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Abstract
The classical𝓅-Laplace equation is one of the special and significant second-order
ODEs. The fractional-order𝓅-Laplace ODE is an important generalization. In this
paper, we mainly treat with a nonlinear coupling (𝓅1,𝓅2)-Laplacian systems involving
the nonsingular Atangana–Baleanu (AB) fractional derivative. In accordance with the
value range of parameters𝓅1 and𝓅2, we obtain sufficient criteria for the existence
and uniqueness of solution in four cases. By using some inequality techniques we
further establish the generalized UH-stability for this system. Finally, we test the
validity and practicality of the main results by an example.
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1 Introduction
In this paper, we focus on the following nonlinear fractional coupling (𝓅1,𝓅2)-Laplacian
systems involving a nonsingular Mittag-Leffler kernel:

⎧
⎪⎪⎨

⎪⎪⎩

ABDν1
0+ [�𝓅1 (ABDμ1

0+ W1(t))] = G1(t,W1(t),W2(t)), t ∈ (0, a],
ABDν2

0+ [�𝓅2 (ABDμ2
0+ W2(t))] = G2(t,W1(t),W2(t)), t ∈ (0, a],

W1(0) =𝓊1, W2(0) =𝓊2, ABDμ1
0+ W1(0) = 𝓋1, ABDμ2

0+ W2(0) = 𝓋2,
(1.1)

where 𝓊1,𝓊2,𝓋1,𝓋2 ∈ R, a > 0, 0 < μ1,μ2,ν1,ν2 ≤ 1, and 𝓅1,𝓅2 > 1 are some con-
stants, ABD∗

0+ is the ∗-order Atangana–Baleanu (AB) fractional derivative with nonsin-
gular Mittag-Leffler kernel, �𝓅k (z) = |z|𝓅k –2z, k = 1, 2, are 𝓅k-Laplacian operators with
inverses �–1

𝓅k
= �𝓆k , provided that 1

𝓅k
+ 1
𝓆k

= 1 and Gk ∈ C([0, a] ×R
2,R) are nonlinear.

In 2016, Atangana and Baleanu [1] raised a distinctive fractional calculus, later named
Atangana–Baleanu (AB) fractional calculus, under common skeleton frame. The most
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prominent feature of AB-fractional calculus is the application of a special Mittag-Leffler
function in the definition. The superiority of AB-fractional derivative to Riemann–
Liouville (RL) and Riemann–Caputo (RC) fractional derivatives lies in nonsingularity.
In fact, for all 0 < γ < 1, (t – τ )–γ and Eγ [– γ

1–γ
(t – τ )] =

∑∞
n=0

[– γ
1–γ (t–τ )]n

�(γ n+1) are the kernels
of RC- and AB-fractional derivatives of order γ , respectively. Decidedly, (t – τ )–γ →∞
(singular) and Eγ [– γ

1–γ
(t – τ )]→1 (nonsingular) as τ→t. The nonsingularity of the AB-

fractional derivative is very useful for solving some practical problems. In fact, Atangana
and Baleanu [1] successfully solved a singular thermodynamic problem by applying the
AB-fractional order model by proposing the AB-fractional derivative. Many scientists
applied AB-fractional differential equation models to study practical problems such as
controllability [2, 3], virus and bacterial transmission [4–7], neuroscience [8], nanofluid
[9], ion flux [10] and thermo-diffusion [11]. Due to a wide application of AB-fractional
differential equations, many scholars have attached great importance to the theory of AB-
fractional differential system (see [12–27]). In addition, the 𝓅-Laplacian equation can
describe turbulent flow phenomenon in fundamental fluid mechanics, and hence many
papers have been published dealing with its theory and applications (see [28–35]).

In 1940s, Hyers and Ulam [36, 37] raised a new concept of stabilitym the Ulam and
Hyers (UH) stability. Since then, the generalized UH-stability, Ulam–Hyers–Rassias sta-
bility, and generalized Ulam–Hyers–Rassias stability have also been proposed on the ba-
sis of UH-stability. Until now, the UH-type stability of various systems is still favored by
scientists. As one of the important differential dynamic systems, the UH-type stability
of fractional differential equations has also been focused on and achieved rich results
([14, 20, 21, 23, 27–30, 35, 38–43], among others). However, the UH-type stability of AB-
fractional differential equations is rarely studied because the structure of the equations is
more complex than that of a single differential equation. To the best my knowledge, there
are no papers combining the AB-fractional derivative with coupling Laplacian system.
Consequently, it is novel and interesting to probe the dynamic behavior of system (1.1).
The importance of this paper is embodied in two aspects as follows: (i) Since nobody has
studied the AB-fractional differential coupling Laplacian system yet, we first consider sys-
tem (1.1) to fill this gap. (ii) We investigate the existence, uniqueness, and GUH-stability
of system (1.1) and obtain some concise sufficient conditions.

The next framework of the paper is as follows. Section 2 reviews some necessary con-
tents about AB-fractional calculus. In Sect. 3 the existence and uniqueness of a solution is
obtained by the contraction mapping principle. In Sect. 4 the generalized UH-stability of
(1.1) is further established. Section 5 gives an example illustrating the validity and avail-
ability of our main findings. A concise conclusion is made in Sect. 6.

2 Preliminaries
Definition 2.1 ([44]) For 0 < γ ≤ 1, a > 0, and W : [0, a]→R, the left-sided γ th-order
AB-fractional integral of W is defined by

ABIγ
0 W(t) =

1 – γ

N(γ )
W(t) +

γ

N(γ )�(γ )

∫ t

0
(t – s)γ –1W(s) ds,

where N(α) is a normalization constant with N(0) = N(1) = 1.



Zhao Journal of Inequalities and Applications         (2023) 2023:96 Page 3 of 16

Definition 2.2 ([1]) For 0 < γ ≤ 1, a > 0, and W ∈ C1(0, a), the left-sided γ th-order AB-
fractional derivative of W is defined by

ABDγ

0+W(t) =
N(γ )
1 – γ

∫ t

0
E
[

–
α

1 – α
(t – s)

]

W ′(s) ds,

where Eγ (z) =
∑∞

n=0
zn

�(γ n+1) is the Mittag-Leffer special function with parameter γ .

Lemma 2.1 ([45]) If H ∈ C[0, a], then the unique solution of the IVP
⎧
⎨

⎩

ABDγ

0+W(t) = H(t), t ≥ 0, 0 < γ ≤ 1,

W(0) = W0,

is given by

W(t) = W0 +
1 – γ

N(γ )
[
H(t) – H(0)

]
+

γ

N(γ )�(γ )

∫ t

0
(t – s)γ –1H(s) ds.

