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1 Introduction
In this paper, we focus on the following nonlinear fractional coupling (721, 722)-Laplacian
systems involving a nonsingular Mittag-Leffler kernel:

ABD;}- [q)ﬂl (ABD{# Wl (t))] = Gl (t’ Wl(t)) W2(t))r te (0’ ('l];
ABD D@, (ABDE2WH(1))] = Go(t, Wi (8), Wa(2)), £ € (0,4,
Wi(0) = 1, Wh(0) = u, ABDIIWL(0) = o1, ABDI2W,(0) = v,
(1.1)

where #1,us, 21,72 € R, a >0, 0 < pug, U, v1,v2 < 1, and z21, 22 > 1 are some con-
stants, ABDEZ is the x-order Atangana—Baleanu (AB) fractional derivative with nonsin-
gular Mittag-Leffler kernel, ®,, (z) = |z|”x2z, k = 1,2, are s;-Laplacian operators with
inverses CD;( =&, provided that i + (%k =1 and G € C([0,4] x R?,R) are nonlinear.
In 2016, Atangana and Baleanu [1] raised a distinctive fractional calculus, later named
Atangana—Baleanu (AB) fractional calculus, under common skeleton frame. The most
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prominent feature of AB-fractional calculus is the application of a special Mittag-Leffler
function in the definition. The superiority of AB-fractional derivative to Riemann-—

Liouville (RL) and Riemann—Caputo (RC) fractional derivatives lies in nonsingularity.
In fact, forall 0 <y <1, (¢t — 7)™ and &, [—%(t -0)]=Y" ﬁ%ﬂ”n are the kernels
of RC- and AB-fractional derivatives of order y, respectively. Decidedly, (t - 7)™ —o00
(singular) and &, [—%(t — 7)]—1 (nonsingular) as T—¢. The nonsingularity of the AB-
fractional derivative is very useful for solving some practical problems. In fact, Atangana
and Baleanu [1] successfully solved a singular thermodynamic problem by applying the
AB-fractional order model by proposing the AB-fractional derivative. Many scientists
applied AB-fractional differential equation models to study practical problems such as
controllability [2, 3], virus and bacterial transmission [4—7], neuroscience [8], nanofluid
[9], ion flux [10] and thermo-diffusion [11]. Due to a wide application of AB-fractional
differential equations, many scholars have attached great importance to the theory of AB-
fractional differential system (see [12—-27]). In addition, the z2-Laplacian equation can
describe turbulent flow phenomenon in fundamental fluid mechanics, and hence many
papers have been published dealing with its theory and applications (see [28—-35]).

In 1940s, Hyers and Ulam [36, 37] raised a new concept of stabilitym the Ulam and
Hyers (UH) stability. Since then, the generalized UH-stability, Ulam—Hyers—Rassias sta-
bility, and generalized Ulam—Hyers—Rassias stability have also been proposed on the ba-
sis of UH-stability. Until now, the UH-type stability of various systems is still favored by
scientists. As one of the important differential dynamic systems, the UH-type stability
of fractional differential equations has also been focused on and achieved rich results
([14, 20, 21, 23, 27-30, 35, 38—43], among others). However, the UH-type stability of AB-
fractional differential equations is rarely studied because the structure of the equations is
more complex than that of a single differential equation. To the best my knowledge, there
are no papers combining the AB-fractional derivative with coupling Laplacian system.
Consequently, it is novel and interesting to probe the dynamic behavior of system (1.1).
The importance of this paper is embodied in two aspects as follows: (i) Since nobody has
studied the AB-fractional differential coupling Laplacian system yet, we first consider sys-
tem (1.1) to fill this gap. (ii) We investigate the existence, uniqueness, and GUH-stability
of system (1.1) and obtain some concise sufficient conditions.

The next framework of the paper is as follows. Section 2 reviews some necessary con-
tents about AB-fractional calculus. In Sect. 3 the existence and uniqueness of a solution is
obtained by the contraction mapping principle. In Sect. 4 the generalized UH-stability of
(1.1) is further established. Section 5 gives an example illustrating the validity and avail-

ability of our main findings. A concise conclusion is made in Sect. 6.

