- Research
- Open access
- Published:
Inequalities for partial determinants of accretive block matrices
Journal of Inequalities and Applications volume 2023, Article number: 101 (2023)
Abstract
Let \(A=[A_{i,j}]^{m}_{i,j=1}\in \mathbf{M}_{m}(\mathbf{M}_{n})\) be an accretive block matrix. We write det1 and det2 for the first and second partial determinants, respectively. In this paper, we show that
and
hold for any unitarily invariant norm \(\|\cdot \|\). The two inequalities generalize some known results related to partial determinants of positive-semidefinite block matrices.
1 Introduction
The set of \(n\times n\) complex matrices is denoted by \(\mathbf{M}_{n}\). \(I_{n}\) is \(n\times n\) identity matrix. Let \(\mathbf{M}_{m}(\mathbf{M}_{n})\) be the set of all \(m\times m\) block matrices with each block in \(\mathbf{M}_{n}\). If \(A\in \mathbf{M}_{n}\) is positive-semidefinite (definite), then we write \(A \geq 0\) (\(A>0\)). For two Hermitian matrices A, B of the same size, \(A\geq B\) (\(A> B\)) means that \(A-B\geq 0\) (\(A-B>0\)). For \(A\in \mathbf{M}_{n}\), the singular values of A, denoted by \(s_{1}(A), s_{2}(A), \ldots, s_{n}(A)\), are the eigenvalues of the positive-semidefinite matrix \(\vert A \vert =(A^{*}A)^{1/2}\), arranged in nonincreasing order and repeated according to multiplicity as \(s_{1}(A)\geq s_{2}(A)\geq \cdots \geq s_{n}(A)\). If A is Hermitian, we enumerate eigenvalues of A in nonincreasing order \(\lambda _{1}(A)\geq \lambda _{2}(A)\geq \cdots \geq \lambda _{n}(A)\). We denote by \(A^{T}\) and \(A^{*}\) the transpose and conjugate transpose of A, respectively. Recall that a norm \(\Vert \cdot \Vert \) is unitarily invariant if \(\Vert UAV \Vert = \Vert A \Vert \) for any unitary matrices \(U, V\in \mathbf{M}_{n}\) and any \(A\in \mathbf{M}_{n}\). The Ky Fan k-norms, a special class of unitarily invariant norms, are defined as \(\Vert \cdot \Vert _{(k)}=\sum_{j=1}^{k} s_{j}(A)\), \(1\leq k\leq n\). The Schatten p-norms (\(p\geq 1\)) are defined as
The Schatten p-norms (\(p\geq 1\)) are also typical examples of unitarily invariant norms. We say that \(A\in \mathbf{M}_{m}(\mathbf{M}_{n})\) is an accretive block matrix if its real part \(\operatorname{Re}A:=\frac{A+A^{*}}{2}\) is positive-semidefinite.
In the following, two partial traces [6, p. 12] of \(A=[A_{i, j}]_{i, j=1}^{m}\in \mathbf{M}_{m}(\mathbf{M}_{n})\) are defined by
Assume that \(A=[A_{i, j}]_{i, j=1}^{m}\in \mathbf{M}_{m}(\mathbf{M}_{n})\), where \(A_{i,j}=[a_{l,k}^{i,j}]_{l,k=1}^{n}\). We introduce two partial determinants \(\operatorname{det}_{1} A\in \mathbf{M}_{n}\) and \(\operatorname{det}_{2} A\in \mathbf{M}_{m}\) analogous to the two partial traces as follows [2]:
where \(G_{l,k}=[a_{l,k}^{i,j}]_{i,j=1}^{m} \), and
For \(A=[[a_{l,k}^{i,j}]_{l,k=1}^{n}]_{i,j=1}^{m}\in \mathbf{M}_{m}( \mathbf{M}_{n})\), we will denote by \(\tilde{A}\in \mathbf{M}_{n}(\mathbf{M}_{m})\) and \(A^{\tau}\in \mathbf{M}_{m}(\mathbf{M}_{n})\) the matrices
Note that \(\tilde{\tilde{A}}=A\) and \(\operatorname{det}_{1} A=\operatorname{det}_{2} \tilde{A}\) and therefore also \(\operatorname{det}_{2} A=\operatorname{det}_{1} \tilde{A}\).