Lemma 2.2 ([30, 46]) Let p > 1. The𝓅-Laplacian operator �𝓅(z) = |z|𝓅–2z has the follow-
ing properties:

(i) If z ≥ 0, then �𝓅(z) = z𝓅–1, and �𝓅(z) is increasing with respect to z;
(ii) �𝓅(zw) = �𝓅(z)�𝓅(w) for all z, w ∈R;

(iii) If 1
𝓅 + 1

𝓆 = 1, then �𝓆[�𝓅(z)] = �𝓅[�𝓆(z)] = z for all z ∈ R;
(iv) For all z, w ≥ 0, z ≤ w ⇔ �𝓆(z) ≤ �𝓆(w);
(v) 0 ≤ z ≤ �–1

𝓆 (w) ⇔ 0 ≤ �𝓆(z) ≤ w;
(vi)

∣
∣�𝓆(z) – �𝓆(w)

∣
∣ ≤

⎧
⎨

⎩

(𝓆 – 1)M𝓆–2|z – w|, 𝓆≥ 2, 0 ≤ z, w ≤ M,

(𝓆 – 1)M𝓆–2|z – w|, 1 <𝓆 < 2, z, w ≥ M ≥ 0.

Lemma 2.3 Let𝓊1,𝓊2,𝓋1,𝓋2 ∈R, a > 0, 0 < μ1,μ2,ν1,ν2 ≤ 1, and𝓅1,𝓅2 > 1 be some con-
stants, and let Gk ∈ C([0, a] × R

2,R), k = 1, 2. Then the nonlinear AB-fractional coupling
Laplacian system (1.1) is equivalent to the integral system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W1(t) =𝓊1 +
1 – μ1

N(μ1)
[�𝓆1 (H1(t,W1(t),W2(t))) – 𝓋1]

+
μ1

N(μ1)�(μ1)

∫ t

0
(t – s)μ1–1�𝓆1 (H1(s,W1(s),W2(s))) ds, t ∈ [0, a],

W2(t) =𝓊2 +
1 – μ2

N(μ2)
[�𝓆2 (H2(t,W1(t),W2(t))) – 𝓋2]

+
μ2

N(μ2)�(μ2)

∫ t

0
(t – s)μ1–1�𝓆2 (H2(s,W1(s),W2(s))) ds, t ∈ [0, a],

(2.1)

where 1
𝓅k

+ 1
𝓆k

= 1 (k = 1, 2), and

H1
(
t,W1(t),W2(t)

)
= �𝓅1 (𝓋1) +

1 – ν1

N(ν1)
[
G1

(
t,W1(t),W2(t)

)
– G1(0,𝓊1,𝓊2)

]

+
ν1

N(ν1)�(ν1)

∫ t

0
(t – τ )ν1–1G1

(
τ ,W1(τ ),W2(τ )

)
dτ ,
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H2
(
t,W1(t),W2(t)

)
= �𝓅2 (𝓋2) +

1 – ν2

N(ν2)
[
G2

(
t,W1(t),W2(t)

)
– F2(0,𝓊1,𝓊2)

]

+
ν2

N(ν2)�(ν2)

∫ t

0
(t – τ )ν2–1G2

(
τ ,W1(τ ),W2(τ )

)
dτ .

Proof Let (W1(t),W2(t)) ∈ C([0, a],R) × C([0, a],R) be a solution of (1.1). Then from
Lemma 2.1 and the first equation of (1.1) we have

�𝓅1

(ABDμ1
0+ W1(t)

)
= �𝓅1

(ABDμ1
0+ W1(0)

)
+

1 – ν1

N(ν1)
[
G1

(
t,W1(t),W2(t)

)

– G1
(
0,W1(0),W2(0)

)]

+
ν1

N(ν1)�(ν1)

∫ t

0
(t – τ )ν1–1G1

(
τ ,W1(τ ),W2(τ )

)
dτ . (2.2)

In view of (2.2) and (iii) in Lemma 2.2, we have

ABDμ1
0+ W1(t) = �𝓆1

(

�𝓅1

(ABDμ1
0+ W1(0)

)
+

1 – ν1

N(ν1)
[
G1

(
t,W1(t),W2(t)

)

– G1
(
0,W1(0),W2(0)

)]

+
ν1

N(ν1)�(ν1)

∫ t

0
(t – τ )ν1–1G1

(
τ ,W1(τ ),W2(τ )

)
dτ

)

, (2.3)

where 1
𝓅1

+ 1
𝓆1

= 1, 𝓅1 > 1. Denote

H1
(
t,W1(t),W2(t)

)
= �𝓅1

(ABDμ1
0+ W1(0)

)
+

1 – ν1

N(ν1)
[
G1

(
t,W1(t),W2(t)

)

– G1
(
0,W1(0),W2(0)

)]

+
ν1

N(ν1)�(ν1)

∫ t

0
(t – τ )ν1–1G1

(
τ ,W1(τ ),W2(τ )

)
dτ . (2.4)

By (2.3), (2.4), and Lemma 2.1 we obtain that

W1(t) = W1(0) +
1 – μ1

N(μ1)
[
�𝓆1

(
H1

(
t,W1(t),W2(t)

))
– �𝓆1

(
H1

(
0,W1(0),W2(0)

))]

+
μ1

N(μ1)�(μ1)

∫ t

0
(t – s)μ1–1�𝓆1

(
H1

(
s,W1(s),W2(s)

))
ds. (2.5)

By the second equation of (1.1), (2.2)–(2.5) are similar to

W2(t) = W2(0) +
1 – μ2

N(μ2)
[
�𝓆2

(
H2

(
t,W1(t),W2(t)

))
– �𝓆2

(
H2

(
0,W1(0),W2(0)

))]

+
μ2

N(μ2)�(μ2)

∫ t

0
(t – s)μ2–1�𝓆2

(
H2

(
s,W1(s),W2(s)

))
ds, (2.6)
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where 1
𝓅2

+ 1
𝓆2

= 1, 𝓅2 > 1, and

H2
(
t,W1(t),W2(t)

)
= �𝓅2

(ABDμ2
0+ W2(0)

)
+

1 – ν2

N(ν2)
[
G2

(
t,W1(t),W2(t)

)

– G2
(
0,W1(0),W2(0)

)]

+
ν2

N(ν2)�(ν2)

∫ t

0
(t – τ )ν2–1G2

(
τ ,W1(τ ),W2(τ )

)
dτ . (2.7)

We substitute the initial values W1(0) = 𝓊1, W2(0) = 𝓊2, ABDμ1
0+ W1(0) = 𝓋1, and

ABDμ2
0+ W2(0) = 𝓋2 into (2.4)–(2.7) to get (2.1), which means that (W1(t),W2(t)) ∈ C([0, a],

R) × C([0, a],R) is also a solution of (2.1). Since z → �𝓅(z) is reversible, the above deriva-
tion is completely reversible. Conversely, if (W1(t),W2(t)) ∈ C([0, a],R) × C([0, a],R) is a
solution of (2.1), then it is also a solution of (1.1). The proof is completed. �

3 Existence and uniqueness
This section concentrates on the solvability of system (1.1) thanks to the following con-
traction fixed point theorem.