2 Preliminaries
Definition 2.1 ([44]) For 0 <y <1, a >0, and W : [0,a]—R, the left-sided yth-order
AB-fractional integral of W is defined by

AW = =L i) + / (t—s)”IW(s) ds,

N(y) fn(y)r(w

where 9%(«) is a normalization constant with 91(0) = 9%(1) = 1.
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Definition 2.2 ([1]) For0<y <1, >0, and W € C'(0,a), the left-sided y th-order AB-
fractional derivative of WV is defined by

ABDY W(t) = M / 8[—%(t—s):|W’(s)ds,
0

where &,(z) = Y20 7

W is the Mittag-Leffer special function with parameter y.

Lemma 2.1 ([45]) If H € C[0,a), then the unique solution of the IVP

ABDEW(E) = H(t), t>0,0<y <1,
W(O) = WO;

is given by

_ -y
W(t) = W() + m()/)

—_ # ‘ _ -1
[H() - H(0)] + O] /0 (t —5)" "V H(s) ds.

Lemma 2.2 ([30, 46]) Letp > 1. The z2-Laplacian operator @ ,(z) = |2|17~2z has the follow-
ing properties:
i) Ifz>0, then ®,(z) =277, and ® ,(2) is increasing with respect to z;

(ii) @, (zw) =D ,(2)®,(w) forall z,w € R;

(iii) Ifi + é =1, then ®,[®,(2)] = ®,[P,(2)] =z forall z € R;

(iv) Forallzzw>0,z<w & ®,(z) < d,(w);

(V) 0<z<® (W) & 0<,(z) <w;

(vi)

(¢ - 1M |z wl, ¢>20<zw<M,
(g-DM?z—w|, 1<g<2,z,w>M=>0.

|CD¢(Z) - d)q(W)| = [
Lemma 2.3 Letwy,wy, 1,09 €R,a>0,0< w1, o, v1,v2 < 1,and n1, 725 > 1 be some con-
stants, and let Gy € C([0,a] x R%,R), k = 1,2. Then the nonlinear AB-fractional coupling
Laplacian system (1.1) is equivalent to the integral system

Wi(t) = u; +

‘ﬁ( )[®¢1(H1(t , Wi(), Wa(1))) — v1]

-1
m / (£ =517 D, (Hy (s, (), Wa(s) ds, ¢ € [0,a],

Walt) = a3 + =2 (0, (Hy (6, Wi (), Wa(0))) — 0]

N(2)
m/ (£—s)y1” ICI)¢2(H2(S, Wi(s), Wa(s)))ds, tel0,al,
(2.1)
where ﬂL +LX=1(k=1,2), and
K ok

Hy (6 Wi(£), Wa(t)) = @, (1) + %[Cﬁ(t, Wi(8), Wa(t)) = G1(0, 221, 15)]

V1 4 bo1
s [ ) e,

Page 3 of 16
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1—1)2

Ha (W10, W2(8)) = @palea) + G

[Ga (8, Wi (2), Wa(1)) = F2(0, 221, %) ]

vV

¢ -
" m 0 (t-1) G2(T’Wl(f)yW2(T)) dt

Proof Let Wi (t), Wu(t)) € C([0,a],R) x C([0,a],R) be a solution of (1.1). Then from

Lemma 2.1 and the first equation of (1.1) we have

®, (ABDM W1(t)) (AB’D‘”Wl (0)) [G1 (f Wi(t), Wz(t))

s3“(( 1)
- G1(0,W1(0), W1(0)) ]

t
V1 v1—1
_ t—1)1 Gy (T, Whi(T), W, dt. 2.2
+ ST fo (t-1) (T W1 (2), Wa(1)) d (2.2)
In view of (2.2) and (iii) in Lemma 2.2, we have

ABDEIWL(t) = ®, (cb,, (ABDEIWL(0)) + ——[Ga (£, Wh (2), Wi (D))

m( 1)
- G1(0,W1(0), W,(0))]

V1 ‘ v1—1
e, €O W) ar ) 23)

where — + = =1, 21 > 1. Denote
m ¢

1- V1
o) [G1 (e, Wh (), Wa(2))

- G1(0,W1(0), W,(0))]

Hy (6, Wi(6), Wa(0)) = @, (*PDgi Wi (0)) +

V1

' v1—1
" m/o (t =) G (T, Wi(7), Wa()) dr. (2.4)

By (2.3), (2.4), and Lemma 2.1 we obtain that

Wi(t) = Wi(0) + (:1 ;[cbql (Hi(t Wi(£), W2 (D)) = @, (H1 (0, W1(0), Wi(0)))]
1-1
m / (=917 @ (Hi (s, Wi(s), Wa(s))) ds (2.5)

By the second equation of (1.1), (2.2)—(2.5) are similar to

— M2

Wi(t) = Wa(0) +
N(2)

