Skip to main content

Generalized UH-stability of a nonlinear fractional coupling \((\mathcalligra{p}_{1},\mathcalligra{p}_{2})\)-Laplacian system concerned with nonsingular Atangana–Baleanu fractional calculus

Abstract

The classical \(\mathcalligra{p}\)-Laplace equation is one of the special and significant second-order ODEs. The fractional-order \(\mathcalligra{p}\)-Laplace ODE is an important generalization. In this paper, we mainly treat with a nonlinear coupling \((\mathcalligra{p}_{1},\mathcalligra{p}_{2})\)-Laplacian systems involving the nonsingular Atangana–Baleanu (AB) fractional derivative. In accordance with the value range of parameters \(\mathcalligra{p}_{1}\) and \(\mathcalligra{p}_{2}\), we obtain sufficient criteria for the existence and uniqueness of solution in four cases. By using some inequality techniques we further establish the generalized UH-stability for this system. Finally, we test the validity and practicality of the main results by an example.

1 Introduction

In this paper, we focus on the following nonlinear fractional coupling \((\mathcalligra{p}_{1},\mathcalligra{p}_{2})\)-Laplacian systems involving a nonsingular Mittag-Leffler kernel:

$$\begin{aligned} \textstyle\begin{cases} {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\nu _{1}} [\Phi _{\mathcalligra{p}_{1}}( {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{1}}\mathcal{W}_{1}(t)) ] =G_{1}(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t)),\quad t\in (0,a], \\ {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\nu _{2}} [\Phi _{\mathcalligra{p}_{2}}( {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{2}}\mathcal{W}_{2}(t)) ] =G_{2}(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t)),\quad t\in (0,a], \\ \mathcal{W}_{1}(0)=\mathcalligra{u}_{1},\qquad \mathcal{W}_{2}(0)=\mathcalligra{u}_{2}, \qquad {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{1}}\mathcal{W}_{1}(0)= \mathcalligra{v}_{1},\qquad {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{2}} \mathcal{W}_{2}(0)=\mathcalligra{v}_{2}, \end{cases}\displaystyle \end{aligned}$$
(1.1)

where \(\mathcalligra{u}_{1},\mathcalligra{u}_{2}, \mathcalligra{v}_{1}, \mathcalligra{v}_{2} \in \mathbb{R}\), \(a>0\), \(0<\mu _{1},\mu _{2},\nu _{1},\nu _{2}\leq 1\), and \(\mathcalligra{p}_{1}, \mathcalligra{p}_{2}>1\) are some constants, \({}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{*}\) is the -order Atangana–Baleanu (AB) fractional derivative with nonsingular Mittag-Leffler kernel, \(\Phi _{\mathcalligra{p}_{k}}(z)=\vert z\vert ^{\mathcalligra{p}_{k}-2}z\), \(k=1,2\), are \(\mathcalligra{p}_{k}\)-Laplacian operators with inverses \(\Phi _{\mathcalligra{p}_{k}}^{-1}=\Phi _{\mathcalligra{q}_{k}}\), provided that \(\frac{1}{\mathcalligra{p}_{k}}+\frac{1}{\mathcalligra{q}_{k}}=1\) and \(G_{k}\in C([0,a]\times \mathbb{R}^{2},\mathbb{R})\) are nonlinear.

In 2016, Atangana and Baleanu [1] raised a distinctive fractional calculus, later named Atangana–Baleanu (AB) fractional calculus, under common skeleton frame. The most prominent feature of AB-fractional calculus is the application of a special Mittag-Leffler function in the definition. The superiority of AB-fractional derivative to Riemann–Liouville (RL) and Riemann–Caputo (RC) fractional derivatives lies in nonsingularity. In fact, for all \(0<\gamma <1\), \((t-\tau )^{-\gamma}\) and \(\mathcal{E}_{\gamma}[-\frac{\gamma}{1-\gamma}(t-\tau )]=\sum_{n=0}^{ \infty} \frac{[-\frac{\gamma}{1-\gamma}(t-\tau )]^{n}}{\Gamma (\gamma n+1)}\) are the kernels of RC- and AB-fractional derivatives of order γ, respectively. Decidedly, \((t-\tau )^{-\gamma}{\rightarrow }\infty \) (singular) and \(\mathcal{E}_{\gamma}[-\frac{\gamma}{1-\gamma}(t-\tau )]{\rightarrow }1\) (nonsingular) as \(\tau {\rightarrow }t\). The nonsingularity of the AB-fractional derivative is very useful for solving some practical problems. In fact, Atangana and Baleanu [1] successfully solved a singular thermodynamic problem by applying the AB-fractional order model by proposing the AB-fractional derivative. Many scientists applied AB-fractional differential equation models to study practical problems such as controllability [2, 3], virus and bacterial transmission [47], neuroscience [8], nanofluid [9], ion flux [10] and thermo-diffusion [11]. Due to a wide application of AB-fractional differential equations, many scholars have attached great importance to the theory of AB-fractional differential system (see [1227]). In addition, the \(\mathcalligra{p}\)-Laplacian equation can describe turbulent flow phenomenon in fundamental fluid mechanics, and hence many papers have been published dealing with its theory and applications (see [2835]).

In 1940s, Hyers and Ulam [36, 37] raised a new concept of stabilitym the Ulam and Hyers (UH) stability. Since then, the generalized UH-stability, Ulam–Hyers–Rassias stability, and generalized Ulam–Hyers–Rassias stability have also been proposed on the basis of UH-stability. Until now, the UH-type stability of various systems is still favored by scientists. As one of the important differential dynamic systems, the UH-type stability of fractional differential equations has also been focused on and achieved rich results ([14, 20, 21, 23, 2730, 35, 3843], among others). However, the UH-type stability of AB-fractional differential equations is rarely studied because the structure of the equations is more complex than that of a single differential equation. To the best my knowledge, there are no papers combining the AB-fractional derivative with coupling Laplacian system. Consequently, it is novel and interesting to probe the dynamic behavior of system (1.1). The importance of this paper is embodied in two aspects as follows: (i) Since nobody has studied the AB-fractional differential coupling Laplacian system yet, we first consider system (1.1) to fill this gap. (ii) We investigate the existence, uniqueness, and GUH-stability of system (1.1) and obtain some concise sufficient conditions.

The next framework of the paper is as follows. Section 2 reviews some necessary contents about AB-fractional calculus. In Sect. 3 the existence and uniqueness of a solution is obtained by the contraction mapping principle. In Sect. 4 the generalized UH-stability of (1.1) is further established. Section 5 gives an example illustrating the validity and availability of our main findings. A concise conclusion is made in Sect. 6.

2 Preliminaries

Definition 2.1

([44])

For \(0<\gamma \leq 1\), \(a>0\), and \(\mathcal{W}:[0,a]{\rightarrow }\mathbb{R}\), the left-sided γth-order AB-fractional integral of \(\mathcal{W}\) is defined by

$$\begin{aligned} {}^{\mathrm{AB}}\mathcal{I}_{0}^{\gamma}\mathcal{W}(t) = \frac{1-\gamma}{\mathfrak{N}(\gamma )}\mathcal{W}(t)+ \frac{\gamma}{\mathfrak{N}(\gamma )\Gamma (\gamma )} \int _{0}^{t}(t-s)^{ \gamma -1} \mathcal{W}(s)\,ds, \end{aligned}$$

where \(\mathfrak{N}(\alpha )\) is a normalization constant with \(\mathfrak{N}(0)=\mathfrak{N}(1)=1\).

Definition 2.2

([1])

For \(0<\gamma \leq 1\), \(a>0\), and \(\mathcal{W}\in C^{1}(0,a)\), the left-sided γth-order AB-fractional derivative of \(\mathcal{W}\) is defined by

$$\begin{aligned} {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\gamma}\mathcal{W}(t)= \frac{\mathfrak{N}(\gamma )}{1-\gamma} \int _{0}^{t} \mathcal{E} \biggl[- \frac{\alpha}{1-\alpha}(t-s) \biggr]\mathcal{W}'(s)\,ds, \end{aligned}$$

where \(\mathcal{E}_{\gamma}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma (\gamma n+1)}\) is the Mittag-Leffer special function with parameter γ.

Lemma 2.1

([45])

If \(\mathcal{H}\in C[0,a]\), then the unique solution of the IVP

$$\begin{aligned} \textstyle\begin{cases} {}^{\mathrm{AB}}\mathcal{D}^{\gamma}_{0^{+}}\mathcal{W}(t)=\mathcal{H}(t), \quad t\geq 0, 0< \gamma \leq 1, \\ \mathcal{W}(0)=\mathcal{W}_{0}, \end{cases}\displaystyle \end{aligned}$$

is given by

$$\begin{aligned} \mathcal{W}(t)=\mathcal{W}_{0}+\frac{1-\gamma}{\mathfrak{N}(\gamma )}\bigl[ \mathcal{H}(t)-\mathcal{H}(0)\bigr]+ \frac{\gamma}{\mathfrak{N}(\gamma )\Gamma (\gamma )} \int _{0}^{t}(t-s)^{ \gamma -1} \mathcal{H}(s)\,ds. \end{aligned}$$

Lemma 2.2

([30, 46])

Let \(p>1\). The \(\mathcalligra{p}\)-Laplacian operator \(\Phi _{\mathcalligra{p}}(z)=\vert z\vert ^{\mathcalligra{p}-2}z\) has the following properties:

  1. (i)

    If \(z\geq 0\), then \(\Phi _{\mathcalligra{p}}(z)=z^{\mathcalligra{p}-1}\), and \(\Phi _{\mathcalligra{p}}(z)\) is increasing with respect to z;

  2. (ii)

    \(\Phi _{\mathcalligra{p}}(zw)=\Phi _{\mathcalligra{p}}(z)\Phi _{\mathcalligra{p}}(w)\) for all \(z,w\in \mathbb{R}\);

  3. (iii)

    If \(\frac{1}{\mathcalligra{p}}+\frac{1}{\mathcalligra{q}}=1\), then \(\Phi _{\mathcalligra{q}}[\Phi _{\mathcalligra{p}}(z)]=\Phi _{\mathcalligra{p}}[ \Phi _{\mathcalligra{q}}(z)]=z\) for all \(z\in \mathbb{R}\);

  4. (iv)

    For all \(z,w\geq 0\), \(z\leq w\) \(\Phi _{\mathcalligra{q}}(z)\leq \Phi _{\mathcalligra{q}}(w)\);

  5. (v)

    \(0\leq z\leq \Phi _{\mathcalligra{q}}^{-1}(w)\) \(0\leq \Phi _{\mathcalligra{q}}(z)\leq w\);

  6. (vi)
    $$ \bigl\vert \Phi _{\mathcalligra{q}}(z)-\Phi _{\mathcalligra{q}}(w) \bigr\vert \leq \textstyle\begin{cases} (\mathcalligra{q}-1)\overline{M}^{\mathcalligra{q}-2} \vert z-w \vert , & \mathcalligra{q} \geq 2, 0\leq z,w\leq \overline{M}, \\ (\mathcalligra{q}-1)\underline{M}^{\mathcalligra{q}-2} \vert z-w \vert , & 1< \mathcalligra{q}< 2, z,w\geq \underline{M}\geq 0. \end{cases} $$