Lemma 3.1 ([47]) Let X be a Banach space, and let φ 
= X1 ⊂ X be closed. If F : X1→X1

is a contraction, then F admits a unique fixed point u∗ ∈ E.

According to Lemma 2.3, we takeX = C([0, a],R)×C([0, a],R). Then (X,‖·‖) is a Banach
space equipped with the norm ‖w‖ = ‖(w1, w2)‖ = max{sup0≤t≤l |w1(t)|, sup0≤t≤l |w2(t)|},
w = (w1, w2) ∈X. Accordingly, we will study the solvability and stability of (1.1) on (X,‖·‖).
For convenience, we introduce the following conditions and symbols.

(A1) The real constants satisfy 𝓊1 
= 0 or 𝓊2 
= 0, a,𝓋1,𝓋2 > 0, 0 < μ1,μ2,ν1,ν2 ≤ 1, and
𝓅1,𝓅2 > 1; Gk ∈ C([0, a] ×R

2,R), k = 1, 2.
(A2) For all t ∈ [0, a] and w1, w2 ∈ R, there areconstants mk , Mk > 0 such that

mk ≤ Gk(t, w1, w2) ≤ Mk , k = 1, 2.

(A3) For all t ∈ [0, a] and w1, w1, w2, w2 ∈ R, there are functions 0 ≤ Lk1(t),Lk2(t) ∈
C[0, a] such that

∣
∣Gk(t, w1, w2) – Gk(t, w1, w2)

∣
∣ ≤Lk1(t)|w1 – w1| + Lk2(t)|w2 – w2|.

Denote

Mk = 𝓋𝓅k –1
k –

1 – νk

N(νk)
(Mk – mk), Mk = 𝓋𝓅k –1

k +
1 – νk

N(νk)
(Mk – mk) +

Mkaνk

N(νk)�(νk)
,

	k =
1

N(μk)N(νk)

[

(1 – μk)(1 – νk) +
(1 – μk)aνk

�(νk)
+

(1 – νk)aμk

�(μk)
+

μkνkaμk +νk

�(μk + νk)

]

,

ξk = 	k(𝓆k – 1)Mk
𝓆k –2(‖Lk1‖a + ‖Lk2‖a

)
,

ξk = 	k(𝓆k – 1)Mk
𝓆k –2(‖Lk1‖a + ‖Lk2‖a

)
,

‖Lk1‖a = max
t∈[0,a]

Lk1(t), ‖Lk2‖a = max
t∈[0,a]

Lk2(t), k = 1, 2.
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(A4) One of the following conditions is satisfied: 𝓆1,𝓆2 ≥ 2, ξ1, ξ2 < 1; or 𝓆1 ≥ 2, 1 <
𝓆2 < 2, ξ1, ξ2 < 1; or 1 <𝓆1 < 2, 𝓆2 ≥ 2, ξ1, ξ2 < 1; or 1 <𝓆1, 𝓆2 < 2, ξ1, ξ2 < 1.

Theorem 3.1 Assume that (A1)–(A4) hold and Mk > 0 (k = 1, 2). Then system (1.1) has a
unique nonzero solution (W∗

1 (t),W∗
2 (t)) ∈X.

Proof Obviously, (W1(0),W2(0)) = (𝓊1,𝓊2) 
= (0, 0), that is, (W1(t),W2(t)) 
≡ (0, 0) for all
t ∈ [0, a]. For all (W1,W2) ∈X, in light of Lemma 2.3, define the vector operator F : X→X

by

F (W1,W2)(t) =
(
F1(W1,W2)(t),F2(W1,W2)(t)

)
, t ∈ [0, a], (3.1)

where

F1(W1,W2)(t) =𝓊1 +
1 – μ1

N(μ1)
[
�𝓆1

(
H1

(
t,W1(t),W2(t)

))
– 𝓋1

]

+
μ1

N(μ1)�(μ1)

∫ t

0
(t – s)μ1–1�𝓆1

(
H1

(
s,W1(s),W2(s)

))
ds, (3.2)

F2(W1,W2)(t) =𝓊2 +
1 – μ2

N(μ2)
[
�𝓆2

(
H2

(
t,W1(t),W2(t)

))
– 𝓋2

]

+
μ2

N(μ2)�(μ2)

∫ t

0
(t – s)μ2–1�𝓆2

(
H2

(
s,W1(s),W2(s)

))
ds (3.3)

with H1(t,W1(t),W2(t)) and H2(t,W1(t),W2(t)) the same as in (2.1).
For all W = (W1,W2) and t ∈ [0, a], from (2.1), (A1), and (A2) we have

H1
(
t,W1(t),W2(t)

) ≤ 𝓋𝓅1–1
1 +

1 – ν1

N(ν1)
(M1 – m1) +

ν1M1

N(ν1)�(ν1)

∫ t

0
(t – τ )ν1–1 dτ

= 𝓋𝓅1–1
1 +

1 – ν1

N(ν1)
(M1 – m1) +

ν1M1

N(ν1)�(ν1)ν1
tν1

≤ 𝓋𝓅1–1
1 +

1 – ν1

N(ν1)
(M1 – m1) +

M1aν1

N(ν1)�(ν1)
= M1. (3.4)

In the same way, we obtain

H1
(
t,W1(t),W2(t)

) ≥ 𝓋𝓅1–1
1 –

1 – ν1

N(ν1)
(M1 – m1) = M1, (3.5)

H2
(
t,W1(t),W2(t)

) ≤ 𝓋𝓅2–1
2 +

1 – ν2

N(ν2)
(M2 – m2) +

M2aν2

N(ν2)�(ν2)
= M2, (3.6)

and

H2
(
t,W1(t),W2(t)

) ≥ 𝓋𝓅2–1
2 –

1 – ν2

N(ν2)
(M2 – m2) = M2. (3.7)