(@42 (2 (6 W10, Wa(0))) = @, (F2 (0,11(0), W1 (0)) )]

Hno—1
m f (=527 Dy, (Ha(s, Wi(s), Wals))) dis, (2.6)
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1 1
where =t = 1, 22> 1, and

1-
N 2)[

- G2(0,W1(0), W,(0)) ]

Hy (£, Wi(£), Wa(t)) = @ ., ("PDh2W5(0)) + G2 (£, Wi (6), Wa (1))

Vv

t
+ m /0 (t-1)271G, (r, Wl(r),Wz(t)) dr. (2.7)

We substitute the initial values Wi(0) = w1, Wh(0) = w,, “BDiIW1(0) = ¢4, and
ABDI2IV,(0) = v, into (2.4)—(2.7) to get (2.1), which means that W) (2), Wi (2)) € C([0, al,
R) x C([0,a],R) is also a solution of (2.1). Since z — @, (2) is reversible, the above deriva-
tion is completely reversible. Conversely, if WV (£), Wu(t)) € C([0,4],R) x C([0,4],R) is a
solution of (2.1), then it is also a solution of (1.1). The proof is completed. O

3 Existence and uniqueness
This section concentrates on the solvability of system (1.1) thanks to the following con-
traction fixed point theorem.

Lemma 3.1 ([47]) Let X be a Banach space, and let ¢ #X; C X be closed. If F : X1—X
is a contraction, then F admits a unique fixed point u* € E.

According to Lemma 2.3, we take X = C([0, a], R) x C([0, 4], R). Then (X, || - ||) isa Banach
space equipped with the norm |[w|| = ||(wy, w2)|l = max{sup,,; [w1()|, supg<,<; W2 (B)},
w = (w1, wy) € X. Accordingly, we will study the solvability and stability of (1.1) on (X, || - ||).
For convenience, we introduce the following conditions and symbols.

(A1) The real constants satisfy w1 #0 or g #0, a,1,v2 >0, 0 < (1, 2, v1, v < 1, and

721, 722> 1; G € C([0,a] x R%,R), k=1,2.
(Ay) Forall t € [0,a] and wy, w, € R, there areconstants #1;, My > 0 such that

mi < Gr(t,wi, wo) <My, k=1,2.

(A3) For all ¢ € [0,a] and wi, Wi, we, Wy € R, there are functions 0 < L;1(¢), Lia(t) €
C[0, 4] such that

|Gi(t, w1, wa) = Gi(&, W1, Wa) | < Lia (8)|wy = Wi | + Lia(8)|lwy = Wa.

Denote
11— [ 1 1= Mya'k
M r-1 _ + 7 Yk M, — , M 2k— Y.V A o
M =01 = Ry M =m0 A T LYo Tt
1 (1 - pr)a* (1 —vp)ar Mkvkﬂ“k”"]
O = = (L= ) (1= vp) + + ¥ ,
¢ m(uk)m(vk)[ R YT T(ue) T+ )

& = Oulgx - DM (1La1 e + 1 £00 L)
& = Oclgk - DM (1 Lxalla + 1 Laalla),
1 Lxilla = max L (t), 1 Lr2lla = max, Lio(t), k=1,2.
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(A4) One of the following conditions is satisfied: ¢1,¢2 > 2, £,& < 1;0r ¢ > 2, 1<
¢2<2,g,$_2<1;or1<¢1<2,¢222,$_1,5<1;0r1<41,¢2<2,§,§<1.

Theorem 3.1 Assume that (A1)—(A4) hold and My >0 (k = 1,2). Then system (1.1) has a
unique nonzero solution (W5 (t), W;(t)) € X.

Proof Obviously, W;(0), W,(0)) = (w1, 22) # (0,0), that is, V1 (¢), Wa(t)) # (0,0) for all
t € [0,a]. For all (W, W,) € X, in light of Lemma 2.3, define the vector operator F : X—X
by

FWiL,Wh)(0) = (FL WL, WL)(8), Fa OV, Wa)(1)),  t€[0,4l, 3.1)
where

FiWi, Wh)(¢) = w1 + ;Z—;;[q)@l (H1 (& Wi(6), Wa(0))) — 1]

S e e 62)
FaWi, Wa)(8) = w2 + % (@, (Ha (£, Wi(5), Wa(D))) - 2]
M2

' _ g)H2-1
+m(’u2)r(”2)/0(t s) <I>¢2(H2(3,W1(s),W2(s)))ds (3.3)

with Hy (&, Wi (8), Wh(¢)) and Ho (£, Wi (), Wa(2)) the same as in (2.1).
For all W = (W, W,) and ¢ € [0, 4], from (2.1), (A1), and (A,) we have