Lemma 2.3

Let \(\mathcalligra{u}_{1}, \mathcalligra{u}_{2}, \mathcalligra{v}_{1}, \mathcalligra{v}_{2} \in \mathbb{R}\), \(a>0\), \(0<\mu _{1},\mu _{2},\nu _{1},\nu _{2}\leq 1\), and \(\mathcalligra{p}_{1}, \mathcalligra{p}_{2}>1\) be some constants, and let \(G_{k}\in C([0,a]\times \mathbb{R}^{2},\mathbb{R})\), \(k=1,2\). Then the nonlinear AB-fractional coupling Laplacian system (1.1) is equivalent to the integral system

$$\begin{aligned} \textstyle\begin{cases} \begin{aligned} \mathcal{W}_{1}(t) ={}&\mathcalligra{u}_{1}+ \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})} [\Phi _{\mathcalligra{q}_{1}} (H_{1}(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t)) ) -\mathcalligra{v}_{1} ] \\ &{} + \frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})}\int _{0}^{t}(t-s)^{ \mu _{1}-1} \Phi _{\mathcalligra{q}_{1}} (H_{1}(s,\mathcal{W}_{1}(s), \mathcal{W}_{2}(s)) )\,ds,\quad t\in [0,a], \end{aligned} \\ \begin{aligned} \mathcal{W}_{2}(t) ={}&\mathcalligra{u}_{2}+ \frac{1-\mu _{2}}{\mathfrak{N}(\mu _{2})} [\Phi _{\mathcalligra{q}_{2}} (H_{2}(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t)) ) -\mathcalligra{v}_{2} ] \\ &{} + \frac{\mu _{2}}{\mathfrak{N}(\mu _{2})\Gamma (\mu _{2})}\int _{0}^{t}(t-s)^{ \mu _{1}-1}\Phi _{\mathcalligra{q}_{2}} (H_{2}(s,\mathcal{W}_{1}(s), \mathcal{W}_{2}(s)) )\,ds,\quad t\in [0,a], \end{aligned} \end{cases}\displaystyle \end{aligned}$$
(2.1)

where \(\frac{1}{\mathcalligra{p}_{k}}+\frac{1}{\mathcalligra{q}_{k}}=1\) (\(k=1,2\)), and

$$\begin{aligned} &\begin{aligned} H_{1}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) ={}&\Phi _{\mathcalligra{p}_{1}}( \mathcalligra{v}_{1}) +\frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})}\bigl[G_{1} \bigl(t, \mathcal{W}_{1}(t),\mathcal{W}_{2}(t)\bigr) -G_{1}(0,\mathcalligra{u}_{1},\mathcalligra{u}_{2}) \bigr] \\ &{}+ \frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t- \tau )^{\nu _{1}-1}G_{1} \bigl(\tau ,\mathcal{W}_{1}(\tau ),\mathcal{W}_{2}( \tau )\bigr)\,d\tau , \end{aligned} \\ &\begin{aligned} H_{2}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) ={}&\Phi _{\mathcalligra{p}_{2}}( \mathcalligra{v}_{2}) +\frac{1-\nu _{2}}{\mathfrak{N}(\nu _{2})}\bigl[G_{2} \bigl(t, \mathcal{W}_{1}(t),\mathcal{W}_{2}(t)\bigr)-F_{2}(0,\mathcalligra{u}_{1},\mathcalligra{u}_{2}) \bigr] \\ &{}+ \frac{\nu _{2}}{\mathfrak{N}(\nu _{2})\Gamma (\nu _{2})} \int _{0}^{t}(t- \tau )^{\nu _{2}-1}G_{2} \bigl(\tau ,\mathcal{W}_{1}(\tau ),\mathcal{W}_{2}( \tau )\bigr)\,d\tau . \end{aligned} \end{aligned}$$

Proof

Let \((\mathcal{W}_{1}(t),\mathcal{W}_{2}(t))\in C([0,a],\mathbb{R}) \times C([0,a],\mathbb{R})\) be a solution of (1.1). Then from Lemma 2.1 and the first equation of (1.1) we have

$$\begin{aligned} \begin{aligned}[b] \Phi _{\mathcalligra{p}_{1}} \bigl({}^{\mathrm{AB}} \mathcal{D}_{0^{+}}^{ \mu _{1}}\mathcal{W}_{1}(t) \bigr) ={}&\Phi _{\mathcalligra{p}_{1}} \bigl({}^{ \mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{1}} \mathcal{W}_{1}(0) \bigr) + \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl[G_{1}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) \\ &{}-G_{1}\bigl(0,\mathcal{W}_{1}(0), \mathcal{W}_{2}(0)\bigr)\bigr] \\ &{}+ \frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t- \tau )^{\nu _{1}-1}G_{1} \bigl(\tau ,\mathcal{W}_{1}(\tau ),\mathcal{W}_{2}( \tau )\bigr)\,d\tau . \end{aligned} \end{aligned}$$
(2.2)

In view of (2.2) and (iii) in Lemma 2.2, we have

$$\begin{aligned} \begin{aligned}[b] {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{1}} \mathcal{W}_{1}(t) ={}& \Phi _{\mathcalligra{q}_{1}} \biggl(\Phi _{\mathcalligra{p}_{1}}\bigl({}^{\mathrm{AB}} \mathcal{D}_{0^{+}}^{\mu _{1}} \mathcal{W}_{1}(0)\bigr) + \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})}\bigl[G_{1} \bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) \\ &{}-G_{1}\bigl(0,\mathcal{W}_{1}(0), \mathcal{W}_{2}(0)\bigr)\bigr] \\ &{}+ \frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t- \tau )^{\nu _{1}-1}G_{1} \bigl(\tau ,\mathcal{W}_{1}(\tau ),\mathcal{W}_{2}( \tau )\bigr)\,d\tau \biggr), \end{aligned} \end{aligned}$$
(2.3)

where \(\frac{1}{\mathcalligra{p}_{1}}+\frac{1}{\mathcalligra{q}_{1}}=1\), \(\mathcalligra{p}_{1}>1\). Denote

$$\begin{aligned} \begin{aligned}[b] H_{1}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) ={}&\Phi _{\mathcalligra{p}_{1}}\bigl( {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{1}} \mathcal{W}_{1}(0)\bigr) + \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})}\bigl[G_{1} \bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) \\ &{}-G_{1}\bigl(0,\mathcal{W}_{1}(0), \mathcal{W}_{2}(0)\bigr)\bigr] \\ &{}+ \frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t- \tau )^{\nu _{1}-1}G_{1} \bigl(\tau ,\mathcal{W}_{1}(\tau ),\mathcal{W}_{2}( \tau )\bigr)\,d\tau . \end{aligned} \end{aligned}$$
(2.4)

By (2.3), (2.4), and Lemma 2.1 we obtain that

$$\begin{aligned} \mathcal{W}_{1}(t) ={}& \mathcal{W}_{1}(0)+ \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})} \bigl[\Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) \bigr) -\Phi _{ \mathcalligra{q}_{1}} \bigl(H_{1}\bigl(0,\mathcal{W}_{1}(0), \mathcal{W}_{2}(0)\bigr) \bigr) \bigr] \\ &{} +\frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})} \int _{0}^{t}(t-s)^{ \mu _{1}-1} \Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}\bigl(s,\mathcal{W}_{1}(s), \mathcal{W}_{2}(s)\bigr) \bigr)\,ds. \end{aligned}$$
(2.5)

By the second equation of (1.1), (2.2)–(2.5) are similar to

$$\begin{aligned} \mathcal{W}_{2}(t) ={}& \mathcal{W}_{2}(0)+ \frac{1-\mu _{2}}{\mathfrak{N}(\mu _{2})} \bigl[\Phi _{\mathcalligra{q}_{2}} \bigl(H_{2}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) \bigr) -\Phi _{ \mathcalligra{q}_{2}} \bigl(H_{2}\bigl(0,\mathcal{W}_{1}(0), \mathcal{W}_{2}(0)\bigr) \bigr) \bigr] \\ &{} +\frac{\mu _{2}}{\mathfrak{N}(\mu _{2})\Gamma (\mu _{2})} \int _{0}^{t}(t-s)^{ \mu _{2}-1} \Phi _{\mathcalligra{q}_{2}} \bigl(H_{2}\bigl(s,\mathcal{W}_{1}(s), \mathcal{W}_{2}(s)\bigr) \bigr)\,ds, \end{aligned}$$
(2.6)

where \(\frac{1}{\mathcalligra{p}_{2}}+\frac{1}{\mathcalligra{q}_{2}}=1\), \(\mathcalligra{p}_{2}>1\), and

$$\begin{aligned} \begin{aligned}[b] H_{2}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) ={}&\Phi _{\mathcalligra{p}_{2}} \bigl( {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{2}} \mathcal{W}_{2}(0) \bigr) +\frac{1-\nu _{2}}{\mathfrak{N}(\nu _{2})}\bigl[G_{2} \bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) \\ &{}-G_{2}\bigl(0,\mathcal{W}_{1}(0), \mathcal{W}_{2}(0)\bigr)\bigr] \\ &{}+ \frac{\nu _{2}}{\mathfrak{N}(\nu _{2})\Gamma (\nu _{2})} \int _{0}^{t}(t- \tau )^{\nu _{2}-1}G_{2} \bigl(\tau ,\mathcal{W}_{1}(\tau ),\mathcal{W}_{2}( \tau )\bigr)\,d\tau . \end{aligned} \end{aligned}$$
(2.7)

We substitute the initial values \(\mathcal{W}_{1}(0)=\mathcalligra{u}_{1}\), \(\mathcal{W}_{2}(0)=\mathcalligra{u}_{2}\), \({}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{1}}\mathcal{W}_{1}(0)= \mathcalligra{v}_{1}\), and \({}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{2}}\mathcal{W}_{2}(0) =\mathcalligra{v}_{2}\) into (2.4)–(2.7) to get (2.1), which means that \((\mathcal{W}_{1}(t),\mathcal{W}_{2}(t))\in C([0,a], \mathbb{R}) \times C([0,a],\mathbb{R})\) is also a solution of (2.1). Since \(z\rightarrow \Phi _{\mathcalligra{p}}(z)\) is reversible, the above derivation is completely reversible. Conversely, if \((\mathcal{W}_{1}(t),\mathcal{W}_{2}(t))\in C([0,a],\mathbb{R}) \times C([0,a],\mathbb{R})\) is a solution of (2.1), then it is also a solution of (1.1). The proof is completed. □

3 Existence and uniqueness

This section concentrates on the solvability of system (1.1) thanks to the following contraction fixed point theorem.

Lemma 3.1

([47])

Let \(\mathbb{X}\) be a Banach space, and let \(\phi \neq \mathbb{X}_{1}\subset \mathbb{X}\) be closed. If \(\mathcal{F}:\mathbb{X}_{1}{\rightarrow }\mathbb{X}_{1}\) is a contraction, then \(\mathcal{F}\) admits a unique fixed point \(u^{*}\in \mathbb{E}\).

According to Lemma 2.3, we take \(\mathbb{X}=C([0,a],\mathbb{R})\times C([0,a],\mathbb{R})\). Then \((\mathbb{X},\Vert \cdot \Vert )\) is a Banach space equipped with the norm \(\Vert w\Vert =\Vert (w_{1},w_{2})\Vert =\max \{\sup_{0\leq t\leq l}\vert w_{1}(t)\vert , \sup_{0\leq t\leq l}\vert w_{2}(t)\vert \}\), \(w=(w_{1},w_{2})\in \mathbb{X}\). Accordingly, we will study the solvability and stability of (1.1) on \((\mathbb{X},\Vert \cdot \Vert )\). For convenience, we introduce the following conditions and symbols.

(\(\mathrm{A}_{1}\)):

The real constants satisfy \(\mathcalligra{u}_{1}\neq 0\) or \(\mathcalligra{u}_{2}\neq 0\), \(a,\mathcalligra{v}_{1},\mathcalligra{v}_{2}>0\), \(0<\mu _{1},\mu _{2},\nu _{1},\nu _{2}\leq 1\), and \(\mathcalligra{p}_{1}, \mathcalligra{p}_{2}>1\); \(G_{k}\in C([0,a]\times \mathbb{R}^{2},\mathbb{R})\), \(k=1,2\).

(\(\mathrm{A}_{2}\)):

For all \(t\in [0,a]\) and \(w_{1},w_{2}\in \mathbb{R}\), there areconstants \(m_{k},M_{k}>0\) such that

$$ m_{k}\leq G_{k}(t,w_{1},w_{2}) \leq M_{k},\quad k=1,2. $$
(\(\mathrm{A}_{3}\)):

For all \(t\in [0,a]\) and \(w_{1},\overline{w}_{1},w_{2},\overline{w}_{2}\in \mathbb{R}\), there are functions \(0\leq \mathcal{L}_{k1}(t),\mathcal{L}_{k2}(t)\in C[0,a]\) such that

$$ \bigl\vert G_{k}(t,w_{1},w_{2})-G_{k}(t, \overline{w}_{1},\overline{w}_{2}) \bigr\vert \leq \mathcal{L}_{k1}(t) \vert w_{1}-\overline{w}_{1} \vert +\mathcal{L}_{k2}(t) \vert w_{2}- \overline{w}_{2} \vert . $$

Denote

$$\begin{aligned}& \underline{\mathcal{M}_{k}}=\mathcalligra{v}_{k}^{\mathcalligra{p}_{k}-1}- \frac{1-\nu _{k}}{\mathfrak{N}(\nu _{k})}(M_{k}-m_{k}),\qquad \overline{ \mathcal{M}_{k}}=\mathcalligra{v}_{k}^{\mathcalligra{p}_{k}-1}+ \frac{1-\nu _{k}}{\mathfrak{N}(\nu _{k})}(M_{k}-m_{k}) + \frac{M_{k}a^{\nu _{k}}}{\mathfrak{N}(\nu _{k})\Gamma (\nu _{k})},\\& \Theta _{k}=\frac{1}{\mathfrak{N}(\mu _{k})\mathfrak{N}(\nu _{k})} \biggl[(1-\mu _{k}) (1-\nu _{k}) + \frac{(1-\mu _{k})a^{\nu _{k}}}{\Gamma (\nu _{k})} + \frac{(1-\nu _{k})a^{\mu _{k}}}{\Gamma (\mu _{k})} + \frac{\mu _{k}\nu _{k}a^{\mu _{k}+\nu _{k}}}{\Gamma (\mu _{k}+\nu _{k})} \biggr],\\& \overline{\xi _{k}}=\Theta _{k}(\mathcalligra{q}_{k}-1) \overline{\mathcal{M}_{k}}^{\mathcalligra{q}_{k}-2}\bigl( \Vert \mathcal{L}_{k1} \Vert _{a}+ \Vert \mathcal{L}_{k2} \Vert _{a}\bigr), \\& \underline{\xi _{k}}=\Theta _{k}( \mathcalligra{q}_{k}-1) \underline{\mathcal{M}_{k}}^{\mathcalligra{q}_{k}-2}\bigl( \Vert \mathcal{L}_{k1} \Vert _{a}+ \Vert \mathcal{L}_{k2} \Vert _{a}\bigr),\\& \Vert \mathcal{L}_{k1} \Vert _{a}=\max _{t\in [0,a]}\mathcal{L}_{k1}(t),\qquad \Vert \mathcal{L}_{k2} \Vert _{a}=\max_{t\in [0,a]} \mathcal{L}_{k2}(t),\quad k=1,2. \end{aligned}$$
(\(\mathrm{A}_{4}\)):

One of the following conditions is satisfied: \(\mathcalligra{q}_{1}, \mathcalligra{q}_{2}\geq 2\), \(\overline{\xi _{1}},\overline{\xi _{2}}<1\); or \(\mathcalligra{q}_{1}\geq 2\), \(1<\mathcalligra{q}_{2}<2\), \(\overline{\xi _{1}},\underline{\xi _{2}}<1\); or \(1<\mathcalligra{q}_{1}<2\), \(\mathcalligra{q}_{2}\geq 2\), \(\underline{\xi _{1}},\overline{\xi _{2}}<1\); or \(1<\mathcalligra{q}_{1}\), \(\mathcalligra{q}_{2}<2\), \(\underline{\xi _{1}},\underline{\xi _{2}}<1\).