Obviously, M1 ≤ M1, M2 ≤ M2. In line with (3.2), (3.4), (3.5), (A3), and (vi) of
Lemma 2.2, for all W = (W1,W2), W = (W1,W2) ∈X, t ∈ [0, a], we get

∣
∣F1(W1,W2)(t) – F1(W1,W2)(t)

∣
∣

=
∣
∣
∣
∣
1 – μ1

N(μ1)
[
�𝓆1

(
H1

(
t,W1(t),W2(t)

))
– �𝓆1

(
H1

(
t,W1(t),W2(t)

))]
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+
μ1

N(μ1)�(μ1)

∫ t

0
(t – s)μ1–1[�𝓆1

(
H1

(
s,W1(s),W2(s)

))

– �𝓆1

(
H1

(
s,W1(s),W2(s)

))]
ds

∣
∣
∣
∣

≤ 1 – μ1

N(μ1)
∣
∣�𝓆1

(
H1

(
t,W1(t),W2(t)

))
– �𝓆1

(
H1

(
t,W1(t),W2(t)

))∣
∣

+
μ1

N(μ1)�(μ1)

∫ t

0
(t – s)μ1–1∣∣�𝓆1

(
H1

(
s,W1(s),W2(s)

))

– �𝓆1

(
H1

(
s,W1(s),W2(s)

))∣
∣ds. (3.8)

When 𝓆1 ≥ 2, (3.8) leads to

∣
∣F1(W1,W2)(t) – F1(W1,W2)(t)

∣
∣

≤ 1 – μ1

N(μ1)
(𝓆1 – 1)M1

𝓆1–2∣∣H1
(
t,W1(t),W2(t)

)
– H1

(
t,W1(t),W2(t)

)∣
∣

+
μ1

N(μ1)�(μ1)
(𝓆1 – 1)M1

𝓆1–2
∫ t

0
(t – s)μ1–1∣∣H1

(
s,W1(s),W2(s)

)

– H1
(
s,W1(s),W2(s)

)∣
∣ds

≤ 1 – μ1

N(μ1)
(𝓆1 – 1)M1

𝓆1–2
[

1 – ν1

N(ν1)
∣
∣G1

(
t,W1(t),W2(t)

)
– G1

(
t,W1(t),W2(t)

)∣
∣

+
ν1

N(ν1)�(ν1)

∫ t

0
(t – τ )ν1–1∣∣G1

(
τ ,W1(τ ),W2(τ )

)
– G1

(
τ ,W1(τ ),W2(τ )

)∣
∣dτ

]

+
μ1

N(μ1)�(μ1)
(𝓆1 – 1)M1

𝓆1–2
∫ t

0
(t – s)μ1–1

[
1 – ν1

N(ν1)
∣
∣G1

(
s,W1(s),W2(s)

)

– G1
(
s,W1(s),W2(s)

)∣
∣ +

ν1

N(ν1)�(ν1)

∫ s

0
(s – τ )ν1–1∣∣G1

(
τ ,W1(τ ),W2(τ )

)

– G1
(
τ ,W1(τ ),W2(τ )

)∣
∣dτ

]

ds

≤ 1 – μ1

N(μ1)
(𝓆1 – 1)M1

𝓆1–2
[

1 – ν1

N(ν1)
[
L11(t)

∣
∣W1(t) – W1(t)

∣
∣ + L12(t)

∣
∣W2(t) – W2(t)

∣
∣
]

+
ν1

N(ν1)�(ν1)

∫ t

0

[
L11(τ )

∣
∣W1(τ ) – W1(τ )

∣
∣ + L12(τ )

∣
∣W2(τ ) – W2(τ )

∣
∣
]

dτ

]

+
μ1

N(μ1)�(μ1)
(𝓆1 – 1)M1

𝓆1–2
∫ t

0
(t – s)μ1–1

[
1 – ν1

N(ν1)
[
L11(s)

∣
∣W1(s) – W1(s)

∣
∣

+ L12(s)
∣
∣W2(s) – W2(s)

∣
∣
]

+
ν1

N(ν1)�(ν1)

∫ s

0
(s – τ )ν1–1[L11(τ )

∣
∣W1(τ ) – W1(τ )

∣
∣

+ L12(τ )
∣
∣W2(τ ) – W2(τ )

∣
∣
]

dτ

]

ds

≤ 1 – μ1

N(μ1)
(𝓆1 – 1)M1

𝓆1–2
[

1 – ν1

N(ν1)
[‖L11‖a · ‖W – W‖ + ‖L12‖a · ‖W – W‖]

+
ν1

N(ν1)�(ν1)

∫ t

0
(t – τ )ν1–1[‖L11‖a · ‖W – W‖ + ‖L12‖a · ‖W – W‖]dτ

]

+
μ1

N(μ1)�(μ1)
(𝓆1 – 1)M1

𝓆1–2
∫ t

0
(t – s)μ1–1

[
1 – ν1

N(ν1)
[‖L11‖a · ‖W – W‖
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+ ‖L12‖a · ‖W – W‖] +
ν1

N(ν1)(�(ν1))

∫ s

0
(s – τ )ν1–1[‖L11‖a · ‖W – W‖

+ ‖L12‖a · ‖W – W‖]dτ

]

ds

=
[

(1 – μ1)(1 – ν1)
N(μ1)N(ν1)

+
(1 – μ1)ν1

N(μ1)N(ν1)�(ν1)

∫ t

0
(t – τ )ν1–1 dτ

+
(1 – ν1)μ1

N(μ1)N(ν1)�(μ1)

∫ t

0
(t – s)μ1–1 ds

+
μ1ν1

N(μ1)N(ν1)�(μ1)�(ν1)

∫ t

0
(t – s)μ1–1

(∫ s

0
(s – τ )ν1–1 dτ

)

ds
]

× (𝓆1 – 1)M1
𝓆1–2(‖L11‖a + ‖L12‖a

)‖W – W‖

=
[

(1 – μ1)(1 – ν1)
N(μ1)N(ν1)

+
1 – μ1

N(μ1)N(ν1)�(ν1)
tν1 +

1 – ν1

N(μ1)N(ν1)�(μ1)
tμ1

+
μ1ν1

N(μ1)N(ν1)�(μ1 + ν1)
tμ1+ν1

]

(𝓆1 – 1)M1
𝓆1–2(‖L11‖a + ‖L12‖a

)‖W – W‖

≤ 1
N(μ1)N(ν1)