21— 1 lel v1—-1
IO 0) <00 s on i s oot
1-v M
71-1 1 14V11 v
= M S el S
R S N Tow e T
1-v Mia™? _
721-1 1 1
M — - = . 3.4
=n ‘J”((vl)( v ¢ (vl (v1) Mi 4
In the same way, we obtain
1-
Hi(E Wi, Wa(8)) = o7 - - %0 ) —my) = M, (3.5)
1-v Moa"? _
Hy(t, ) 221 2 (M, — e a— 3.6
L(EWIE,WH(0) < 0?7 + ‘)T(vz)( 2 — M) + M) (0) M, (3.6)
and
Hy(t, Wi (), Wa(0)) > 07 - - T ) —my) = M. (3.7)

Obviously, M; < M;, My < M. In line with (3.2), (3.4), (3.5), (A3), and (vi) of
Lemma 2.2, for all W = Wy, Wh), W = W1, W,) € X, t € [0,a], we get
’fl(Wl:Wz)(t) _}—I(WDWZ)(t)‘

(1=
N(pe1)

(@4, (HL (£ Wi (), Wa(0))) = @4, (H (6, W1(0), Wa(0))) ]

Page 6 of 16
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pn1-1
S / (6= 571, (i (s, Wi (s), Wh(s))

-d,, (H1 (s, Wl (s),Wz(S)))] ds

=< ‘lﬁzﬂu; |CD¢1 (H1 (t Wi (t), Wz(t))) 7 (]-[1 (t Wi (), Wz(t)))|

+ m/o (L‘—s)’”’1|<I>¢1 (Hl(s,Wl(s),Wz(s)))

- @, (Hyi(s,W1(s), Wals)))| ds. (3.8)

When ¢, > 2, (3.8) leads to

| FL VL, Wa)(t) = Fr(W1, W) (8)|

g1 = DR H (0, Wa(0) ~ i (710, T9200)|

=0

S (- A /O (¢ = )L Hy (s, Wi(s), Wi (9))

- H; (s,Wl(s),Wz(s)ﬂds

— M1
(1)

)—l

=

(g1 - DM Z[m_ -

(LWL, WD) - Gi (6 Wi(0), Wa(D)))|

=

v1 1
Sﬁ(vl)l“ V1)/ (£ = )Gy (zr, Wa(T), Wa(2)) = G (7, Wi (x), Wz(r))|dr]

M1 o ! YT !
TGy 7 M /o(t ) [m(vl)

=16, W19, Wa09) | + g /0 (s 1) G (v, Wa(x), Wi())

(Sr Wl (S)’ W2 (S))

- Gl(t,Wl(r),Wg(t)) ‘ dr:| ds

<

1-u w712
= N )({}1 M, [

N )[511(t)|W1(t ~Wi(B)| + L12(6)[Wa(t) - Wa(2)|]

m[ Ell |W1(T) Wl( )| +£12 ‘WZ W2(7)|]df:|

M1 — 1 o1
+m( - M, /(t s)t |:’)T( )[Eu(s)|W1(s) W)

+ 512(5)‘W2(S) —Wz(s)‘] + m/o (s— T)Vl_l[ﬁu(f)‘Wl(T) —Wl(f)‘
+£12(r)|W2(t)—W2(t)|]dt] ds

Sslﬁ( 1)(fh )Ml‘“‘2|:£1n( )[||£11||a IW = W] + [IL2lla - W =W

- - 1)1 1
e vl)/(t 1Ll - IV =T + [ Lxalle - [W = TW1]d ]

o - o
P RGerGey 7DM /<f 9 [m( Sl 1 =W
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+1La2lla - IV = W] + m/(s O 1 Lwlla - W =W

+ 1 Lr2la - ||W—W||]dr] ds

= (A - p)d - vy) (1— 1) ! -l
[ SR +m<m)m(vl>r<ul>/o“ 2

(e e
+‘ﬁ(m)m(u1)r(m)/(f s) ds

Hiv1 _ -l vi-1
)R )T () r(ul)/ ¢=s) (/ $=7) dr)ds]

x (g1 - DM (IL11lla + IL22ll) IV =W

_ [(1—,%1)(1—”1) . 11— Moy 1-v g
MN(pe1)I(v1) MN(1) ()T (vy) N 1) ()T (1)
H1vi

+ NGO (s vl)t’””l:|(f}1 - 1)M¢1_2(||£11”a + [ Lazlla) IV = W]