Theorem 3.1

Assume that (\(\mathrm{A}_{1}\))(\(\mathrm{A}_{4}\)) hold and \(\underline{\mathcal{M}_{k}}>0\) (\(k=1,2\)). Then system (1.1) has a unique nonzero solution \((\mathcal{W}_{1}^{*}(t),\mathcal{W}_{2}^{*}(t))\in \mathbb{X}\).

Proof

Obviously, \((\mathcal{W}_{1}(0),\mathcal{W}_{2}(0))=(\mathcalligra{u}_{1},\mathcalligra{u}_{2}) \neq (0,0)\), that is, \((\mathcal{W}_{1}(t),\mathcal{W}_{2}(t))\not \equiv (0,0)\) for all \(t\in [0,a]\). For all \((\mathcal{W}_{1},\mathcal{W}_{2})\in \mathbb{X}\), in light of Lemma 2.3, define the vector operator \(\mathcal{F}:\mathbb{X}{\rightarrow }\mathbb{X}\) by

$$\begin{aligned} \mathcal{F}(\mathcal{W}_{1},\mathcal{W}_{2}) (t) =\bigl(\mathcal{F}_{1}( \mathcal{W}_{1}, \mathcal{W}_{2}) (t),\mathcal{F}_{2}( \mathcal{W}_{1}, \mathcal{W}_{2}) (t)\bigr),\quad t\in [0,a], \end{aligned}$$
(3.1)

where

$$\begin{aligned} &\begin{aligned}[b] \mathcal{F}_{1}(\mathcal{W}_{1}, \mathcal{W}_{2}) (t)={}&\mathcalligra{u}_{1}+ \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})} \bigl[\Phi _{\mathcalligra{q}_{1}} \bigl(H_{1} \bigl(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t)\bigr) \bigr) -\mathcalligra{v}_{1} \bigr] \\ &{}+\frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})} \int _{0}^{t}(t-s)^{ \mu _{1}-1}\Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}\bigl(s,\mathcal{W}_{1}(s), \mathcal{W}_{2}(s)\bigr) \bigr)\,ds, \end{aligned} \end{aligned}$$
(3.2)
$$\begin{aligned} &\begin{aligned}[b] \mathcal{F}_{2}(\mathcal{W}_{1}, \mathcal{W}_{2}) (t) ={}&\mathcalligra{u}_{2}+ \frac{1-\mu _{2}}{\mathfrak{N}(\mu _{2})} \bigl[\Phi _{\mathcalligra{q}_{2}} \bigl(H_{2} \bigl(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t)\bigr) \bigr) -\mathcalligra{v}_{2} \bigr] \\ &{}+\frac{\mu _{2}}{\mathfrak{N}(\mu _{2})\Gamma (\mu _{2})} \int _{0}^{t}(t-s)^{ \mu _{2}-1}\Phi _{\mathcalligra{q}_{2}} \bigl(H_{2}\bigl(s,\mathcal{W}_{1}(s), \mathcal{W}_{2}(s)\bigr) \bigr)\,ds \end{aligned} \end{aligned}$$
(3.3)

with \(H_{1}(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t))\) and \(H_{2}(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t))\) the same as in (2.1).

For all \(\mathcal{W}=(\mathcal{W}_{1},\mathcal{W}_{2})\) and \(t\in [0,a]\), from (2.1), (\(\mathrm{A}_{1}\)), and (\(\mathrm{A}_{2}\)) we have

$$\begin{aligned} H_{1}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) \leq{} & \mathcalligra{v}_{1}^{ \mathcalligra{p}_{1}-1}+ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})}(M_{1}-m_{1}) + \frac{\nu _{1}M_{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t- \tau )^{\nu _{1}-1}\,d\tau \\ ={}&\mathcalligra{v}_{1}^{\mathcalligra{p}_{1}-1}+ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})}(M_{1}-m_{1}) + \frac{\nu _{1}M_{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})\nu _{1}}t^{ \nu _{1}} \\ \leq{} &\mathcalligra{v}_{1}^{\mathcalligra{p}_{1}-1}+ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})}(M_{1}-m_{1}) + \frac{M_{1}a^{\nu _{1}}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})}= \overline{\mathcal{M}_{1}}. \end{aligned}$$
(3.4)

In the same way, we obtain

$$\begin{aligned}& H_{1}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) \geq \mathcalligra{v}_{1}^{ \mathcalligra{p}_{1}-1}- \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})}(M_{1}-m_{1}) =\underline{ \mathcal{M}_{1}}, \end{aligned}$$
(3.5)
$$\begin{aligned}& H_{2}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) \leq \mathcalligra{v}_{2}^{ \mathcalligra{p}_{2}-1}+ \frac{1-\nu _{2}}{\mathfrak{N}(\nu _{2})}(M_{2}-m_{2}) + \frac{M_{2}a^{\nu _{2}}}{\mathfrak{N}(\nu _{2})\Gamma (\nu _{2})}= \overline{\mathcal{M}_{2}}, \end{aligned}$$
(3.6)

and

$$\begin{aligned} H_{2}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) \geq \mathcalligra{v}_{2}^{ \mathcalligra{p}_{2}-1}- \frac{1-\nu _{2}}{\mathfrak{N}(\nu _{2})}(M_{2}-m_{2})= \underline{ \mathcal{M}_{2}}. \end{aligned}$$
(3.7)

Obviously, \(\underline{\mathcal{M}_{1}}\leq \overline{\mathcal{M}_{1}}\), \(\underline{\mathcal{M}_{2}}\leq \overline{\mathcal{M}_{2}}\). In line with (3.2), (3.4), (3.5), (\(\mathrm{A}_{3}\)), and (vi) of Lemma 2.2, for all \(\mathcal{W}=(\mathcal{W}_{1},\mathcal{W}_{2})\), \(\overline{\mathcal{W}}=(\overline{\mathcal{W}}_{1}, \overline{\mathcal{W}}_{2})\in \mathbb{X}\), \(t\in [0,a]\), we get

$$\begin{aligned} & \bigl\vert \mathcal{F}_{1}( \mathcal{W}_{1},\mathcal{W}_{2}) (t)- \mathcal{F}_{1}( \overline{\mathcal{W}}_{1},\overline{ \mathcal{W}}_{2}) (t) \bigr\vert \\ &\quad = \biggl\vert \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})} \bigl[\Phi _{ \mathcalligra{q}_{1}} \bigl(H_{1}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) \bigr) -\Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}\bigl(t,\overline{\mathcal{W}}_{1}(t), \overline{\mathcal{W}}_{2}(t)\bigr) \bigr) \bigr] \\ &\qquad{} +\frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})} \int _{0}^{t}(t-s)^{ \mu _{1}-1} \bigl[\Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}\bigl(s,\mathcal{W}_{1}(s), \mathcal{W}_{2}(s)\bigr) \bigr) \\ &\qquad{} -\Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}\bigl(s,\overline{ \mathcal{W}}_{1}(s), \overline{\mathcal{W}}_{2}(s)\bigr) \bigr)\bigr]\,ds \biggr\vert \\ &\quad \leq \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})} \bigl\vert \Phi _{ \mathcalligra{q}_{1}} \bigl(H_{1}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) \bigr) -\Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}\bigl(t,\overline{\mathcal{W}}_{1}(t), \overline{\mathcal{W}}_{2}(t)\bigr) \bigr) \bigr\vert \\ &\qquad{} +\frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})} \int _{0}^{t}(t-s)^{ \mu _{1}-1} \bigl\vert \Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}\bigl(s, \mathcal{W}_{1}(s), \mathcal{W}_{2}(s)\bigr) \bigr) \\ &\qquad{} -\Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}\bigl(s,\overline{ \mathcal{W}}_{1}(s), \overline{\mathcal{W}}_{2}(s)\bigr) \bigr) \bigr\vert \,ds. \end{aligned}$$
(3.8)