[

(1 – μ1)(1 – ν1) +
(1 – μ1)aν1

�(ν1)
+

(1 – ν1)aμ1

�(μ1)
+

μ1ν1aμ1+ν1

�(μ1 + ν1)

]

× (𝓆1 – 1)M1
𝓆1–2(‖L11‖a + ‖L12‖a

)‖W – W‖
= ξ1‖W – W‖. (3.9)

When 1 <𝓆1 < 2, as in (3.9), (3.8) gives

∣
∣F1(W1,W2)(t) – F1(W1,W2)(t)

∣
∣

≤ 1
N(μ1)N(ν1)

[

(1 – μ1)(1 – ν1) +
(1 – μ1)aν1

�(ν1)
+

(1 – ν1)aμ1

�(μ1)
+

μ1ν1aμ1+ν1

�(μ1 + ν1)

]

× (𝓆1 – 1)M1
𝓆1–2(‖L11‖a + ‖L12‖a

)‖W – W‖
= ξ1‖W – W‖. (3.10)

Similarly to (3.8)–(3.10),

∣
∣F2(W1,W2)(t) – F2(W1,W2)(t)

∣
∣

≤ 1
N(μ2)N(ν2)

[

(1 – μ2)(1 – ν2) +
(1 – μ2)aν2

�(ν2)
+

(1 – ν2)aμ2

�(μ2)
+

μ2ν2aμ2+ν2

�(μ2 + ν2)

]

× (𝓆2 – 1)M2
𝓆2–2(‖L21‖a + ‖L22‖a

)‖W – W‖
= ξ2‖W – W‖, 𝓆2 ≥ 2, (3.11)

and

∣
∣F2(W1,W2)(t) – F2(W1,W2)(t)

∣
∣

≤ 1
N(μ2)N(ν2)

[

(1 – μ2)(1 – ν2) +
(1 – μ2)aν2

�(ν2)
+

(1 – ν2)aμ2

�(μ2)
+

μ2ν2aμ2+ν2

�(μ2 + ν2)

]
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× (𝓆2 – 1)M2
𝓆2–2(‖L21‖a + ‖L22‖a

)‖W – W‖
= ξ2‖W – W‖, 1 <𝓆2 < 2. (3.12)

It follows from (3.9)–(3.12) that

∥
∥F (W1,W2)(t) – F (W1,W2)(t)

∥
∥ ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max{ξ1, ξ2} · ‖W – W‖, 𝓆1,𝓆2 ≥ 2,

max{ξ1, ξ2} · ‖W – W‖, 𝓆1 ≥ 2, 1 <𝓆2 < 2,

max{ξ1, ξ2} · ‖U – W‖, 1 <𝓆1 < 2,𝓆2 ≥ 2,

max{ξ1, ξ2} · ‖W – W‖, 1 <𝓆1,𝓆2 < 2.
(3.13)

Let ξk ∈ {ξk , ξk}, k = 1, 2. Then (A4) implies that 0 < max{ξ1, ξ2} < 1. Thus (3.13) indicates
that F : X → X is a contraction. From Lemmas 3.1 and 2.2 we know that F has a unique
fixed point W∗(t) = (W∗

1 (t),W∗
2 (t)) ∈X, which is the unique solution of (1.1). The proof is

completed. �

4 Generalized UH-stability
For W = (W1,W2) ∈X and ε > 0, the latter definition of stability requires the inequalities

⎧
⎪⎪⎨

⎪⎪⎩

ABDν1
0+ [�𝓅1 (ABDμ1

0+ W1(t))] – G1(t,W1(t),W2(t)) ≤ ε, t ∈ (0, a],
ABDν2

0+ [�𝓅2 (ABDμ2
0+ W2(t))] – G2(t,W1(t),W2(t)) ≤ ε, t ∈ (0, a],

W1(0) =𝓊1, W2(0) =𝓊2, ABDμ1
0+ W1(0) = 𝓋1, ABDμ2

0+ W2(0) = 𝓋2.
(4.1)

Definition 4.1 Suppose that for all ε > 0 and W = (W1,W2) ∈X satisfying (4.1), there are
a unique W∗ = (W∗

1 ,W∗
2 ) ∈X satisfying (1.1) and a constant ω1 > 0 such that

∥
∥W(t) – W∗(t)

∥
∥ ≤ ω1ε.

Then problem (1.1) is said to be Ulam–Hyers (UH) stable.

Definition 4.2 Suppose that for all ε > 0 and W = (W1,W2) ∈X satisfying (4.1), there are
a unique W∗ = (W∗

1 ,W∗
2 ) ∈X satisfying (1.1) and  ∈ C(R,R+) with  (0) = 0 such that

∥
∥W(t) – W∗(t)

∥
∥ ≤  (ε).

Then problem (1.1) is said to be generalized Ulam–Hyers (GUH) stable.

Remark 4.1 W = (W1,W2) ∈X is a solution of inequality (4.1) iff there exists φ = (φ1,φ2) ∈
X such that

(a) |φ1(t)| ≤ ε, |φ2(t)| ≤ ε, 0 < t ≤ a;
(b) ABDν1

0+ [�𝓅1 (ABDμ1
0+ W1(t))] = G1(t,W1(t),W2(t)) + φ1(t), 0 < t ≤ a;

(c) ABDν2
0+ [�𝓅2 (ABDμ2

0+ W2(t))] = G2(t,W1(t),W2(t)) + φ2(t), 0 < t ≤ a;
(d) W1(0) =𝓊1, W2(0) =𝓊2, ABDμ1

0+ W1(0) = 𝓋1, ABDμ2
0+ W2(0) = 𝓋2.
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Theorem 4.1 Under (A1)–(A4), problem (1.1) is generalized UH-stable.

