x∗))),

pb(φ(x∗), S(ψ(x∗))) + pb(ψ(x∗), S(φ(x∗)))
2b

}
.

Also, as φ∗ is arbitrary, we have

δpb
(
S(φ), S(ψ)

) ≤ eγ
M(φ,ψ).

Similarly, one finds

δpb
(
S(ψ), S(φ)

) ≤ eγ
M(ψ ,φ).

Then

Hpb
(
S(φ), S(ψ)

) ≤ eγ
M(φ,ψ).

That is, Hpb (S(φ), S(ψ)) ≤ e–τ M(φ,ψ).
Our desired contraction condition is then satisfied by choosing –τ = γ . Thus, all condi-

tions of Theorem 2.5 are satisfied, and so the integral inclusion (3.1) has a solution, and 0
is a fixed point of S. �
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