[(l—m)(l—vl)+(1_’””)“V1 d —vi)a™! mvla“l*“l]

< N N
(1) D(v1) I'(v1) (1) (g +v1)
% (g1 = DM (1 Laalla + 1 L1 lla) W = |
=& W -W|. (3.9)

When 1< ¢; <2,asin (3.9), (3.8) gives

[ FLOVL WL)(8) = Fr (W1, Wa)(8)]

1 (1-p1)a™  (I-v)a*t  pviat™
= fﬁ(m)m(m[(l_“ D =) R T T T T T +v1>]
x (g1 = DM (L1 lla + 1 Lo2lla) IV = W]
=&|W-W]. (3.10)

Similarly to (3.8)—(3.10),

| Fo V1L, Wh)(£) = Fo(W1, Wa) (1)

1 (1-p2)a” (1-v)a'?  pyveah*™
5m(m)m(vz)[(l'“”“'”“ Ty " TOw) *ro@w)]

% (g2 = DM (I Laalla + 1 Laalla) IW = |
=5HIW-WI, ¢2>2, (3.11)

and

’]:2(W1: Wh)(¢) - fz(lewz)(t”

(1-p2)a” (L-w)a"? pyvyat>*™
[“‘“’2’(1‘”2)* T T +F(M2+V2)]

<1
= N(p2)N(v2)
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x (g2 = DM (1L lla + 1 La2lla) IV = W]
=5IW-WI, 1<ga<2. (3.12)

It follows from (3.9)—(3.12) that

max{&, &} - [W-WI, g1,92>2,
max{&, &) - [W-WI, g1221<g,<2,
max{£, &} IU-WI, 1<gi1<2,92>2,
max{&, &} IW-WI, 1<g1,¢2<2.
(3.13)

||-7:(W1’W2)(t) - FWL,Wa)(0) || =

Let & € {&, &}, k= 1,2. Then (A4) implies that 0 < max{&;,&,} < 1. Thus (3.13) indicates
that 7 : X — X is a contraction. From Lemmas 3.1 and 2.2 we know that F has a unique
fixed point W*(¢) = W5 (¢), W5 () € X, which is the unique solution of (1.1). The proofis
completed. 0

4 Generalized UH-stability
For W = (W, W,) € X and € > 0, the latter definition of stability requires the inequalities

ABDLID ., (ABDEIWL(0)] = G Wi (), Wa(1) <€, te(0,al,
ABD2[® ,, (ABDE2WAL(2))] — Go (6, Wi(0), Wh(2)) <€, te(0,al,
Wi(0) = 21, Wh(0) = 2, ABDEIW, (0) = ¢4, ABDE2WW,(0) = v9.
(4.1)

Definition 4.1 Suppose that for all € > 0 and W = W, W) € X satisfying (4.1), there are
a unique W* = (W5, W;) € X satisfying (1.1) and a constant w; > 0 such that

W@ -w@)| < we.
Then problem (1.1) is said to be Ulam—Hyers (UH) stable.

Definition 4.2 Suppose that for all € > 0 and W = W, W) € X satisfying (4.1), there are
a unique W* = W5, Wy) € X satistying (1.1) and @ € C(R,R*) with @ (0) = 0 such that

W@ -w@)| <@ (e).
Then problem (1.1) is said to be generalized Ulam—Hyers (GUH) stable.

Remark 4.1 W = (W, W,) € Xis asolution of inequality (4.1) iff there exists ¢ = (¢1,¢2) €
X such that

@) 1) <€, |ga(t) <€,0<t <a;

(b) ABDILI®,,, (AEDEIW ()] = Ga (6, Wi (), Walt)) + (8), 0< £ <

(©) ABDG[D ., (ABDE2Wa(0)] = Ga(t, Wi (), Wa(0) + ¢a(£), 0 < t < a;

(d) Wi(0) = 21, Wh(0) = wa, “BDEIW(0) = w1, ABDEEW,(0) = ¢,
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Theorem 4.1 Under (A1)—(A4), problem (1.1) is generalized UH-stable.