Proof In view of Lemma 2.3 and Remark 4.1, to solve inequality (4.1), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W1(t) =𝓊1 +
1 – μ1

N(μ1)
[�𝓆1 (Hφ

1 (t,W1(t),W2(t))) – 𝓋1]

+
μ1

N(μ1)�(μ1)

∫ t

0
(t – s)μ1–1�𝓆1 (Hφ

1 (s,W1(s),W2(s))) ds,

W2(t) =𝓊2 +
1 – μ2

N(μ2)
[�𝓆2 (Hφ

2 (t,W1(t),W2(t))) – 𝓋2]

+
μ2

N(μ2)�(μ2)

∫ t

0
(t – s)μ2–1�𝓆2 (Hφ

2 (s,W1(s),W2(s))) ds,

(4.2)

Hφ
1
(
t,W1(t),W2(t)

)

= �𝓅1 (𝓋1) +
1 – ν1

N(ν1)
[
G1

(
t,W1(t),W2(t)

)
+ φ1(t) – G1(0,𝓊1,𝓊2) – φ1(0)

]

+
ν1

N(ν1)�(ν1)

∫ t

0
(t – τ )ν1–1[G1

(
τ ,W1(τ ),W2(τ )

)
+ φ1(τ )

]
dτ , (4.3)

Hφ
2
(
t,W1(t),W2(t)

)

= �𝓅2 (𝓋2) +
1 – ν2

N(ν2)
[
G2

(
t,W1(t),W2(t)

)
+ φ2(t) – G2(0,𝓊1,𝓊2) – φ2(0)

]

+
ν2

N(ν2)�(ν2)

∫ t

0
(t – τ )ν2–1[G2

(
τ ,W1(τ ),W2(τ )

)
+ φ(τ )

]
dτ . (4.4)

By Theorem 3.1 and Lemma 2.3 the unique solution W∗(t) = (W∗
1 (t),W∗

2 (t)) ∈X of (1.1)
also meets (2.1). For all ε > 0 small enough, from (A1), (A2), and (a) in Remark 4.1 it follows
that (3.4)–(3.7) are similar to

Hφ
1
(
t,W1(t),W2(t)

) ≤ 𝓋𝓅1–1
1 +

1 – ν1

N(ν1)
(M1 – m1 + 2ε) +

M1aμ1

N(ν1)�(μ1)
(M1 + ε)

= M1(ε), (4.5)

Hφ
1
(
t,W1(t),W2(t)

) ≥ 𝓋𝓅1–1
1 –

1 – ν1

N(ν1)
(M1 – m1 + 2ε) = M1(ε) > 0, (4.6)

Hφ
2
(
t,W1(t),W2(t)

) ≤ 𝓋𝓅2–1
2 +

1 – ν2

N(ν2)
(M2 – m2 – 2ε) +

M2aν2

N(ν2)�(ν2)
(M2 + ε)

= M2(ε), (4.7)

and

Hφ
2
(
t,W1(t),W2(t)

) ≥ 𝓋𝓅2–1
2 –

1 – ν2

N(ν2)
(M2 – m2 + 2ε) = M2(ε) > 0. (4.8)

Clearly, 0 < M1(ε) < M1 < M1 < M1(ε) and 0 < M2(ε) < M2 < M2 < M2(ε).
Similarly to (3.8) and (3.9), when q1 ≥ 2, we draw from (2.1), (4.2), (4.3), and (4.5) that

∣
∣W1(t) – W∗

1 (t)
∣
∣

=

∣
∣
∣
∣
∣

1 – μ1

N(μ1)
[
�𝓆1

(
Hφ

1
(
t,W1(t),W2(t)

))
– �𝓆1

(
H1

(
t,W∗

1 (t),W∗
2 (t)

))]



Zhao Journal of Inequalities and Applications         (2023) 2023:96 Page 11 of 16

+
μ1

N(μ1)�(μ1)

∫ t

0
(t – s)μ1–1[�𝓆1

(
Hφ

1
(
s,W1(s),W2(s)

))

– H1
(
s,W∗

1 (s),W∗
2 (s)

)]
ds

∣
∣
∣
∣
∣

≤ 1 – μ1

N(μ1)
∣
∣�𝓆1

(
Hφ

1
(
t,W1(t),W2(t)

))
– �𝓆1

(
H1

(
t,W∗

1 (t),W∗
2 (t)

))∣
∣

+
μ1

N(μ1)�(μ1)

∫ t

0
(t – s)μ1–1∣∣�𝓆1

(
Hφ

1
(
s,W1(s),W2(s)

))

– H1
(
s,W∗

1 (s),W∗
2 (s)

)∣
∣ds

≤ 1 – μ1

N(μ1)
(𝓆1 – 1)M1(ε)𝓆1–2∣∣Hφ

1
(
t,W1(t),W2(t)

)
– H1

(
t,W∗

1 (t),W∗
2 (t)

)∣
∣

+
μ1

N(μ1)�(μ1)
(𝓆1 – 1)M1(ε)q1–2

×
∫ t

0
(t – s)μ1–1∣∣Hφ

1
(
s,W1(s),W2(s)

)
– H1

(
s,W∗

1 (s),W∗
2 (s)

)∣
∣ds

≤ 1 – μ1

N(μ1)
(𝓆1 – 1)M1(ε)𝓆1–2

×
[

1 – ν1

N(ν1)
[∣
∣G1

(
t,W1(t),W2(t)

)
– G1

(
t,W∗

1 (t),W∗
2 (t)

)∣
∣ + 2ε

]
+

ν1

N(ν1)�(ν1)

×
∫ t

0
(t – τ )ν1–1[∣∣G1

(
τ ,W1(τ ),W2(τ )

)
– G1

(
τ ,W∗

1 (τ ),W∗
2 (τ )

)∣
∣ + 2ε

]
dτ

]

+
μ1

N(μ1)�(μ1)
(𝓆1 – 1)M1(ε)𝓆1–2

∫ t

0
(t – s)μ1–1

[
1 – ν1

N(ν1)
[∣
∣G1

(
s,W1(s),W2(s)

)

– G1
(
s,W∗

1 (s),W∗
2 (s)

)∣
∣ + 2ε

]
+

ν1

N(ν1)�(ν1)

∫ s

0
(s – τ )ν1–1[∣∣G1

(
τ ,W1(τ ),W2(τ )

)

– G1
(
τ ,W∗

1 (τ ),W∗
2 (τ )

)∣
∣ + 2ε

]
dτ

]

ds

≤ 1 – μ1

N(μ1)
(𝓆1 – 1)M1(ε)𝓆1–2

×
[

1 – ν1

N(ν1)
[
L11(t)

∣
∣W1(t) – W∗

1 (t)
∣
∣ + L12(t)

∣
∣W2(t) – W∗

2 (t)
∣
∣ + 2ε

]

+
ν1

N(ν1)�(ν1)

∫ t

0
(t – τ )ν1–1[L11(τ )

∣
∣W1(τ ) – W∗

1 (τ )
∣
∣

+ L12(τ )
∣
∣W2(τ ) – W∗

2 (τ )
∣
∣ + 2ε

]
dτ

]

+
μ1

N(μ1)�(μ1)
(𝓆1 – 1)M1(ε)𝓆1–2

∫ t

0
(t – s)μ1–1

[
1 – ν1

N(ν1)
[
L11(s)

∣
∣W1(s) – W∗

1 (s)
∣
∣

+ L12(s)
∣
∣W2(s) – W∗

2 (s)
∣
∣ + 2ε

]