When \(\mathcalligra{q}_{1}\geq 2\), (3.8) leads to

$$\begin{aligned} & \bigl\vert \mathcal{F}_{1}( \mathcal{W}_{1},\mathcal{W}_{2}) (t)- \mathcal{F}_{1}( \overline{\mathcal{W}}_{1},\overline{ \mathcal{W}}_{2}) (t) \bigr\vert \\ &\quad \leq \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})}(\mathcalligra{q}_{1}-1) \overline{ \mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \bigl\vert H_{1} \bigl(t, \mathcal{W}_{1}(t),\mathcal{W}_{2}(t)\bigr) -H_{1}\bigl(t, \overline{\mathcal{W}}_{1}(t),\overline{ \mathcal{W}}_{2}(t)\bigr) \bigr\vert \\ &\qquad{} +\frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})}( \mathcalligra{q}_{1}-1)\overline{ \mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \int _{0}^{t}(t-s)^{\mu _{1}-1} \bigl\vert H_{1}\bigl(s,\mathcal{W}_{1}(s), \mathcal{W}_{2}(s)\bigr) \\ &\qquad{} -H_{1}\bigl(s,\overline{\mathcal{W}}_{1}(s), \overline{\mathcal{W}}_{2}(s)\bigr) \bigr\vert \,ds \\ &\quad \leq \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})}(\mathcalligra{q}_{1}-1) \overline{ \mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \biggl[ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl\vert G_{1}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) -G_{1}\bigl(t,\overline{ \mathcal{W}}_{1}(t), \overline{\mathcal{W}}_{2}(t)\bigr) \bigr\vert \\ &\qquad{} +\frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t- \tau )^{\nu _{1}-1} \bigl\vert G_{1}\bigl(\tau ,\mathcal{W}_{1}(\tau ), \mathcal{W}_{2}(\tau )\bigr) -G_{1}\bigl(\tau , \overline{\mathcal{W}}_{1}(\tau ), \overline{\mathcal{W}}_{2}( \tau )\bigr) \bigr\vert \,d\tau \biggr] \\ &\qquad{} +\frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})}( \mathcalligra{q}_{1}-1)\overline{ \mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \int _{0}^{t}(t-s)^{\mu _{1}-1} \biggl[ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl\vert G_{1}\bigl(s,\mathcal{W}_{1}(s), \mathcal{W}_{2}(s)\bigr) \\ &\qquad{} -G_{1}\bigl(s,\overline{\mathcal{W}}_{1}(s), \overline{\mathcal{W}}_{2}(s)\bigr) \bigr\vert + \frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{s}(s- \tau )^{\nu _{1}-1} \bigl\vert G_{1}\bigl(\tau ,\mathcal{W}_{1}(\tau ), \mathcal{W}_{2}(\tau )\bigr) \\ &\qquad{} -G_{1}\bigl(\tau ,\overline{\mathcal{W}}_{1}( \tau ), \overline{\mathcal{W}}_{2}(\tau )\bigr) \bigr\vert \,d\tau \biggr]\,ds \\ &\quad \leq \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})}(\mathcalligra{q}_{1}-1) \overline{ \mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \biggl[ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl[\mathcal{L}_{11}(t) \bigl\vert \mathcal{W}_{1}(t)- \overline{\mathcal{W}}_{1}(t) \bigr\vert +\mathcal{L}_{12}(t) \bigl\vert \mathcal{W}_{2}(t) -\overline{\mathcal{W}}_{2}(t) \bigr\vert \bigr] \\ &\qquad{} +\frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{t} \bigl[\mathcal{L}_{11}( \tau ) \bigl\vert \mathcal{W}_{1}(\tau )- \overline{ \mathcal{W}}_{1}(\tau ) \bigr\vert +\mathcal{L}_{12}( \tau ) \bigl\vert \mathcal{W}_{2}(\tau ) -\overline{ \mathcal{W}}_{2}(\tau ) \bigr\vert \bigr]\,d\tau \biggr] \\ &\qquad{} +\frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})}( \mathcalligra{q}_{1}-1)\overline{ \mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \int _{0}^{t}(t-s)^{\mu _{1}-1} \biggl[ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl[\mathcal{L}_{11}(s) \bigl\vert \mathcal{W}_{1}(s)-\overline{\mathcal{W}}_{1}(s) \bigr\vert \\ &\qquad{} +\mathcal{L}_{12}(s) \bigl\vert \mathcal{W}_{2}(s)- \overline{\mathcal{W}}_{2}(s) \bigr\vert \bigr] + \frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{s}(s- \tau )^{\nu _{1}-1} \bigl[ \mathcal{L}_{11}(\tau ) \bigl\vert \mathcal{W}_{1}( \tau )-\overline{\mathcal{W}}_{1}(\tau ) \bigr\vert \\ &\qquad{} +\mathcal{L}_{12}(\tau ) \bigl\vert \mathcal{W}_{2}(\tau ) - \overline{\mathcal{W}}_{2}(\tau ) \bigr\vert \bigr]\,d\tau \biggr]\,ds \\ &\quad \leq \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})}(\mathcalligra{q}_{1}-1) \overline{ \mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \biggl[ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl[ \Vert \mathcal{L}_{11} \Vert _{a} \cdot \Vert \mathcal{W}-\overline{\mathcal{W}} \Vert + \Vert \mathcal{L}_{12} \Vert _{a} \cdot \Vert \mathcal{W} -\overline{\mathcal{W}} \Vert \bigr] \\ &\qquad{} +\frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t- \tau )^{\nu _{1}-1} \bigl[ \Vert \mathcal{L}_{11} \Vert _{a}\cdot \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert + \Vert \mathcal{L}_{12} \Vert _{a}\cdot \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert \bigr]\,d\tau \biggr] \\ &\qquad{} +\frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})}( \mathcalligra{q}_{1}-1)\overline{ \mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \int _{0}^{t}(t-s)^{\mu _{1}-1} \biggl[ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl[ \Vert \mathcal{L}_{11} \Vert _{a} \cdot \Vert \mathcal{W}-\overline{\mathcal{W}} \Vert \\ &\qquad{} + \Vert \mathcal{L}_{12} \Vert _{a}\cdot \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert \bigr] + \frac{\nu _{1}}{\mathfrak{N}(\nu _{1})(\Gamma (\nu _{1}))} \int _{0}^{s}(s- \tau )^{\nu _{1}-1} \bigl[ \Vert \mathcal{L}_{11} \Vert _{a}\cdot \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert \\ &\qquad{} + \Vert \mathcal{L}_{12} \Vert _{a}\cdot \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert \bigr]\,d\tau \biggr]\,ds \\ &\quad = \biggl[ \frac{(1-\mu _{1})(1-\nu _{1})}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})} + \frac{(1-\mu _{1})\nu _{1}}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t-\tau )^{\nu _{1}-1}\,d\tau \\ &\qquad{} + \frac{(1-\nu _{1})\mu _{1}}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})\Gamma (\mu _{1})} \int _{0}^{t}(t-s)^{\mu _{1}-1}\,ds \\ &\qquad {}+ \frac{\mu _{1}\nu _{1}}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})\Gamma (\mu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t-s)^{\mu _{1}-1} \biggl( \int _{0}^{s}(s-\tau )^{\nu _{1}-1}\,d \tau \biggr)\,ds \biggr] \\ &\qquad{} \times (\mathcalligra{q}_{1}-1)\overline{ \mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \bigl( \Vert \mathcal{L}_{11} \Vert _{a}+ \Vert \mathcal{L}_{12} \Vert _{a}\bigr) \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert \\ &\quad = \biggl[ \frac{(1-\mu _{1})(1-\nu _{1})}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})} + \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})}t^{ \nu _{1}} + \frac{1-\nu _{1}}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})\Gamma (\mu _{1})}t^{ \mu _{1}} \\ &\qquad{} + \frac{\mu _{1}\nu _{1}}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})\Gamma (\mu _{1}+\nu _{1})}t^{ \mu _{1}+\nu _{1}} \biggr] ( \mathcalligra{q}_{1}-1) \overline{\mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \bigl( \Vert \mathcal{L}_{11} \Vert _{a}+ \Vert \mathcal{L}_{12} \Vert _{a}\bigr) \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert \\ &\quad \leq \frac{1}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})} \biggl[(1- \mu _{1}) (1-\nu _{1}) + \frac{(1-\mu _{1})a^{\nu _{1}}}{\Gamma (\nu _{1})} + \frac{(1-\nu _{1})a^{\mu _{1}}}{\Gamma (\mu _{1})} + \frac{\mu _{1}\nu _{1}a^{\mu _{1}+\nu _{1}}}{\Gamma (\mu _{1}+\nu _{1})} \biggr] \\ &\qquad{} \times (\mathcalligra{q}_{1}-1)\overline{\mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \bigl( \Vert \mathcal{L}_{11} \Vert _{a}+ \Vert \mathcal{L}_{12} \Vert _{a}\bigr) \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert \\ &\quad =\overline{\xi _{1}} \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert . \end{aligned}$$
(3.9)

When \(1<\mathcalligra{q}_{1}<2\), as in (3.9), (3.8) gives

$$\begin{aligned} & \bigl\vert \mathcal{F}_{1}( \mathcal{W}_{1},\mathcal{W}_{2}) (t)- \mathcal{F}_{1}( \overline{\mathcal{W}}_{1},\overline{ \mathcal{W}}_{2}) (t) \bigr\vert \\ &\quad \leq \frac{1}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})} \biggl[(1- \mu _{1}) (1-\nu _{1}) + \frac{(1-\mu _{1})a^{\nu _{1}}}{\Gamma (\nu _{1})} + \frac{(1-\nu _{1})a^{\mu _{1}}}{\Gamma (\mu _{1})} + \frac{\mu _{1}\nu _{1}a^{\mu _{1}+\nu _{1}}}{\Gamma (\mu _{1}+\nu _{1})} \biggr] \\ &\qquad{} \times (\mathcalligra{q}_{1}-1)\underline{\mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \bigl( \Vert \mathcal{L}_{11} \Vert _{a}+ \Vert \mathcal{L}_{12} \Vert _{a}\bigr) \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert \\ &\quad =\underline{\xi _{1}} \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert . \end{aligned}$$
(3.10)

Similarly to (3.8)–(3.10),

$$\begin{aligned} & \bigl\vert \mathcal{F}_{2}( \mathcal{W}_{1},\mathcal{W}_{2}) (t)- \mathcal{F}_{2}( \overline{\mathcal{W}}_{1},\overline{ \mathcal{W}}_{2}) (t) \bigr\vert \\ &\quad \leq \frac{1}{\mathfrak{N}(\mu _{2})\mathfrak{N}(\nu _{2})} \biggl[(1- \mu _{2}) (1-\nu _{2}) + \frac{(1-\mu _{2})a^{\nu _{2}}}{\Gamma (\nu _{2})} + \frac{(1-\nu _{2})a^{\mu _{2}}}{\Gamma (\mu _{2})} + \frac{\mu _{2}\nu _{2}a^{\mu _{2}+\nu _{2}}}{\Gamma (\mu _{2}+\nu _{2})} \biggr] \\ &\qquad{} \times (\mathcalligra{q}_{2}-1)\overline{\mathcal{M}_{2}}^{\mathcalligra{q}_{2}-2} \bigl( \Vert \mathcal{L}_{21} \Vert _{a}+ \Vert \mathcal{L}_{22} \Vert _{a}\bigr) \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert \\ &\quad =\overline{\xi _{2}} \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert ,\quad \mathcalligra{q}_{2} \geq 2, \end{aligned}$$
(3.11)

and

$$\begin{aligned} & \bigl\vert \mathcal{F}_{2}( \mathcal{W}_{1},\mathcal{W}_{2}) (t)- \mathcal{F}_{2}( \overline{\mathcal{W}}_{1},\overline{ \mathcal{W}}_{2}) (t) \bigr\vert \\ &\quad \leq\frac{1}{\mathfrak{N}(\mu _{2})\mathfrak{N}(\nu _{2})} \biggl[(1- \mu _{2}) (1-\nu _{2}) + \frac{(1-\mu _{2})a^{\nu _{2}}}{\Gamma (\nu _{2})} + \frac{(1-\nu _{2})a^{\mu _{2}}}{\Gamma (\mu _{2})} + \frac{\mu _{2}\nu _{2}a^{\mu _{2}+\nu _{2}}}{\Gamma (\mu _{2}+\nu _{2})} \biggr] \\ &\qquad{} \times (\mathcalligra{q}_{2}-1)\underline{\mathcal{M}_{2}}^{\mathcalligra{q}_{2}-2} \bigl( \Vert \mathcal{L}_{21} \Vert _{a}+ \Vert \mathcal{L}_{22} \Vert _{a}\bigr) \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert \\ &\quad =\underline{\xi _{2}} \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert ,\quad 1< \mathcalligra{q}_{2}< 2. \end{aligned}$$
(3.12)

It follows from (3.9)–(3.12) that

$$\begin{aligned} \bigl\Vert \mathcal{F}(\mathcal{W}_{1}, \mathcal{W}_{2}) (t)-\mathcal{F}( \overline{\mathcal{W}}_{1}, \overline{\mathcal{W}}_{2}) (t) \bigr\Vert \leq \textstyle\begin{cases} \max \{\overline{\xi _{1}},\overline{\xi _{2}}\}\cdot \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert , & \mathcalligra{q}_{1}, \mathcalligra{q}_{2} \geq 2, \\ \max \{\overline{\xi _{1}},\underline{\xi _{2}}\}\cdot \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert , & \mathcalligra{q}_{1}\geq 2, 1< \mathcalligra{q}_{2}< 2, \\ \max \{\underline{\xi _{1}},\overline{\xi _{2}}\}\cdot \Vert \mathcal{U}- \overline{\mathcal{W}} \Vert , & 1< \mathcalligra{q}_{1}< 2, \mathcalligra{q}_{2} \geq 2, \\ \max \{\underline{\xi _{1}},\underline{\xi _{2}}\}\cdot \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert , & 1< \mathcalligra{q}_{1}, \mathcalligra{q}_{2}< 2. \end{cases}\displaystyle \end{aligned}$$
(3.13)

Let \(\xi _{k}\in \{\overline{\xi _{k}},\underline{\xi _{k}}\}\), \(k=1,2\). Then (\(\mathrm{A}_{4}\)) implies that \(0<\max \{\xi _{1},\xi _{2}\}<1\). Thus (3.13) indicates that \(\mathcal{F}:\mathbb{X}\rightarrow \mathbb{X}\) is a contraction. From Lemmas 3.1 and 2.2 we know that \(\mathcal{F}\) has a unique fixed point \(\mathcal{W}^{*}(t)=(\mathcal{W}_{1}^{*}(t),\mathcal{W}_{2}^{*}(t)) \in \mathbb{X}\), which is the unique solution of (1.1). The proof is completed. □

4 Generalized UH-stability

For \(\mathcal{W}=(\mathcal{W}_{1},\mathcal{W}_{2})\in \mathbb{X}\) and \(\epsilon >0\), the latter definition of stability requires the inequalities

$$\begin{aligned} \textstyle\begin{cases} {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\nu _{1}} [\Phi _{\mathcalligra{p}_{1}}( {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{1}}\mathcal{W}_{1}(t)) ] -G_{1}(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t))\leq \epsilon , \quad t\in (0,a], \\ {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\nu _{2}} [\Phi _{\mathcalligra{p}_{2}}( {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{2}}\mathcal{W}_{2}(t)) ] -G_{2}(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t))\leq \epsilon , \quad t\in (0,a], \\ \mathcal{W}_{1}(0)=\mathcalligra{u}_{1},\qquad \mathcal{W}_{2}(0)=\mathcalligra{u}_{2}, \qquad {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{1}}\mathcal{W}_{1}(0)= \mathcalligra{v}_{1},\qquad {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{2}} \mathcal{W}_{2}(0)=\mathcalligra{v}_{2}. \end{cases}\displaystyle \end{aligned}$$
(4.1)

Definition 4.1

Suppose that for all \(\epsilon >0\) and \(\mathcal{W}=(\mathcal{W}_{1},\mathcal{W}_{2})\in \mathbb{X}\) satisfying (4.1), there are a unique \(\mathcal{W}^{*}=(\mathcal{W}_{1}^{*},\mathcal{W}_{2}^{*})\in \mathbb{X}\) satisfying (1.1) and a constant \(\omega _{1}>0\) such that

$$\begin{aligned} \bigl\Vert \mathcal{W}(t)-\mathcal{W}^{*}(t) \bigr\Vert \leq \omega _{1}\epsilon . \end{aligned}$$

Then problem (1.1) is said to be Ulam–Hyers (UH) stable.