Proof In view of Lemma 2.3 and Remark 4.1, to solve inequality (4.1), we have

wl(t)=u1+m( )[%(H“’(t Wi (), Wh(8))) = 1]

' W /o (=517 @y, (H (5, Wi (), Wals) s,

Wh(t) = ws + e )[%(H“’(t Wi(0), Wh(2))) — 2]

S f (6=, (HE (s, Wi(5), Wals))) ds,

HY (£, Wi(£), Wa(D))

(4.2)

=@, (1) + 1-wn [G1 (2, W1(8), Wa(8)) + ¢1(2) — G1(0, 21, 2) — ¢1(0) ]
N(v1)

Vi ‘ v1-1
+ NODL o) /(; (t-1) [G1 (T, Wi (1), Wi()) + ¢1(T)] dr, (4.3)

HY (8, Wi (D), Wa(D)

=D, () + % [G2 (8, W1 (8), Wa(£)) + ¢a(8) — G2(0, 221, 22) — 2(0) ]
V2 ‘ vy—1
+ m A (t — T) [G2 (T, WI(T), WQ(T)) + ¢)(T)] dT. (4.4')

By Theorem 3.1 and Lemma 2.3 the unique solution W*(£) = (W} (¢), W5 (t)) € X of (1.1)
also meets (2.1). For all € > 0 small enough, from (A;), (A3), and (a) in Remark 4.1 it follows
that (3.4)—(3.7) are similar to

HE (6 W0, W(0) = o™ 4 S0y =200+ 00 )
= Mi(e), (4.5)
HE (16, Wh(0), Wal0) = o™ }ﬂ( 20, = +20) = Mu€) >0, (4.6)
HE(E IO I0) < o7 o S50 -2+ s 0
- (e, (47)
and
H (6, Wi(),Wa(0)) = v - -5 (VS —my +2€) = My(€) > 0. (4.8)

Clearly, 0 < M (€) < M, < M < M;(e)and 0 < My(€) < Ms < My < Ms(e).
Similarly to (3.8) and (3.9), when ¢; > 2, we draw from (2.1), (4.2), (4.3), and (4.5) that

[Wi(e) - Wi (0)]

1-u
1 9(w)

[¢¢1 (H¢ (t Wi(2), W2(t))) 71 (Hl (t’ Wi (), W;(t)))]

Page 10 of 16
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Mi- 1
m(#«l)r(lh /(t ) (S,W1(s) Wils)))

-H; (s, Wi (s), Wy (s))] ds

1w
N

IA

@ (1 (6 W1 (0, 920)) = @ (3 (6] 0,5 0)

n1-1 qu
TR / (=917 |, (HY (5 Wi(5), Was))

-H; (s, Wi (s), Wy (S)) | ds

11—
N(p1)

IA

(g1~ DMi(€) 2 |HY (&, Wh(£), Wa(8)) — Hi (& Wi (), Wi (0)) |

L CIVAA - ()12
R (e 7 DM

X / (t—s)‘“‘l|Hf(s,W1(s),W2(s)) —Hl(s,Wf(s),W§(s))|ds
0

< ;T;M“;wl )Mo
1 * * V1
« [m 61 (6 WA Wal0) - Ga 6 WO W30)] +26] + o

X / (t- r)”1’1[|G1 (r, Wl(‘L’),Wg(T)) - Gl(t,W{‘(t), W;(r))| + 26] dr:|

0

NPy v AU /0 (t—s)m-l[ﬂﬂel(s, Wi(s), Wa(s))

T M) () N(v1)

-G (S, Wi (s), W;(s))| + 26] + al / (s— r)”1’1[|G1 (r, Wl(r),Wz(t))

N (v1) Jo
- Gl(t,Wf(t), W;‘(r))‘ + 26] dr] ds

- DMy ()”?

IA

‘ﬁ()

[;( LW - W 0] + Lo a0 - W) +2¢]

v1—-1 "
m/(t O Ln (@) Wh(r) - Wi (o)

+ L1o(T)[Wa(t) - Wi (1) + 2¢€] dr:|

t 1

_—]);[511(8)|W1(S) —W; ()|

1 A 1-2
(91— DM (e)” / e

+ —_—
M) (1) 0
+ L15(s) ‘Wg(s ) = Wi( s)’ +26]

(t _S)u1—1|:

v1—-1 "
+oorag | s o e - W)

+ £12(1)|W2(t) - W;‘(t){ + 26] dr] ds
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1-
<

= M)
+ 1 La2lla - W = W*| +2¢]

1-
(g - 1)M1(e>¢1-2[ ~[1Lulla - W=

D(v1)

v t - T
* m/; -0 MILulla - W -
+ 1 Laalls - W =W +2¢] dz]