+
ν1

N(ν1)�(ν1)

∫ s

0
(s – τ )ν1–1[L11(τ )

∣
∣W1(τ ) – W∗

1 (τ )
∣
∣

+ L12(τ )
∣
∣W2(τ ) – W∗

2 (τ )
∣
∣ + 2ε

]
dτ

]

ds
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≤ 1 – μ1

N(μ1)
(𝓆1 – 1)M1(ε)𝓆1–2

[
1 – ν1

N(ν1)
[‖L11‖a · ∥∥W – W∗∥∥

+ ‖L12‖a · ∥∥W – W∗∥∥ + 2ε
]

+
ν1

N(ν1)�(ν1)

∫ t

0
(t – τ )ν1–1[‖L11‖a · ∥∥W – W∗∥∥

+ ‖L12‖l ·
∥
∥W – W∗∥∥ + 2ε

]
dτ

]

+
μ1

N(μ1)�(μ1)
(𝓆1 – 1)M1(ε)𝓆1–2

∫ t

0
(t – s)μ1–1

[
1 – ν1

N(ν1)
[‖L11‖a · ∥∥W – W∗∥∥

+ ‖L12‖a · ∥∥W – W∗∥∥ + 2ε
]

+
ν1

N(ν1)�(ν1)

∫ s

0
(s – τ )ν1–1[‖L11‖a · ∥∥W – W∗∥∥

+ ‖L12‖a · ∥∥W – W∗∥∥ + 2ε
]

dτ

]

ds

=
[

(1 – μ1)(1 – ν1)
N(μ1)N(ν1)

+
(1 – μ1)ν1

N(μ1)N(ν1)�(ν1)

∫ t

0
(t – τ )ν1–1 dτ

+
(1 – ν1)μ1

N(μ1)N(ν1)�(μ1)

∫ t

0
(t – s)μ1–1 ds

+
μ1ν1

N(μ1)N(ν1)�(μ1)�(ν1)

∫ t

0
(t – s)μ1–1

(∫ s

0
(s – τ )ν1–1 dτ

)

ds
]

× (𝓆1 – 1)M1(ε)𝓆1–2[(‖L11‖a + ‖L12‖a
)‖W – W‖ + 2ε

]

=
[

(1 – μ1)(1 – ν1)
N(μ1)N(ν1)

+
1 – μ1

N(μ1)N(ν1)�(ν1)
tν1 +

1 – ν1

N(μ1)N(ν1)�(μ1)
tμ1

+
μ1ν1

N(μ1)N(ν1)�(μ1 + ν1)
tμ1+ν1

]

(𝓆1 – 1)M1(ε)𝓆1–2

× [(‖L11‖a + ‖L12‖a
)‖W – W‖ + 2ε

]

≤ 1
N(μ1)N(ν1)

[

(1 – μ1)(1 – ν1) +
(1 – μ1)aν1

�(ν1)
+

(1 – ν1)aμ1

�(μ1)
+

μ1ν1aμ1+ν1

�(μ1 + ν1)

]

× (𝓆1 – 1)M1(ε)𝓆1–2[(‖L11‖a + ‖L12‖a
)‖W – W‖ + 2ε

]

= ϒ1(ε)‖W – W‖ + 2ε�1(ε), (4.9)

where ϒ1(ε) = 	1(𝓆1 – 1)M1(ε)𝓆1–2(‖L11‖a + ‖L12‖a) and �1(ε) = 	1(𝓆1 – 1)M1(ε)𝓆1–2.
Similarly to (4.9), we apply (4.6)–(4.8) to obtain

∣
∣W2(t) – W∗

2 (t)
∣
∣ ≤ ϒ2(ε)

∥
∥W – W∗∥∥ + 2ε�2(ε), q2 ≥ 2, (4.10)

∣
∣W1(t) – W∗

1 (t)
∣
∣ ≤ ϒ1(ε)

∥
∥W – W∗∥∥ + 2ε�1(ε), 1 < q1 < 2, (4.11)

and

∣
∣W2(t) – W∗

2 (t)
∣
∣ ≤ ϒ2(ε)

∥
∥W – W∗∥∥ + 2ε�2(ε), 1 < q2 < 2, (4.12)

where ϒ2(ε) = 	2(𝓆2 – 1)M2(ε)𝓆2–2(‖L21‖a + ‖L22‖a), �2(ε) = 	2(𝓆2 – 1)M2(ε)𝓆2–2,
ϒ1(ε) = 	1(𝓆1 – 1)M1(ε)𝓆1–2(‖L11‖a + ‖L12‖a), �1(ε) = 	1(𝓆1 – 1)M1(ε)𝓆1–2, ϒ2(ε) =
	2(𝓆2 – 1)M2(ε)𝓆2–2(‖L21‖a + ‖L22‖a), and �2(ε) = 	2(𝓆2 – 1)M2(ε)𝓆2–2.
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For all ε > 0 small enough, we have 0 < ϒ1(ε),ϒ1(ε),ϒ2(ε), ϒ2(ε) < 1. Take ϒk(ε) ∈
{ϒk(ε),ϒk(ε)} and �k(ε) ∈ {�k(ε),�k(ε)}, k = 1, 2. Then it follows from (4.9)–(4.12) that

∥
∥W – W∗∥∥ ≤ 2 max{�1(ε),�2(ε)}

1 – max{ϒ1(ε),ϒ2(ε)}ε. (4.13)

Consequently, we claim that problem (1.1) is generalized UH-stable in accordance with
(4.13) and Definition 4.2. The proof is completed. �

5 A verification example
In this section, we inspect the correctness and applicability of our findings by using the
following example:

⎧
⎪⎪⎨

⎪⎪⎩

ABD0.6
0+ [�𝓅1 (ABD0.7

0+ W1(t))] = 2+cos(W1(t))
100 + 1

50 | sin(t)| W2(t)
1+W2(t)2 , t ∈ (0,

√
2],

ABD0.4
0+ [�𝓅2 (ABD0.2

0+ W2(t))] = 2+sin(3t)
100 [ 3π

4 + arctan(W1(t) + W2(t))], t ∈ (0,
√

2],

W1(0) = –1, W2(0) = 1, ABD0.7
0+ W1(0) = 2, ABD0.2

0+ W2(0) = 3.
(5.1)

Obviously, a =
√

2, μ1 = 0.7, ν1 = 0.6, μ2 = 0.2, ν2 = 0.4, 𝓊1 = –1, 𝓊2 = 1, 𝓋1 = 2, 𝓋2 = 3,
G1(t, w1, w2) = 2+cos(w1)

100 + 1
50 | sin(t)| w2

1+w2
2

, and G2(t, w1, w2) = 2+sin(3t)
200 [ 3π

4 + arctan(w1 + w2)].
Choose N(x) = 1 – x + x

�(x) , 0 < x ≤ 1. Then N(0) = N(1) = 1. By a simple calculation we
have

1
100

≤ G1(t, w1, w2) ≤ 4
100

,
π

800
≤ G2(t, w1, w2) ≤ 15π

800
,

∣
∣G1(t, w1, w2) – G1(t, w1, w2)

∣
∣ ≤ 1

100
|w1 – w1| +

| sin(t)|
100

|w2 – w2|,
∣
∣G2(t, w1, w2) – G2(t, w1, w2)

∣
∣ ≤ 2 + sin(3t)

200
[|w1 – w1| + |w2 – w2|

]
.