Definition 4.2

Suppose that for all \(\epsilon >0\) and \(\mathcal{W}=(\mathcal{W}_{1},\mathcal{W}_{2})\in \mathbb{X}\) satisfying (4.1), there are a unique \(\mathcal{W}^{*}=(\mathcal{W}_{1}^{*},\mathcal{W}_{2}^{*})\in \mathbb{X}\) satisfying (1.1) and \(\varpi \in C(\mathbb{R},\mathbb{R}^{+})\) with \(\varpi (0)=0\) such that

$$\begin{aligned} \bigl\Vert \mathcal{W}(t)-\mathcal{W}^{*}(t) \bigr\Vert \leq \varpi (\epsilon ). \end{aligned}$$

Then problem (1.1) is said to be generalized Ulam–Hyers (GUH) stable.

Remark 4.1

\(\mathcal{W}=(\mathcal{W}_{1},\mathcal{W}_{2})\in \mathbb{X}\) is a solution of inequality (4.1) iff there exists \(\phi =(\phi _{1},\phi _{2})\in \mathbb{X}\) such that

  1. (a)

    \(\vert \phi _{1}(t)\vert \leq \epsilon \), \(\vert \phi _{2}(t)\vert \leq \epsilon \), \(0< t\leq a\);

  2. (b)

    \({}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\nu _{1}} [\Phi _{\mathcalligra{p}_{1}}( {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{1}}\mathcal{W}_{1}(t)) ] =G_{1}(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t)) +\phi _{1}(t)\), \(0< t\leq a\);

  3. (c)

    \({}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\nu _{2}} [\Phi _{\mathcalligra{p}_{2}}( {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{2}}\mathcal{W}_{2}(t)) ] =G_{2}(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t)) +\phi _{2}(t)\), \(0< t\leq a\);

  4. (d)

    \(\mathcal{W}_{1}(0)=\mathcalligra{u}_{1}\), \(\mathcal{W}_{2}(0)=\mathcalligra{u}_{2}\), \({}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{1}}\mathcal{W}_{1}(0)= \mathcalligra{v}_{1}\), \({}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{2}} \mathcal{W}_{2}(0)=\mathcalligra{v}_{2}\).

Theorem 4.1

Under (\(\mathrm{A}_{1}\))(\(\mathrm{A}_{4}\)), problem (1.1) is generalized UH-stable.

Proof

In view of Lemma 2.3 and Remark 4.1, to solve inequality (4.1), we have

$$\begin{aligned}& \textstyle\begin{cases} \begin{aligned} \mathcal{W}_{1}(t) ={}&\mathcalligra{u}_{1}+ \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})} [\Phi _{\mathcalligra{q}_{1}} (H_{1}^{\phi}(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t)) ) - \mathcalligra{v}_{1} ] \\ &{} + \frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})}\int _{0}^{t}(t-s)^{ \mu _{1}-1} \Phi _{\mathcalligra{q}_{1}} (H_{1}^{\phi}(s,\mathcal{W}_{1}(s), \mathcal{W}_{2}(s)) )\,ds, \end{aligned} \\ \begin{aligned} \mathcal{W}_{2}(t) ={}&\mathcalligra{u}_{2}+ \frac{1-\mu _{2}}{\mathfrak{N}(\mu _{2})} [\Phi _{\mathcalligra{q}_{2}} (H_{2}^{\phi}(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t)) ) - \mathcalligra{v}_{2} ] \\ &{} + \frac{\mu _{2}}{\mathfrak{N}(\mu _{2})\Gamma (\mu _{2})}\int _{0}^{t}(t-s)^{ \mu _{2}-1}\Phi _{\mathcalligra{q}_{2}} (H_{2}^{\phi}(s,\mathcal{W}_{1}(s), \mathcal{W}_{2}(s)) )\,ds, \end{aligned} \end{cases}\displaystyle \end{aligned}$$
(4.2)
$$\begin{aligned}& \begin{aligned}[b] &H_{1}^{\phi}\bigl(t, \mathcal{W}_{1}(t),\mathcal{W}_{2}(t)\bigr) \\ &\quad =\Phi _{ \mathcalligra{p}_{1}}(\mathcalligra{v}_{1}) + \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl[G_{1}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr)+\phi _{1}(t) -G_{1}(0,\mathcalligra{u}_{1},\mathcalligra{u}_{2}){}-\phi _{1}(0)\bigr] \\ &\qquad + \frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t- \tau )^{\nu _{1}-1} \bigl[G_{1}\bigl(\tau ,\mathcal{W}_{1}(\tau ), \mathcal{W}_{2}( \tau )\bigr)+\phi _{1}(\tau )\bigr]\,d \tau , \end{aligned} \end{aligned}$$
(4.3)
$$\begin{aligned}& \begin{aligned}[b] &H_{2}^{\phi}\bigl(t, \mathcal{W}_{1}(t),\mathcal{W}_{2}(t)\bigr) \\ &\quad = \Phi _{ \mathcalligra{p}_{2}}(\mathcalligra{v}_{2}) + \frac{1-\nu _{2}}{\mathfrak{N}(\nu _{2})} \bigl[G_{2}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr)+\phi _{2}(t) -G_{2}(0,\mathcalligra{u}_{1},\mathcalligra{u}_{2})-\phi _{2}(0)\bigr] \\ &\qquad {} + \frac{\nu _{2}}{\mathfrak{N}(\nu _{2})\Gamma (\nu _{2})} \int _{0}^{t}(t- \tau )^{\nu _{2}-1} \bigl[G_{2}\bigl(\tau ,\mathcal{W}_{1}(\tau ), \mathcal{W}_{2}( \tau )\bigr)+\phi (\tau )\bigr]\,d\tau . \end{aligned} \end{aligned}$$
(4.4)

By Theorem 3.1 and Lemma 2.3 the unique solution \(\mathcal{W}^{*}(t)=(\mathcal{W}_{1}^{*}(t),\mathcal{W}_{2}^{*}(t)) \in \mathbb{X}\) of (1.1) also meets (2.1). For all \(\epsilon >0\) small enough, from (\(\mathrm{A}_{1}\)), (\(\mathrm{A}_{2}\)), and (a) in Remark 4.1 it follows that (3.4)–(3.7) are similar to

$$\begin{aligned}& \begin{aligned}[b] H_{1}^{\phi}\bigl(t, \mathcal{W}_{1}(t),\mathcal{W}_{2}(t)\bigr) &\leq \mathcalligra{v}_{1}^{\mathcalligra{p}_{1}-1}+ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})}(M_{1}-m_{1}+2 \epsilon ) + \frac{M_{1}a^{\mu _{1}}}{\mathfrak{N}(\nu _{1})\Gamma (\mu _{1})}(M_{1}+ \epsilon ) \\ &=\overline{ \mathcal{M}_{1}}(\epsilon ), \end{aligned} \end{aligned}$$
(4.5)
$$\begin{aligned}& H_{1}^{\phi}\bigl(t, \mathcal{W}_{1}(t),\mathcal{W}_{2}(t)\bigr) \geq \mathcalligra{v}_{1}^{\mathcalligra{p}_{1}-1}- \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})}(M_{1}-m_{1}+2 \epsilon ) = \underline{\mathcal{M}_{1}}(\epsilon )>0, \end{aligned}$$
(4.6)
$$\begin{aligned}& \begin{aligned}[b] H_{2}^{\phi}\bigl(t, \mathcal{W}_{1}(t),\mathcal{W}_{2}(t)\bigr) &\leq \mathcalligra{v}_{2}^{\mathcalligra{p}_{2}-1}+ \frac{1-\nu _{2}}{\mathfrak{N}(\nu _{2})}(M_{2}-m_{2}-2 \epsilon ) + \frac{M_{2}a^{\nu _{2}}}{\mathfrak{N}(\nu _{2})\Gamma (\nu _{2})}(M_{2}+ \epsilon ) \\ &=\overline{ \mathcal{M}_{2}}(\epsilon ), \end{aligned} \end{aligned}$$
(4.7)

and

$$\begin{aligned} H_{2}^{\phi}\bigl(t, \mathcal{W}_{1}(t),\mathcal{W}_{2}(t)\bigr) \geq \mathcalligra{v}_{2}^{\mathcalligra{p}_{2}-1}- \frac{1-\nu _{2}}{\mathfrak{N}(\nu _{2})}(M_{2}-m_{2}+2 \epsilon ) = \underline{\mathcal{M}_{2}}(\epsilon )>0. \end{aligned}$$
(4.8)

Clearly, \(0<\underline{\mathcal{M}_{1}}(\epsilon )<\underline{\mathcal{M}_{1}}< \overline{\mathcal{M}_{1}}<\overline{\mathcal{M}_{1}}(\epsilon )\) and \(0<\underline{\mathcal{M}_{2}}(\epsilon )<\underline{\mathcal{M}_{2}}< \overline{\mathcal{M}_{2}}<\overline{\mathcal{M}_{2}}(\epsilon )\).

Similarly to (3.8) and (3.9), when \(q_{1}\geq 2\), we draw from (2.1), (4.2), (4.3), and (4.5) that