Recently, Xu et al. [8] presented the following unitarily invariant norm inequalities for two partial determinants of positive-semidefinite block matrices.
Theorem 1.1
Let \(A=[A_{i,j}]^{m}_{i,j=1}\in \mathbf{M}_{m}(\mathbf{M}_{n})\) be positive-semidefinite. Then, the inequalities
and
hold for any unitarily invariant norm \(\Vert \cdot \Vert \).
This theorem is inspired by a determinantal inequality for partial traces given by Lin [5, Theorem 1.2]. Actually, the two unitarily invariant norm inequalities for partial determinants of \(A^{\tau}\) in Theorem 1.1 also hold; see [8, Theorem 2.12].
The main goal of this paper is to extend the above two inequalities to accretive block matrices that is a larger class of matrices than the class of positive-semidefinite block matrices. At the same time, some related results are obtained.
2 Partial determinant inequalities
We begin this section with some lemmas that are useful to present our main results. The following two results will be used in Theorem 2.6.
Lemma 2.1
[2, Theorem 7 and Remark 9] For \(A=[A_{i, j}]_{i, j=1}^{m}\in \mathbf{M}_{m}(\mathbf{M}_{n})\),
-
1.
A and à are unitarily similar;
-
2.
if A is positive-semidefinite, so is Ã.
The next lemma is standard in matrix analysis.
Lemma 2.2
[4, p. 511] Let \(A, B\in \mathbf{M}_{n}\) be positive-semidefinite. Then,
For the convenience of proofs, we also need to list some recent results as lemmas.
Lemma 2.3
[7] Let \(A\in \mathbf{M}_{m}(\mathbf{M}_{n})\) be positive-semidefinite. Then,
Lemma 2.4
[2, Theorem 6] Let \(A\in \mathbf{M}_{m}(\mathbf{M}_{n})\) be positive-semidefinite. Then,
-
1.
\(\operatorname{det}_{1} A \geq 0\),
-
2.
\(\det (\operatorname{tr}_{2} A)\geq \operatorname{tr}(\operatorname{det}_{1} A)\).
Lemma 2.5
[3, Proposition 2.1] Let \(A\in \mathbf{M}_{m}(\mathbf{M}_{n})\) be positive-semidefinite. Then,
As an analog of Theorem 1.1, we prove the following inequalities for unitarily invariant norms.
Theorem 2.6
Let \(A=[A_{i,j}]^{m}_{i,j=1}\in \mathbf{M}_{m}(\mathbf{M}_{n})\) be a sector block matrix. Then, the inequalities
and
hold for any unitarily invariant norm \(\Vert \cdot \Vert \).
Proof
To prove the desired results, by Ky Fan’s dominance theorem [1, p. 93], we just need to show that for all \(k=1,\ldots,n\),
and for all \(k=1,\ldots,m\),
Compute
which means that
By Lemma 2.1, we have \(\operatorname{tr}(\operatorname{Re}A)=\operatorname{tr}(\widetilde{\operatorname{Re}A})=\operatorname{tr}(\operatorname{Re}\widetilde{A})\). Therefore, by \(\widetilde{\operatorname{Re}A}=\operatorname{Re}\widetilde{A}\),
 □
Remark 1
When \(A=[A_{i,j}]^{m}_{i,j=1}\in \mathbf{M}_{m}(\mathbf{M}_{n})\) is positive-semidefinite in Theorem 2.6, our result is Theorem 1.1. Thus, our result is a generalization of Theorem 1.1.
Next, we will prove two determinantal inequalities for accretive block matrices involving partial determinants.
Theorem 2.7
Let \(A=[A_{i,j}]^{m}_{i,j=1}\in \mathbf{M}_{m}(\mathbf{M}_{n})\) be an accretive block matrix. Then,
and
Proof
Let \(\lambda _{j}\), \(j=1,\ldots, m\), be the eigenvalues of \(\operatorname{det}_{2} (\operatorname{Re}A)\). Then, by the AM-GM inequality and Lemma 2.5, we have the following result:
which means that
On the other hand, by \(\operatorname{det}_{1} (\operatorname{Re}A)=\operatorname{det}_{2} (\widetilde{\operatorname{Re}A})\) and Lemma 2.1, we have
 □
We would like to know whether or not the inequalities above hold in the case of replacing A with \(A^{\tau}\). Now, we will present a result on sector block matrices that is the same as it was under the positive-semidefinite condition.