M1

.~ CIVA (212 ‘ ERAYES! I-n
(a7~ DM@ /o(t ) [

Lilla- |W-W*
soaliCula- [w-w|

V1

#1Lnlla- [W =W + 2] + s |

(s= )" MILulla - W - W
+ 1 La2lla - WV = W*|| +2€] dr] ds

t
(t-1)" ldr

_ |:(1—,U«1)(1—V1) s (1—p)w
N(e)Nv)  Mu)NW)T (v1) Jo

(1 -v)ur ¢ -l
METPRGCICRINON /o (=)™ ds

Hiv1 ' _am-l ’ _ -l
+m(m)m<v1)r<m>r(m)/o(t ) (/o (-7) d’)ds]

x (g1 = DM@ ?[(I1£11lla + 1L12lla) IV = W] + 2€]

_ [(1—M1)(1—V1) . 1 - n, I-v "
Mu)Nv)  Nu1)N(wi)T (v1) (1) (1) (1)
M1V

H1+V1 YA ()12
* M) M(v) T (g + Ul)t i|(¢1 1)M;(e)

X [(Ilﬁulla + 1 L12lla) IV = W + 2€]

[ (1 - p1)a’ . (1-vy)a . nyviattt ]
sﬁ(Ml)m(Ul I'(v1) (1) (1 +v1)

x (g1 = DM@ [(I1 L11lla + 1 L12lla) IV = W] + 2¢]
=Y1()IW - W] +2€A(e), (4.9)

where Y1 (€) = ©1(g1 - DMy (€)' *(I Ln1lla + [ £121l0) and As(€) = O1(g1 — )M (e) 712
Similarly to (4.9), we apply (4.6)—(4.8) to obtain

IWa () - Wi ()| < Tale) [ W - W[ +2eAs(e), q2>2, (4.10)

Wi() - Wi ()] < Tale) | W = W*| +2eA1(e), 1<qi<2, (4.11)
and

WL (8) = Wi ()] < ae)|W - W*| +2€eA3(€), 1<qa<2, (4.12)

where T(€) = Oa(g2 — DMa(€)?272(|| Latlla + 1£22110), Aa(€) = Oa(ga — 1) My(€)?272,
Yi(€) = O1(g1 — DM 1(6)? (1 L11lla + 1£121la)s Ar(€) = O1(g1 — Y Mi(€)?172, Ya(€) =
O g2 — DMo(€)72 ([ Larlla + [1£221la), and Ag(€) = Oa(g2 — 1) My (€) 272,
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For all € > 0 small enough, we have 0 < ﬁ(e),ﬁ(e),ﬁ(e), Ty(e) < 1. Take Yi(e) €
{Yx(€), Yi(€)} and Ax(e) € {Ax(€), Ax(€)}, k = 1,2. Then it follows from (4.9)—(4.12) that

2max{Ai(€), Ay(€)} c
1 — max{Yy(€), Yole)}

W -wH < (4.13)
Consequently, we claim that problem (1.1) is generalized UH-stable in accordance with
(4.13) and Definition 4.2. The proof is completed. O

5 A verification example
In this section, we inspect the correctness and applicability of our findings by using the

following example:

ABDES[,,, (APDYI WL ()] = 25+ Ksin(@)| 7520, te (0,42,
ABDYA[®,, (APDE2WL(1))] = 255 [3”+arctan(wl(>+wz(t))1, te(0,v2],

Wi(0) = -1, Wh(0) =1, ABDS'le 0)=2, ABDS'}Wz(O) =3.
(5.1)

Obviously, a = N2, 11 =07, =06, 12 =02, v, =04, w1 = -1, wy =1, 01 =2, vy = 3,
Gi(t, w1, wy) = 2eosv) i|sin(t)|w—22, and G,(t, wy, wo) = &“(3”[37T + arctan(w; + wo)].
w3

100 200
Choose M(x) =1 —x + ==, 0 <& < 1. Then (0) = (1) = 1. By a simple calculation we
have
1 <G\t )< 4 T <G(t, )<1571
— w1, W — — wi, W —
100 ~ TP =100 800 — 2NN =800
_ _ 1 _ . Isin(?)] _
Gi(t, wy, - Gi(t,wy, < — + —ws|,
|G1(6; w1, wa) — Gy (8, W1, W) | < 100|W1 wi| 100 [wa —Wh|
2 + sin(3t)

|Ga(t; w1, wa) — Ga(t, Wr, W) | < [lwi =W + [wa = Wal].