Therefore conditions (A1)–(A3) are fulfilled. Furthermore, m1 = 1
100 , M1 = 4

100 , m2 = π
800 ,

M2 = 15π
800 , L11(t) = 1

100 , L12(t) = | sin(t)|
100 , L21(t) = L22(t) = 2+sin(3t)

200 , ‖L11‖a = 1
100 , ‖L12‖a =

sin(
√

2)
100 , ‖L21‖a = ‖L22‖a = 3

200 , and

	1 =
1

N(μ1)N(ν1)

[

(1 – μ1)(1 – ν1) +
(1 – μ1)aν1

�(ν1)
+

(1 – ν1)aμ1

�(μ1)
+

μ1ν1aμ1+ν1

�(μ1 + ν1)

]

≈ 2.2188,

	2 =
1

N(μ2)N(ν2)

[

(1 – μ2)(1 – ν2) +
(1 – μ2)aν2

�(ν2)
+

(1 – ν2)aμ2

�(μ2)
+

μ2ν2aμ2+ν2

�(μ2 + ν2)

]

≈ 1.6718,

Case 1: When 𝓅1 = 3
2 and 𝓅2 = 5

4 , we have 𝓆1 = 3 > 2, 𝓆2 = 5 > 2, and

M1 = 𝓋𝓅1–1
1 –

1 – ν1

N(ν1)
(M1 – m1) ≈ 1.3993 > 0,

M2 = 𝓋𝓅2–1
2 –

1 – ν2

N(ν2)
(M2 – m2) ≈ 1.2738 > 0,
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M1 = 𝓋𝓅1–1
1 +

1 – ν1

N(ν1)
(M1 – m1) +

M1aν1

N(ν1)�(ν1)
≈ 1.4703,

M2 = 𝓋𝓅2–1
2 +

1 – ν2

N(ν2)
(M2 – m2) +

M2aν2

N(ν2)�(ν2)
≈ 1.3974,

ξ1 = 	1(𝓆1 – 1)M1
𝓆1–2(‖L11‖a + ‖L12‖a

) ≈ 0.1297 < 1,

ξ2 = 	2(𝓆2 – 1)M2
𝓆2–2(‖L21‖a + ‖L22‖a

) ≈ 0.5474 < 1.

So (A4) also holds. By Theorems 3.1 and 4.1 we obtain that system (5.1) has a unique
generalized UH-stable solution.

Case 2: When p1 = 3
2 and p2 = 5, we have q1 = 3 > 2 and 1 < q2 = 5

4 < 2 with the same
values of M1, M1, and ξ1 as in Case 1. In addition,

M2 = 𝓋𝓅2–1
2 –

1 – ν2

N(ν2)
(M2 – m2) ≈ 80.9577 > 0,

M2 = 𝓋𝓅2–1
2 +

1 – ν2

N(ν2)
(M2 – m2) +

M2aν2

N(ν2)�(ν2)
≈ 81.0814,

ξ2 = 	2(𝓆2 – 1)M2
𝓆2–2(‖L21‖a + ‖L22‖a

) ≈ 4.6457 × 10–4 < 1.

So (A4) also holds. By Theorems 3.1 and 4.1 we obtain that system (5.1) has a unique
generalized UH-stable solution.

Case 3: When p1 = 3 and p2 = 5
4 , we have 1 < q1 = 3

2 < 2 and q2 = 5 > 2 with the same
values of M2, M2, and ξ2 as in Case 1. In addition,

M1 = 𝓋𝓅1–1
1 –

1 – ν1

N(ν1)
(M1 – m1) ≈ 3.9851 > 0,

M1 = 𝓋𝓅1–1
1 +

1 – ν1

N(ν1)
(M1 – m1) +

M1aν1

N(ν1)�(ν1)
≈ 4.0561,

ξ1 = 	1(𝓆1 – 1)M1
𝓆1–2(‖L11‖a + ‖L12‖a

) ≈ 0.0110 < 1,

So (A4) also holds. By Theorems 3.1 and 4.1 we obtain that system (5.1) has a unique
generalized UH-stable solution.

Case 4: When p1 = 3 and p2 = 5, we have 1 < q1 = 3
2 < 2 and 1 < q2 = 5

4 < 2. From Cases 2
and 3 we know that M1 ≈ 3.9851 > 0, M1 ≈ 4.0561, M2 ≈ 80.9577 > 0, M2 ≈ 81.0814,
ξ1 ≈ 0.0110 < 1, and ξ2 ≈ 4.6457 × 10–4 < 1. So (A4) also holds. By Theorems 3.1 and 4.1
we declare that system (5.1) has a unique generalized UH-stable solution.

6 Conclusions
AB-fractional differential equations are good mathematical models in many scientific and
engineering fields. As far as we know, there have no works dealing with the nonlinear AB-
fractal differential coupled equations with Laplacian. So we investigated system (1.1) to fill
this gap. The existence, uniqueness, and generalized UH-stability of solution are obtained.
Our outcomes snow that the Laplacian parameters (𝓅1,𝓅2), the fractional orders μk , νk

(k = 1, 2), the initial conditions ABDμ1
0+ W1(0) = 𝓋1 and ABDμ2

0+ W2(0) = 𝓋2, and the perfor-
mances of Gk(t, ·, ·) (k = 1, 2) have an effect on the existence and stability of (1.1). The
techniques and methods in the paper can be applied to other types of fractional differen-
tial systems. In addition, inspired by recent published papers [48–55], we will investigate
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the Lyapunov stability of fractional differential equations, the coincidence theory of frac-
tional differential equations, and diffusion fractional partial differential equations in the
future.
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