$$\begin{aligned} & \bigl\vert \mathcal{W}_{1}(t)- \mathcal{W}_{1}^{*}(t) \bigr\vert \\ &\quad =\Biggl\vert \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})} \bigl[\Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}^{\phi} \bigl(t,\mathcal{W}_{1}(t),\mathcal{W}_{2}(t)\bigr) \bigr) - \Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}\bigl(t, \mathcal{W}_{1}^{*}(t), \mathcal{W}_{2}^{*}(t) \bigr) \bigr) \bigr] \\ &\qquad{} +\frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})} \int _{0}^{t}(t-s)^{ \mu _{1}-1} \bigl[\Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}^{\phi}\bigl(s, \mathcal{W}_{1}(s), \mathcal{W}_{2}(s)\bigr) \bigr) \\ &\qquad{} -H_{1}\bigl(s,\mathcal{W}_{1}^{*}(s), \mathcal{W}_{2}^{*}(s)\bigr) \bigr]\,ds \Biggr\vert \\ &\quad \leq \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})} \bigl\vert \Phi _{ \mathcalligra{q}_{1}} \bigl(H_{1}^{\phi}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) \bigr) -\Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}\bigl(t,\mathcal{W}_{1}^{*}(t), \mathcal{W}_{2}^{*}(t)\bigr) \bigr) \bigr\vert \\ &\qquad{} +\frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})} \int _{0}^{t}(t-s)^{ \mu _{1}-1}\bigl\vert \Phi _{\mathcalligra{q}_{1}} \bigl(H_{1}^{\phi}\bigl(s, \mathcal{W}_{1}(s),\mathcal{W}_{2}(s)\bigr) \bigr) \\ &\qquad{} -H_{1}\bigl(s,\mathcal{W}_{1}^{*}(s), \mathcal{W}^{*}_{2}(s)\bigr) \bigr\vert \,ds \\ &\quad \leq \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})}(\mathcalligra{q}_{1}-1) \overline{ \mathcal{M}_{1}}(\epsilon )^{\mathcalligra{q}_{1}-2} \bigl\vert H_{1}^{ \phi}\bigl(t,\mathcal{W}_{1}(t), \mathcal{W}_{2}(t)\bigr) -H_{1}\bigl(t, \mathcal{W}^{*}_{1}(t), \mathcal{W}^{*}_{2}(t) \bigr) \bigr\vert \\ &\qquad{} + \frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})} (\mathcalligra{q}_{1}-1)\overline{ \mathcal{M}_{1}}(\epsilon )^{q_{1}-2} \\ &\qquad{} \times \int _{0}^{t}(t-s)^{\mu _{1}-1} \bigl\vert H_{1}^{\phi}\bigl(s,\mathcal{W}_{1}(s), \mathcal{W}_{2}(s)\bigr) -H_{1}\bigl(s, \mathcal{W}^{*}_{1}(s),\mathcal{W}^{*}_{2}(s) \bigr) \bigr\vert \,ds \\ &\quad \leq \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})}(\mathcalligra{q}_{1}-1) \overline{ \mathcal{M}_{1}}(\epsilon )^{\mathcalligra{q}_{1}-2} \\ &\qquad{} \times \biggl[ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl[ \bigl\vert G_{1}\bigl(t, \mathcal{W}_{1}(t),\mathcal{W}_{2}(t)\bigr) -G_{1}\bigl(t,\mathcal{W}^{*}_{1}(t), \mathcal{W}^{*}_{2}(t)\bigr) \bigr\vert +2\epsilon \bigr] +\frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \\ &\qquad{} \times \int _{0}^{t}(t- \tau )^{\nu _{1}-1} \bigl[ \bigl\vert G_{1}\bigl(\tau ,\mathcal{W}_{1}(\tau ), \mathcal{W}_{2}(\tau )\bigr) -G_{1}\bigl(\tau , \mathcal{W}^{*}_{1}(\tau ), \mathcal{W}^{*}_{2}( \tau )\bigr) \bigr\vert +2\epsilon \bigr]\,d\tau \biggr] \\ &\qquad{} +\frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})}( \mathcalligra{q}_{1}-1)\overline{ \mathcal{M}_{1}}(\epsilon )^{\mathcalligra{q}_{1}-2} \int _{0}^{t}(t-s)^{\mu _{1}-1} \biggl[ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl[ \bigl\vert G_{1}\bigl(s, \mathcal{W}_{1}(s),\mathcal{W}_{2}(s)\bigr) \\ &\qquad{} -G_{1}\bigl(s,\mathcal{W}^{*}_{1}(s), \mathcal{W}^{*}_{2}(s)\bigr) \bigr\vert +2 \epsilon \bigr] + \frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{s}(s- \tau )^{\nu _{1}-1} \bigl[ \bigl\vert G_{1}\bigl(\tau ,\mathcal{W}_{1}(\tau ), \mathcal{W}_{2}(\tau )\bigr) \\ &\qquad{} -G_{1}\bigl(\tau ,\mathcal{W}^{*}_{1}( \tau ),\mathcal{W}^{*}_{2}(\tau )\bigr) \bigr\vert +2 \epsilon \bigr]\,d\tau \biggr]\,ds \\ &\quad \leq \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})}(\mathcalligra{q}_{1}-1) \overline{ \mathcal{M}_{1}}(\epsilon )^{\mathcalligra{q}_{1}-2} \\ &\qquad{} \times \biggl[ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl[\mathcal{L}_{11}(t) \bigl\vert \mathcal{W}_{1}(t)-\mathcal{W}^{*}_{1}(t) \bigr\vert +\mathcal{L}_{12}(t) \bigl\vert \mathcal{W}_{2}(t)- \mathcal{W}^{*}_{2}(t) \bigr\vert +2\epsilon \bigr] \\ &\qquad{} +\frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t- \tau )^{\nu _{1}-1} \bigl[ \mathcal{L}_{11}(\tau ) \bigl\vert \mathcal{W}_{1}(\tau )- \mathcal{W}^{*}_{1}(\tau ) \bigr\vert \\ &\qquad{} + \mathcal{L}_{12}(\tau ) \bigl\vert \mathcal{W}_{2}( \tau )-\mathcal{W}^{*}_{2}(\tau ) \bigr\vert +2\epsilon \bigr]\,d\tau \biggr] \\ &\qquad{} +\frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})}( \mathcalligra{q}_{1}-1)\overline{ \mathcal{M}_{1}}(\epsilon )^{\mathcalligra{q}_{1}-2} \int _{0}^{t}(t-s)^{\mu _{1}-1} \biggl[ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl[\mathcal{L}_{11}(s) \bigl\vert \mathcal{W}_{1}(s)-\mathcal{W}^{*}_{1}(s) \bigr\vert \\ &\qquad{} +\mathcal{L}_{12}(s) \bigl\vert \mathcal{W}_{2}(s) -\mathcal{W}^{*}_{2}(s) \bigr\vert +2 \epsilon \bigr] \\ &\qquad{} + \frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{s}(s- \tau )^{\nu _{1}-1} \bigl[ \mathcal{L}_{11}(\tau ) \bigl\vert \mathcal{W}_{1}( \tau )-\mathcal{W}^{*}_{1}(\tau ) \bigr\vert \\ &\qquad{} +\mathcal{L}_{12}(\tau ) \bigl\vert \mathcal{W}_{2}(\tau ) -\mathcal{W}^{*}_{2}( \tau ) \bigr\vert +2\epsilon \bigr]\,d\tau \biggr]\,ds \\ &\quad \leq\frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})}(\mathcalligra{q}_{1}-1) \overline{ \mathcal{M}_{1}}(\epsilon )^{\mathcalligra{q}_{1}-2} \biggl[ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl[ \Vert \mathcal{L}_{11} \Vert _{a} \cdot \bigl\Vert \mathcal{W}-\mathcal{W}^{*} \bigr\Vert \\ &\qquad{} + \Vert \mathcal{L}_{12} \Vert _{a}\cdot \bigl\Vert \mathcal{W} -\mathcal{W}^{*} \bigr\Vert +2\epsilon \bigr] \\ &\qquad{} +\frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t- \tau )^{\nu _{1}-1} \bigl[ \Vert \mathcal{L}_{11} \Vert _{a}\cdot \bigl\Vert \mathcal{W}- \mathcal{W}^{*} \bigr\Vert \\ &\qquad{} + \Vert \mathcal{L}_{12} \Vert _{l}\cdot \bigl\Vert \mathcal{W} - \mathcal{W}^{*} \bigr\Vert +2\epsilon \bigr]\,d\tau \biggr] \\ &\qquad{} +\frac{\mu _{1}}{\mathfrak{N}(\mu _{1})\Gamma (\mu _{1})}( \mathcalligra{q}_{1}-1)\overline{ \mathcal{M}_{1}}(\epsilon )^{\mathcalligra{q}_{1}-2} \int _{0}^{t}(t-s)^{\mu _{1}-1} \biggl[ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})} \bigl[ \Vert \mathcal{L}_{11} \Vert _{a} \cdot \bigl\Vert \mathcal{W}-\mathcal{W}^{*} \bigr\Vert \\ &\qquad{} + \Vert \mathcal{L}_{12} \Vert _{a}\cdot \bigl\Vert \mathcal{W}-\mathcal{W}^{*} \bigr\Vert +2 \epsilon \bigr] + \frac{\nu _{1}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{s}(s- \tau )^{\nu _{1}-1} \bigl[ \Vert \mathcal{L}_{11} \Vert _{a}\cdot \bigl\Vert \mathcal{W}- \mathcal{W}^{*} \bigr\Vert \\ &\qquad{} + \Vert \mathcal{L}_{12} \Vert _{a}\cdot \bigl\Vert \mathcal{W}-\mathcal{W}^{*} \bigr\Vert +2 \epsilon \bigr]\,d\tau \biggr]\,ds \\ &\quad = \biggl[ \frac{(1-\mu _{1})(1-\nu _{1})}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})} + \frac{(1-\mu _{1})\nu _{1}}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t-\tau )^{\nu _{1}-1}\,d\tau \\ &\qquad{} + \frac{(1-\nu _{1})\mu _{1}}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})\Gamma (\mu _{1})} \int _{0}^{t}(t-s)^{\mu _{1}-1}\,ds \\ &\qquad{} + \frac{\mu _{1}\nu _{1}}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})\Gamma (\mu _{1})\Gamma (\nu _{1})} \int _{0}^{t}(t-s)^{\mu _{1}-1} \biggl( \int _{0}^{s}(s-\tau )^{\nu _{1}-1}\,d \tau \biggr)\,ds \biggr] \\ &\qquad{} \times (\mathcalligra{q}_{1}-1)\overline{ \mathcal{M}_{1}}(\epsilon )^{ \mathcalligra{q}_{1}-2} \bigl[\bigl( \Vert \mathcal{L}_{11} \Vert _{a}+ \Vert \mathcal{L}_{12} \Vert _{a}\bigr) \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert +2\epsilon \bigr] \\ &\quad = \biggl[ \frac{(1-\mu _{1})(1-\nu _{1})}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})} + \frac{1-\mu _{1}}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})}t^{ \nu _{1}} + \frac{1-\nu _{1}}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})\Gamma (\mu _{1})}t^{ \mu _{1}} \\ &\qquad{} + \frac{\mu _{1}\nu _{1}}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})\Gamma (\mu _{1}+\nu _{1})}t^{ \mu _{1}+\nu _{1}} \biggr] ( \mathcalligra{q}_{1}-1) \overline{\mathcal{M}_{1}}(\epsilon )^{\mathcalligra{q}_{1}-2} \\ &\qquad{} \times \bigl[\bigl( \Vert \mathcal{L}_{11} \Vert _{a}+ \Vert \mathcal{L}_{12} \Vert _{a} \bigr) \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert +2\epsilon \bigr] \\ &\quad \leq \frac{1}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})} \biggl[(1- \mu _{1}) (1-\nu _{1}) + \frac{(1-\mu _{1})a^{\nu _{1}}}{\Gamma (\nu _{1})} + \frac{(1-\nu _{1})a^{\mu _{1}}}{\Gamma (\mu _{1})} + \frac{\mu _{1}\nu _{1}a^{\mu _{1}+\nu _{1}}}{\Gamma (\mu _{1}+\nu _{1})} \biggr] \\ &\qquad{} \times (\mathcalligra{q}_{1}-1)\overline{ \mathcal{M}_{1}}(\epsilon )^{ \mathcalligra{q}_{1}-2} \bigl[\bigl( \Vert \mathcal{L}_{11} \Vert _{a}+ \Vert \mathcal{L}_{12} \Vert _{a}\bigr) \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert +2\epsilon \bigr] \\ &\quad =\overline{\Upsilon _{1}}(\epsilon ) \Vert \mathcal{W}- \overline{\mathcal{W}} \Vert +2\epsilon \overline{\Lambda _{1}}( \epsilon ), \end{aligned}$$
(4.9)

where \(\overline{\Upsilon _{1}}(\epsilon )=\Theta _{1}(\mathcalligra{q}_{1}-1) \overline{\mathcal{M}_{1}}(\epsilon )^{\mathcalligra{q}_{1}-2} (\Vert \mathcal{L}_{11}\Vert _{a}+\Vert \mathcal{L}_{12}\Vert _{a})\) and \(\overline{\Lambda _{1}}(\epsilon )=\Theta _{1}(\mathcalligra{q}_{1}-1) \overline{\mathcal{M}_{1}}(\epsilon )^{\mathcalligra{q}_{1}-2}\).

Similarly to (4.9), we apply (4.6)–(4.8) to obtain

$$\begin{aligned}& \bigl\vert \mathcal{W}_{2}(t)- \mathcal{W}_{2}^{*}(t) \bigr\vert \leq \overline{ \Upsilon _{2}}(\epsilon ) \bigl\Vert \mathcal{W}- \mathcal{W}^{*} \bigr\Vert +2 \epsilon \overline{\Lambda _{2}}(\epsilon ),\quad q_{2}\geq 2, \end{aligned}$$
(4.10)
$$\begin{aligned}& \bigl\vert \mathcal{W}_{1}(t)- \mathcal{W}_{1}^{*}(t) \bigr\vert \leq \underline{ \Upsilon _{1}}(\epsilon ) \bigl\Vert \mathcal{W}- \mathcal{W}^{*} \bigr\Vert +2 \epsilon \underline{\Lambda _{1}}(\epsilon ),\quad 1< q_{1}< 2, \end{aligned}$$
(4.11)

and

$$\begin{aligned} \bigl\vert \mathcal{W}_{2}(t)- \mathcal{W}_{2}^{*}(t) \bigr\vert \leq \underline{ \Upsilon _{2}}(\epsilon ) \bigl\Vert \mathcal{W}- \mathcal{W}^{*} \bigr\Vert +2 \epsilon \underline{\Lambda _{2}}(\epsilon ),\quad 1< q_{2}< 2, \end{aligned}$$
(4.12)

where \(\overline{\Upsilon _{2}}(\epsilon )=\Theta _{2}(\mathcalligra{q}_{2}-1) \overline{\mathcal{M}_{2}}(\epsilon )^{\mathcalligra{q}_{2}-2} (\Vert \mathcal{L}_{21}\Vert _{a}+\Vert \mathcal{L}_{22}\Vert _{a})\), \(\overline{\Lambda _{2}}(\epsilon )=\Theta _{2}(\mathcalligra{q}_{2}-1) \overline{\mathcal{M}_{2}}(\epsilon )^{\mathcalligra{q}_{2}-2}\), \(\underline{\Upsilon _{1}}(\epsilon )=\Theta _{1}(\mathcalligra{q}_{1}-1) \underline{\mathcal{M}_{1}}(\epsilon )^{\mathcalligra{q}_{1}-2} (\Vert \mathcal{L}_{11}\Vert _{a}+\Vert \mathcal{L}_{12}\Vert _{a})\), \(\underline{\Lambda _{1}}(\epsilon )=\Theta _{1}(\mathcalligra{q}_{1}-1) \underline{\mathcal{M}_{1}}(\epsilon )^{\mathcalligra{q}_{1}-2}\), \(\underline{\Upsilon _{2}}(\epsilon )=\Theta _{2}(\mathcalligra{q}_{2}-1) \underline{\mathcal{M}_{2}}(\epsilon )^{\mathcalligra{q}_{2}-2} (\Vert \mathcal{L}_{21}\Vert _{a}+\Vert \mathcal{L}_{22}\Vert _{a})\), and \(\underline{\Lambda _{2}}(\epsilon )=\Theta _{2}(\mathcalligra{q}_{2}-1) \underline{\mathcal{M}_{2}}(\epsilon )^{\mathcalligra{q}_{2}-2}\).