200

Therefore conditions (A1)—(A3) are fulﬁlled Furthermore, m; = 1(1)0, M = 100, My = go5s
My = 2%, L11(0) = LIZ(t) LIOL, L£21(8) = Lao(t) = 2000, [ L11lla = a5 1L120la =

800’ 100’ 100 ’
W1100 ) ”EZI”a ll£22lla = m, and
1 1-— V1 1-— n L1 +V1
0= 7[(1 —u)@d=v)+ (1= pa)a + (1—vi)a ; ahia i|
MN(1)N(v1) (1) (1) (21 + v1)
~ 2.2188,
1 (I-pa)a™ (L—w)at? — ppvoah?™™
Oy = ————|(1—p2)(1-w) + + .
T M) N) l T Tw) C2) Tz +va)
~ 1.6718,

,wehave ¢1=3>2,¢,=5>2,and

Case 1: When 721 = 3 and 225 = 2

1 1-m

M=o - (M —m1) ~1.3993 > 0,
— ! m(‘)l)
My = 0227 = 2 (M, — my) ~ 12738 > 0,

9'1( v2)
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—_ _ 1—1)1 Mlﬂvl

M=o — LMy —my) + ————— A 1.4703,
L S MM Ry

—_ _ 1—1)2 ]\4261‘}2

M, = 227 M, — 2 A 1.3974,
I S R TN T ()

— —g1-2
£ = 01(g1 - DM (IL0lla + 1£120l) ~0.1297 < 1,

— —g2-2
& = Oa(g2 - DM " (ILatlla + 122 l4) ~ 0.5474 < 1.

So (A4) also holds. By Theorems 3.1 and 4.1 we obtain that system (5.1) has a unique
generalized UH-stable solution.

Case 2: When p; = % and p =5, wehave g =3>2and 1 < ¢, = % < 2 with the same
values of M, Mj, and £, as in Case 1. In addition,

_ 1- %))
My =2 M, — my) ~ 80.9577 > 0,
2= m(‘)2)( 9 — 1) >
—_ _ 1- Vo Mzdvz
My =02ty (My — m) + ———— ~ 81.0814,
> N(vy) N(v2)T (v2)

£ = Oa(g2 = DMo” (I Latlla + | £22lla) ~ 46457 x 107 < 1.

So (A4) also holds. By Theorems 3.1 and 4.1 we obtain that system (5.1) has a unique
generalized UH-stable solution.

Case 3: When p; =3 and p, = g, we have 1 < q; = % <2 and g, = 5 > 2 with the same
values of M,, M,, and &, as in Case 1. In addition,

_ 1—1)1
M=o - M, —m;) ~ 3.9851 > 0,
1= m(‘)l)( 1 1)
_ _ 1—1)1 Mlﬂvl
M=oy My —my) + ————— A~ 4.0561,
P Sy M RO

& =01(g1 - DM 7 (I L11lla + 1 £12]la) 2 0.0110 < 1,

So (A4) also holds. By Theorems 3.1 and 4.1 we obtain that system (5.1) has a unique
generalized UH-stable solution.

Case 4: When p; =3 and p; =5, we have 1 < ¢ = % <2andl<q, = % < 2. From Cases 2
and 3 we know that M; ~ 3.9851 > 0, M; & 4.0561, M ~ 80.9577 > 0, M, ~ 81.0814,
§1~0.0110 < 1, and &, ~ 4.6457 x 107 < 1. So (A4) also holds. By Theorems 3.1 and 4.1
we declare that system (5.1) has a unique generalized UH-stable solution.

6 Conclusions

AB-fractional differential equations are good mathematical models in many scientific and
engineering fields. As far as we know, there have no works dealing with the nonlinear AB-
fractal differential coupled equations with Laplacian. So we investigated system (1.1) to fill
this gap. The existence, uniqueness, and generalized UH-stability of solution are obtained.
Our outcomes snow that the Laplacian parameters (221, 227), the fractional orders pk, vk
(k = 1,2), the initial conditions DWW (0) = #; and *BDy?W,(0) = ¢, and the perfor-
mances of Gi(¢,-,-) (k = 1,2) have an effect on the existence and stability of (1.1). The
techniques and methods in the paper can be applied to other types of fractional differen-
tial systems. In addition, inspired by recent published papers [48—55], we will investigate
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the Lyapunov stability of fractional differential equations, the coincidence theory of frac-
tional differential equations, and diffusion fractional partial differential equations in the
future.
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