Theorem 2.8
If \(A=[A_{i,j}]^{m}_{i,j=1}\in \mathbf{M}_{m}(\mathbf{M}_{n})\) is a sector block matrix, then
Proof
Since \(A^{\tau}=[A_{j,i}]^{m}_{i,j=1}\) and \(\widetilde{A}=[G_{l,k}]_{l,k=1}^{n}\), we have \(\widetilde{A^{\tau}}=[G_{l,k}^{\;\;\;T}]^{n}_{l,k=1}\).
Hence,
On the other hand,
 □
The following result for sector block matrices involving partial determinants of \(A^{\tau}\) can be regarded as a complement of Theorem 2.7.
Theorem 2.9
Let \(A=[A_{i,j}]^{m}_{i,j=1}\in \mathbf{M}_{m}(\mathbf{M}_{n})\) be a sector matrix. Then,
and
Proof
The proof is similar to that of Theorem 2.7. □
Remark 2
In fact, the analogous inequalities below for partial traces are also valid using a similar idea to that of Lemma 2.5:
and
Next, we give inequalities for partial determinants of \(A^{\tau}\) involving unitarily invariant norms.
Theorem 2.10
Let \(A=[A_{i,j}]^{m}_{i,j=1}\in \mathbf{M}_{m}(\mathbf{M}_{n})\) be a sector matrix. Then, the inequalities
and
hold for any unitarily invariant norm \(\Vert \cdot \Vert \).
Proof
Note that \(\operatorname{det}_{1} ((\operatorname{Re}A)^{\tau})=\operatorname{det}_{1} (\operatorname{Re}A)\), \(\operatorname{det}_{2}( \operatorname{Re}A^{\tau})=\operatorname{det}_{2}( (\operatorname{Re}A)^{T})\) by Theorem 2.8 and \(\operatorname{tr}A=\operatorname{tr}(A^{T})\), hence the proof is similar to that of Theorem 2.6. □
Availability of data and materials
Not applicable.
References
Bhatia, R.: Matrix Analysis. Springer, New York (1997)
Choi, D.: Inequalities related to trace and determinant of positive semidefinite block matrices. Linear Algebra Appl. 532, 1–7 (2017)
Fu, X., Lau, P.S., Tam, T.Y.: Inequalities on partial traces of positive semidefinite block matrices. Can. Math. Bull. 64, 964–969 (2021)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2013)
Lin, M.: A determinantal inequality involving partial traces. Can. Math. Bull. 59, 585–591 (2016)
Petz, D.: Quantum Information Theory and Quantum Statistics, in Theoretical and Mathematical Physics. Springer, Berlin (2008)
Thompson, R.: A determinantal inequality for positive definite matrices. Can. Math. Bull. 4, 57–62 (1961)
Xu, H., Fu, X.: Inequalities for partial determinants of positive semidefinite block matrices. Linear Multilinear Algebra. https://doi.org/10.1080/03081087.2022.2158299
Authors’ information
The email addresses of the coauthors are hlh0922@163.com and haseeb2013.salarzay@gmail.com.
Funding
The work is supported by the Hainan Provincial Natural Science Foundation of China (grant no. 120MS032), the National Natural Science Foundation (grant no. 12261030), the Hainan Provincial Natural Science Foundation for High-level Talents (grant no. 123RC474), the specific research fund of the Innovation Platform for Academicians of Hainan Province (grant no. YSPTZX202215), the Key Laboratory of Computational Science and Application of Hainan Province, and the National Natural Science Foundation (grant no. 11861031).
Author information
Authors and Affiliations
Contributions
Xiaohui Fu wrote the main manuscript text and Lihong Hu, Abdul Haseeb Salarzay checked the proofs. All authors reviewed the manuscript
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Fu, X., Hu, L. & Salarzay, A.H. Inequalities for partial determinants of accretive block matrices. J Inequal Appl 2023, 101 (2023). https://doi.org/10.1186/s13660-023-03008-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-023-03008-x