For all \(\epsilon >0\) small enough, we have \(0<\overline{\Upsilon _{1}}(\epsilon ), \underline{\Upsilon _{1}}( \epsilon ),\overline{\Upsilon _{2}}(\epsilon )\), \(\underline{\Upsilon _{2}}(\epsilon )<1\). Take \(\Upsilon _{k}(\epsilon )\in \{\overline{\Upsilon _{k}}(\epsilon ), \underline{\Upsilon _{k}}(\epsilon )\}\) and \(\Lambda _{k}(\epsilon )\in \{\overline{\Lambda _{k}}(\epsilon ), \underline{\Lambda _{k}}(\epsilon )\}\), \(k=1,2\). Then it follows from (4.9)–(4.12) that

$$\begin{aligned} \bigl\Vert \mathcal{W}-\mathcal{W}^{*} \bigr\Vert \leq \frac{2\max \{\Lambda _{1}(\epsilon ), \Lambda _{2}(\epsilon )\}}{ 1-\max \{\Upsilon _{1}(\epsilon ), \Upsilon _{2}(\epsilon )\}} \epsilon . \end{aligned}$$
(4.13)

Consequently, we claim that problem (1.1) is generalized UH-stable in accordance with (4.13) and Definition 4.2. The proof is completed. □

5 A verification example

In this section, we inspect the correctness and applicability of our findings by using the following example:

$$\begin{aligned} \textstyle\begin{cases} {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{0.6} [\Phi _{\mathcalligra{p}_{1}}( {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{0.7}\mathcal{W}_{1}(t)) ] = \frac{2+\cos (\mathcal{W}_{1}(t))}{100}+\frac{1}{50} \vert \sin (t) \vert \frac{\mathcal{W}_{2}(t)}{1+\mathcal{W}_{2}(t)^{2}},\quad t\in (0,\sqrt{2}], \\ {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{0.4} [\Phi _{\mathcalligra{p}_{2}}( {}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{0.2}\mathcal{W}_{2}(t)) ] = \frac{2+\sin (3t)}{100}[\frac{3\pi}{4}+\arctan (\mathcal{W}_{1}(t)+ \mathcal{W}_{2}(t))],\quad t\in (0,\sqrt{2}], \\ \mathcal{W}_{1}(0)=-1,\qquad \mathcal{W}_{2}(0)=1,\qquad {}^{\mathrm{AB}} \mathcal{D}_{0^{+}}^{0.7}\mathcal{W}_{1}(0)=2,\qquad {}^{\mathrm{AB}} \mathcal{D}_{0^{+}}^{0.2}\mathcal{W}_{2}(0)=3. \end{cases}\displaystyle \end{aligned}$$
(5.1)

Obviously, \(a=\sqrt{2}\), \(\mu _{1}=0.7\), \(\nu _{1}=0.6\), \(\mu _{2}=0.2\), \(\nu _{2}=0.4\), \(\mathcalligra{u}_{1}=-1\), \(\mathcalligra{u}_{2}=1\), \(\mathcalligra{v}_{1}=2\), \(\mathcalligra{v}_{2}=3\), \(G_{1}(t,w_{1},w_{2})=\frac{2+\cos (w_{1})}{100}+\frac{1}{50}\vert \sin (t)\vert \frac{w_{2}}{1+w_{2}^{2}}\), and \(G_{2}(t,w_{1},w_{2})=\frac{2+\sin (3t)}{200}[\frac{3\pi}{4}+\arctan (w_{1}+w_{2})]\). Choose \(\mathfrak{N}(x)=1-x+\frac{x}{\Gamma (x)}\), \(0< x\leq 1\). Then \(\mathfrak{N}(0)=\mathfrak{N}(1)=1\). By a simple calculation we have

$$\begin{aligned}& \frac{1}{100}\leq G_{1}(t,w_{1},w_{2}) \leq \frac{4}{100},\qquad \frac{\pi}{800}\leq G_{2}(t,w_{1},w_{2}) \leq \frac{15\pi}{800},\\& \bigl\vert G_{1}(t,w_{1},w_{2})-G_{1}(t, \overline{w}_{1},\overline{w}_{2}) \bigr\vert \leq \frac{1}{100} \vert w_{1}-\overline{w}_{1} \vert +\frac{ \vert \sin (t) \vert }{100} \vert w_{2}- \overline{w}_{2} \vert ,\\& \bigl\vert G_{2}(t,w_{1},w_{2})-G_{2}(t, \overline{w}_{1},\overline{w}_{2}) \bigr\vert \leq \frac{2+\sin (3t)}{200}\bigl[ \vert w_{1}-\overline{w}_{1} \vert + \vert w_{2}- \overline{w}_{2} \vert \bigr]. \end{aligned}$$

Therefore conditions (\(\mathrm{A}_{1}\))–(\(\mathrm{A}_{3}\)) are fulfilled. Furthermore, \(m_{1}=\frac{1}{100}\), \(M_{1}=\frac{4}{100}\), \(m_{2}=\frac{\pi}{800}\), \(M_{2}=\frac{15\pi}{800}\), \(\mathcal{L}_{11}(t)=\frac{1}{100}\), \(\mathcal{L}_{12}(t)=\frac{\vert \sin (t)\vert }{100}\), \(\mathcal{L}_{21}(t)=\mathcal{L}_{22}(t)=\frac{2+\sin (3t)}{200}\), \(\Vert \mathcal{L}_{11}\Vert _{a}=\frac{1}{100}\), \(\Vert \mathcal{L}_{12}\Vert _{a}=\frac{\sin (\sqrt{2})}{100}\), \(\Vert \mathcal{L}_{21}\Vert _{a}=\Vert \mathcal{L}_{22}\Vert _{a}=\frac{3}{200}\), and

$$\begin{aligned}& \begin{aligned} \Theta _{1}&=\frac{1}{\mathfrak{N}(\mu _{1})\mathfrak{N}(\nu _{1})} \biggl[(1-\mu _{1}) (1-\nu _{1}) + \frac{(1-\mu _{1})a^{\nu _{1}}}{\Gamma (\nu _{1})} + \frac{(1-\nu _{1})a^{\mu _{1}}}{\Gamma (\mu _{1})} + \frac{\mu _{1}\nu _{1}a^{\mu _{1}+\nu _{1}}}{\Gamma (\mu _{1}+\nu _{1})} \biggr] \\ &\approx 2.2188,\end{aligned} \\& \begin{aligned} \Theta _{2}&=\frac{1}{\mathfrak{N}(\mu _{2})\mathfrak{N}(\nu _{2})} \biggl[(1-\mu _{2}) (1-\nu _{2}) + \frac{(1-\mu _{2})a^{\nu _{2}}}{\Gamma (\nu _{2})} + \frac{(1-\nu _{2})a^{\mu _{2}}}{\Gamma (\mu _{2})} + \frac{\mu _{2}\nu _{2}a^{\mu _{2}+\nu _{2}}}{\Gamma (\mu _{2}+\nu _{2})} \biggr] \\ &\approx 1.6718,\end{aligned} \end{aligned}$$

Case 1: When \(\mathcalligra{p}_{1}=\frac{3}{2}\) and \(\mathcalligra{p}_{2}=\frac{5}{4}\), we have \(\mathcalligra{q}_{1}=3>2\), \(\mathcalligra{q}_{2}=5>2\), and

$$\begin{aligned}& \underline{\mathcal{M}_{1}}=\mathcalligra{v}_{1}^{\mathcalligra{p}_{1}-1}- \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})}(M_{1}-m_{1})\approx 1.3993>0,\\& \underline{\mathcal{M}_{2}}=\mathcalligra{v}_{2}^{\mathcalligra{p}_{2}-1}- \frac{1-\nu _{2}}{\mathfrak{N}(\nu _{2})}(M_{2}-m_{2})\approx 1.2738>0,\\& \overline{\mathcal{M}_{1}}=\mathcalligra{v}_{1}^{\mathcalligra{p}_{1}-1}+ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})}(M_{1}-m_{1}) + \frac{M_{1}a^{\nu _{1}}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \approx 1.4703,\\& \overline{\mathcal{M}_{2}}=\mathcalligra{v}_{2}^{\mathcalligra{p}_{2}-1}+ \frac{1-\nu _{2}}{\mathfrak{N}(\nu _{2})}(M_{2}-m_{2}) + \frac{M_{2}a^{\nu _{2}}}{\mathfrak{N}(\nu _{2})\Gamma (\nu _{2})} \approx 1.3974,\\& \overline{\xi _{1}}=\Theta _{1}(\mathcalligra{q}_{1}-1) \overline{\mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \bigl( \Vert \mathcal{L}_{11} \Vert _{a}+ \Vert \mathcal{L}_{12} \Vert _{a}\bigr)\approx 0.1297< 1,\\& \overline{\xi _{2}}=\Theta _{2}(\mathcalligra{q}_{2}-1) \overline{\mathcal{M}_{2}}^{\mathcalligra{q}_{2}-2} \bigl( \Vert \mathcal{L}_{21} \Vert _{a}+ \Vert \mathcal{L}_{22} \Vert _{a}\bigr)\approx 0.5474< 1. \end{aligned}$$

So (\(\mathrm{A}_{4}\)) also holds. By Theorems 3.1 and 4.1 we obtain that system (5.1) has a unique generalized UH-stable solution.

Case 2: When \(p_{1}=\frac{3}{2}\) and \(p_{2}=5\), we have \(q_{1}=3>2\) and \(1< q_{2}=\frac{5}{4}<2\) with the same values of \(\underline{\mathcal{M}_{1}}\), \(\overline{\mathcal{M}_{1}}\), and \(\overline{\xi _{1}}\) as in Case 1. In addition,

$$\begin{aligned}& \underline{\mathcal{M}_{2}}=\mathcalligra{v}_{2}^{\mathcalligra{p}_{2}-1}- \frac{1-\nu _{2}}{\mathfrak{N}(\nu _{2})}(M_{2}-m_{2})\approx 80.9577>0,\\& \overline{\mathcal{M}_{2}}=\mathcalligra{v}_{2}^{\mathcalligra{p}_{2}-1}+ \frac{1-\nu _{2}}{\mathfrak{N}(\nu _{2})}(M_{2}-m_{2}) + \frac{M_{2}a^{\nu _{2}}}{\mathfrak{N}(\nu _{2})\Gamma (\nu _{2})} \approx 81.0814,\\& \underline{\xi _{2}}=\Theta _{2}(\mathcalligra{q}_{2}-1) \underline{\mathcal{M}_{2}}^{\mathcalligra{q}_{2}-2} \bigl( \Vert \mathcal{L}_{21} \Vert _{a}+ \Vert \mathcal{L}_{22} \Vert _{a}\bigr)\approx 4.6457\times 10^{-4}< 1. \end{aligned}$$

So (\(\mathrm{A}_{4}\)) also holds. By Theorems 3.1 and 4.1 we obtain that system (5.1) has a unique generalized UH-stable solution.

Case 3: When \(p_{1}=3\) and \(p_{2}=\frac{5}{4}\), we have \(1< q_{1}=\frac{3}{2}<2\) and \(q_{2}=5>2\) with the same values of \(\underline{\mathcal{M}_{2}}\), \(\overline{\mathcal{M}_{2}}\), and \(\overline{\xi _{2}}\) as in Case 1. In addition,

$$\begin{aligned}& \underline{\mathcal{M}_{1}}=\mathcalligra{v}_{1}^{\mathcalligra{p}_{1}-1}- \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})}(M_{1}-m_{1})\approx 3.9851>0,\\& \overline{\mathcal{M}_{1}}=\mathcalligra{v}_{1}^{\mathcalligra{p}_{1}-1}+ \frac{1-\nu _{1}}{\mathfrak{N}(\nu _{1})}(M_{1}-m_{1}) + \frac{M_{1}a^{\nu _{1}}}{\mathfrak{N}(\nu _{1})\Gamma (\nu _{1})} \approx 4.0561,\\& \underline{\xi _{1}}=\Theta _{1}(\mathcalligra{q}_{1}-1) \underline{\mathcal{M}_{1}}^{\mathcalligra{q}_{1}-2} \bigl( \Vert \mathcal{L}_{11} \Vert _{a}+ \Vert \mathcal{L}_{12} \Vert _{a}\bigr)\approx 0.0110< 1, \end{aligned}$$

So (\(\mathrm{A}_{4}\)) also holds. By Theorems 3.1 and 4.1 we obtain that system (5.1) has a unique generalized UH-stable solution.

Case 4: When \(p_{1}=3\) and \(p_{2}=5\), we have \(1< q_{1}=\frac{3}{2}<2\) and \(1< q_{2}=\frac{5}{4}<2\). From Cases 2 and 3 we know that \(\underline{\mathcal{M}_{1}}\approx 3.9851>0\), \(\overline{\mathcal{M}_{1}}\approx 4.0561\), \(\underline{\mathcal{M}_{2}}\approx 80.9577>0\), \(\overline{\mathcal{M}_{2}}\approx 81.0814\), \(\underline{\xi _{1}}\approx 0.0110<1\), and \(\underline{\xi _{2}}\approx 4.6457\times 10^{-4}<1\). So (\(\mathrm{A}_{4}\)) also holds. By Theorems 3.1 and 4.1 we declare that system (5.1) has a unique generalized UH-stable solution.

6 Conclusions

AB-fractional differential equations are good mathematical models in many scientific and engineering fields. As far as we know, there have no works dealing with the nonlinear AB-fractal differential coupled equations with Laplacian. So we investigated system (1.1) to fill this gap. The existence, uniqueness, and generalized UH-stability of solution are obtained. Our outcomes snow that the Laplacian parameters \((\mathcalligra{p}_{1},\mathcalligra{p}_{2})\), the fractional orders \(\mu _{k}\), \(\nu _{k}\) (\(k=1,2\)), the initial conditions \({}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{1}}\mathcal{W}_{1}(0)= \mathcalligra{v}_{1}\) and \({}^{\mathrm{AB}}\mathcal{D}_{0^{+}}^{\mu _{2}}\mathcal{W}_{2}(0)= \mathcalligra{v}_{2}\), and the performances of \(G_{k}(t,\cdot ,\cdot )\) (\(k=1,2\)) have an effect on the existence and stability of (1.1). The techniques and methods in the paper can be applied to other types of fractional differential systems. In addition, inspired by recent published papers [4855], we will investigate the Lyapunov stability of fractional differential equations, the coincidence theory of fractional differential equations, and diffusion fractional partial differential equations in the future.

Availability of data and materials

No data and materials were used to support this study.

References

  1. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  2. Williams, W., Vijayakumar, V., Nisar, K., et al.: Atangana–Baleanu semilinear fractional differential inclusions with infinite delay: existence and approximate controllability. J. Comput. Nonlinear Dyn. 18, 021005 (2023)

    Article  Google Scholar 

  3. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., et al.: A note concerning to approximate controllability of Atangana–Baleanu fractional neutral stochastic systems with infinite delay. Chaos Solitons Fractals 157, 111916 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Prakasha, D., Veeresha, P., Baskonus, H.: Analysis of the dynamics of hepatitis E virus using the Atangana–Baleanu fractional derivative. Eur. Phys. J. Plus 134, 241 (2019)

    Article  Google Scholar 

  5. Rahman, M., Arfan, M., Shah, Z., et al.: Nonlinear fractional mathematical model of tuberculosis (TB) disease with incomplete treatment under Atangana–Baleanu derivative. Alex. Eng. J. 60, 2845–2856 (2021)

    Article  Google Scholar 

  6. Gul, S., Khan, R.A., Khan, H., et al.: Analysis on a coupled system of two sequential hybrid BVPs with numerical simulations to a model of typhoid treatment. Alex. Eng. J. 61(12), 10085–10098 (2022)

    Article  Google Scholar 

  7. Dokuyucu, M., Baleanu, D., Celik, E.: Analysis of Keller–Segel model with Atangana–Baleanu fractional derivative. Filomat 32, 5633–5643 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goufo, E., Mbehou, M., Pene, M.: A peculiar application of Atangana–Baleanu fractional derivative in neuroscience: chaotic burst dynamics. Chaos Solitons Fractals 115, 170–176 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Khan, D., Kumam, P., Watthayu, W., et al.: A novel multi fractional comparative analysis of second law analysis of MHD flow of Casson nanofluid in a porous medium with slipping and ramped wall heating. Z. Angew. Math. Mech. 103(6), e202100424 (2023)

    Article  MathSciNet  Google Scholar 

  10. Rizvi, S., Seadawy, A., Abbas, S., et al.: New soliton molecules to couple of nonlinear models: ion sound and Langmuir waves systems. Opt. Quantum Electron. 54, 852 (2022)

    Article  Google Scholar 

  11. Abouelregal, A., Rayan, A., Mostafa, D.: Transient responses to an infinite solid with a spherical cavity according to the MGT thermo-diffusion model with fractional derivatives without nonsingular kernels. Waves Random Complex Media (2022, in press). https://doi.org/10.1080/17455030.2022.2147242

    Article  Google Scholar 

  12. Fernandez, A.: A complex analysis approach to Atangana–Baleanu fractional calculus. Math. Methods Appl. Sci. 44, 8070–8087 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fernandez, A., Mohammed, S.: Hermite–Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Methods Appl. Sci. 44, 8414–8431 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dhayal, R., Gomez-Aguilar, J., Torres-Jimenez, J.: Stability analysis of Atangana–Baleanu fractional stochastic differential systems with impulses. Int. J. Syst. Sci. 53, 3481–3495 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khan, D., Kumam, P., Watthayu, W.: A novel comparative case study of entropy generation for natural convection flow of proportional-Caputo hybrid and Atangana–Baleanu fractional derivative. Sci. Rep.-UK 11, 22761 (2021)

    Article  Google Scholar 

  16. Almalahi, M., Panchal, S., Jarad, F., et al.: Qualitative analysis of a fuzzy Volterra–Fredholm integrodifferential equation with an Atangana–Baleanu fractional derivative. AIMS Math. 7, 15994–16016 (2022)

    Article  MathSciNet  Google Scholar 

  17. Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yadav, S., Pandey, R., Shukla, A.: Numerical approximations of Atangana–Baleanu Caputo derivative and its application. Chaos Solitons Fractals 118, 58–64 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hong, B., Wang, J.: Exact solutions for the generalized Atangana–Baleanu–Riemann fractional \((3 + 1)\)-dimensional Kadomtsev–Petviashvili equation. Symmetry 15, 3 (2023)

    Article  Google Scholar 

  20. Zhao, K.H.: Stability of a nonlinear ML-nonsingular kernel fractional Langevin system with distributed lags and integral control. Axioms 11(7), 350 (2022)

    Article  Google Scholar 

  21. Zhao, K.H.: Existence, stability and simulation of a class of nonlinear fractional Langevin equations involving nonsingular Mittag-Leffler kernel. Fractal Fract. 6(9), 469 (2022)

    Article  Google Scholar 

  22. Huang, H., Zhao, K.H., Liu, X.D.: On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Math. 7(10), 19221–19236 (2022)

    Article  MathSciNet  Google Scholar 

  23. Zhao, K.H.: Stability of a nonlinear Langevin system of ML-type fractional derivative affected by time-varying delays and differential feedback control. Fractal Fract. 6(12), 725 (2022)

    Article  Google Scholar 

  24. Zhao, K.H., Ma, Y.: Study on the existence of solutions for a class of nonlinear neutral Hadamard-type fractional integro-differential equation with infinite delay. Fractal Fract. 5(2), 52 (2021)

    Article  Google Scholar 

  25. Khan, H., Alzabut, J., Baleanu, D., et al.: Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differential equations with an application. AIMS Math. 8(3), 6609–6625 (2023)

    Article  MathSciNet  Google Scholar 

  26. Khan, R.A., Gul, S., Jarad, F., et al.: Existence results for a general class of sequential hybrid fractional differential equations. Adv. Differ. Equ.-NY 2021, 284 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Khan, A., Khan, H., Gómez-Aguilar, J.F., et al.: Existence and Hyers–Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel. Chaos Solitons Fractals 127, 422–427 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Alkhazzan, A., Al-Sadi, W., Wattanakejorn, V., et al.: A new study on the existence and stability to a system of coupled higher-order nonlinear BVP of hybrid FDEs under the p-Laplacian operator. AIMS Math. 7(8), 14187–14207 (2022)

    Article  MathSciNet  Google Scholar 

  29. Khan, H., Chen, W., Khan, A., et al.: Hyers–Ulam stability and existence criteria for coupled fractional differential equations involving p-Laplacian operator. Adv. Differ. Equ.-NY 2018, 455 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Khan, H., Chen, W., Sun, H.G.: Analysis of positive solution and Hyers–Ulam stability for a class of singular fractional differential equations with p-Laplacian in Banach space. Math. Methods Appl. Sci. 41(9), 3430–3440 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, X.G., Xu, P.T., Wu, Y.H.: The uniqueness and iterative properties of solutions for a general Hadamard-type singular fractional turbulent flow model. Nonlinear Anal. 27(3), 428–444 (2022)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, X.G., Jiang, J.Q., Liu, L.S., et al.: Extremal solutions for a class of tempered fractional turbulent flow equations in a porous medium. Math. Probl. Eng. 2020, 2492193 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Wu, J., Zhang, X.G., Liu, L.S., Wu, Y.H., et al.: The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity. Bound. Value Probl. 2018, 82 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhao, K.H.: Multiple positive solutions of integral boundary value problem for a class of nonlinear fractional-order differential coupling system with eigenvalue argument and \((p_{1},p_{2})\)-Laplacian. Filomat 32(12), 4291–4306 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao, K.H.: Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations. AIMS Math. 8(6), 13351–13367 (2023)

    Article  MathSciNet  Google Scholar 

  36. Ulam, S.: A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied Mathmatics. Interscience, New York (1906)

    MATH  Google Scholar 

  37. Hyers, D.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27(4), 2222–2240 (1941)

    Article  MathSciNet  Google Scholar 

  38. Zada, A., Waheed, H., Alzabut, J., et al.: Existence and stability of impulsive coupled system of fractional integrodifferential equations. Demonstr. Math. 52(1), 296–335 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yu, X.: Existence and β-Ulam–Hyers stability for a class of fractional differential equations with non-instantaneous impulses. Adv. Differ. Equ.-NY 2015, 104 (2015)

    Article  MATH  Google Scholar 

  40. Zhao, K.H., Deng, S.K.: Existence and Ulam–Hyers stability of a kind of fractional-order multiple point BVP involving noninstantaneous impulses and abstract bounded operator. Adv. Differ. Equ.-NY 2021, 44 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhao, K.H., Ma, S.: Ulam–Hyers–Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Math. 7(2), 3169–3185 (2021)

    Article  MathSciNet  Google Scholar 

  42. Zhao, K.H.: Stability of a nonlinear fractional Langevin system with nonsingular exponential kernel and delay control. Discrete Dyn. Nat. Soc. 2022, 9169185 (2022)

    Article  MATH  Google Scholar 

  43. Zhao, K.H.: Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions. Filomat 37(4), 1053–1063 (2023)

    Article  MathSciNet  Google Scholar 

  44. Jarad, F., Abdeljawad, T., Hammouch, Z.: On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 117, 16–20 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sadeghi, S., Jafari, H., Nemati, S.: Operational matrix for Atangana–Baleanu derivative based on Genocchi polynomials for solving FDEs. Chaos Solitons Fractals 135, 109736 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ge, W.: Boundary Value Problems for Nonlinear Ordinary Differential Equation. Science Press, Beijing (2007)

    Google Scholar 

  47. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cone. Academic Press, Orlando (1988)

    MATH  Google Scholar 

  48. Zhao, K.H.: Local exponential stability of several almost periodic positive solutions for a classical controlled GA-predation ecosystem possessed distributed delays. Appl. Math. Comput. 437, 127540 (2023)

    MathSciNet  MATH  Google Scholar 

  49. Zhao, K.H.: Existence and stability of a nonlinear distributed delayed periodic AG-ecosystem with competition on time scales. Axioms 12(3), 315 (2023)

    Article  Google Scholar 

  50. Zhao, K.H.: Local exponential stability of four almost-periodic positive solutions for a classic Ayala–Gilpin competitive ecosystem provided with varying-lags and control terms. Int. J. Control 96(8), 1922–1934 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhao, K.H.: Asymptotic stability of a periodic GA-predation system with infinite distributed lags on time scales. Int. J. Control (2023, in press). https://doi.org/10.1080/00207179.2023.2214251

    Article  Google Scholar 

  52. Zhao, K.H.: Coincidence theory of a nonlinear periodic Sturm–Liouville system and its applications. Axioms 11(12), 726 (2022)

    Article  Google Scholar 

  53. Zhao, K.H.: Global stability of a novel nonlinear diffusion online game addiction model with unsustainable control. AIMS Math. 7(12), 20752–20766 (2022)

    Article  MathSciNet  Google Scholar 

  54. Zhao, K.H.: Probing the oscillatory behavior of Internet game addiction via diffusion PDE model. Axioms 11(11), 649 (2022)

    Article  Google Scholar 

  55. Zhao, K.H.: Attractor of a nonlinear hybrid reaction–diffusion model of neuroendocrine transdifferentiation of human prostate cancer cells with time-lags. AIMS Math. 8(6), 14426–14448 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author sincerely thanks the editors and reviewers for their help and useful suggestions to improve the quality of the paper.

Funding

The APC was funded by research start-up funds for high-level talents of Taizhou University.

Author information

Authors and Affiliations

Authors

Contributions

The paper was completed by the author independently. All authors reviewed the manuscript.

Corresponding author

Correspondence to Kaihong Zhao.

Ethics declarations

Ethics approval and consent to participate

The conducted research is not related to either human or animal use.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K. Generalized UH-stability of a nonlinear fractional coupling \((\mathcalligra{p}_{1},\mathcalligra{p}_{2})\)-Laplacian system concerned with nonsingular Atangana–Baleanu fractional calculus. J Inequal Appl 2023, 96 (2023). https://doi.org/10.1186/s13660-023-03010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-03010-3

Mathematics Subject Classification

Keywords