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Abstract
Let A = [Ai,j]mi,j=1 ∈ Mm(Mn) be an accretive block matrix. We write det1 and det2 for the
first and second partial determinants, respectively. In this paper, we show that

∥
∥det1(ReA)

∥
∥ ≤

∥
∥
∥

( tr(|A|)
m

)m
In
∥
∥
∥

and

∥
∥det2(ReA)

∥
∥ ≤

∥
∥
∥

( tr(|A|)
n

)n
Im

∥
∥
∥

hold for any unitarily invariant norm ‖ · ‖. The two inequalities generalize some
known results related to partial determinants of positive-semidefinite block matrices.
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1 Introduction
The set of n × n complex matrices is denoted by Mn. In is n × n identity matrix. Let
Mm(Mn) be the set of all m×m block matrices with each block in Mn. If A ∈ Mn is positive-
semidefinite (definite), then we write A ≥ 0 (A > 0). For two Hermitian matrices A, B of
the same size, A ≥ B (A > B) means that A – B ≥ 0 (A – B > 0). For A ∈ Mn, the singular val-
ues of A, denoted by s1(A), s2(A), . . . , sn(A), are the eigenvalues of the positive-semidefinite
matrix |A| = (A∗A)1/2, arranged in nonincreasing order and repeated according to multi-
plicity as s1(A) ≥ s2(A) ≥ · · · ≥ sn(A). If A is Hermitian, we enumerate eigenvalues of A in
nonincreasing order λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). We denote by AT and A∗ the transpose
and conjugate transpose of A, respectively. Recall that a norm ‖ · ‖ is unitarily invariant if
‖UAV‖ = ‖A‖ for any unitary matrices U , V ∈ Mn and any A ∈ Mn. The Ky Fan k-norms,
a special class of unitarily invariant norms, are defined as ‖ · ‖(k) =

∑k
j=1 sj(A), 1 ≤ k ≤ n.
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The Schatten p-norms (p ≥ 1) are defined as

‖A‖p =
(

tr
(|A|p)) 1

p =

[ n
∑

j=1

sp
j (A)

] 1
p

.

The Schatten p-norms (p ≥ 1) are also typical examples of unitarily invariant norms. We
say that A ∈ Mm(Mn) is an accretive block matrix if its real part Re A := A+A∗

2 is positive-
semidefinite.

In the following, two partial traces [6, p. 12] of A = [Ai,j]m
i,j=1 ∈ Mm(Mn) are defined by

tr1 A =
m

∑

i=1

Ai,i ∈Mn and tr2 A = [tr Ai,j]m
i,j=1 ∈ Mm.

Assume that A = [Ai,j]m
i,j=1 ∈ Mm(Mn), where Ai,j = [ai,j

l,k]n
l,k=1. We introduce two partial

determinants det1 A ∈ Mn and det2 A ∈ Mm analogous to the two partial traces as follows
[2]:

det1 A = [det Gl,k]n
l,k=1,

where Gl,k = [ai,j
l,k]m

i,j=1, and

det2 A = [det Ai,j]m
i,j=1.

For A = [[ai,j
l,k]n

l,k=1]m
i,j=1 ∈ Mm(Mn), we will denote by Ã ∈ Mn(Mm) and Aτ ∈ Mm(Mn) the

matrices

Ã = [Gl,k]n
l,k=1 =

[[

ai,j
l,k

]m
i,j=1

]n
l,k=1 and Aτ = [Aj,i]m

i,j=1 =
[[

aj,i
l,k

]n
l,k=1

]m
i,j=1.

Note that ˜̃A = A and det1 A = det2 Ã and therefore also det2 A = det1 Ã.
Recently, Xu et al. [8] presented the following unitarily invariant norm inequalities for

two partial determinants of positive-semidefinite block matrices.

Theorem 1.1 Let A = [Ai,j]m
i,j=1 ∈ Mm(Mn) be positive-semidefinite. Then, the inequalities

‖det1 A‖ ≤
∥
∥
∥
∥

(
tr A
m

)m

In

∥
∥
∥
∥

and

‖det2 A‖ ≤
∥
∥
∥
∥

(
tr A
n

)n

Im

∥
∥
∥
∥

hold for any unitarily invariant norm ‖ · ‖.

This theorem is inspired by a determinantal inequality for partial traces given by Lin [5,
Theorem 1.2]. Actually, the two unitarily invariant norm inequalities for partial determi-
nants of Aτ in Theorem 1.1 also hold; see [8, Theorem 2.12].
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The main goal of this paper is to extend the above two inequalities to accretive block
matrices that is a larger class of matrices than the class of positive-semidefinite block ma-
trices. At the same time, some related results are obtained.

2 Partial determinant inequalities
We begin this section with some lemmas that are useful to present our main results. The
following two results will be used in Theorem 2.6.

Lemma 2.1 [2, Theorem 7 and Remark 9] For A = [Ai,j]m
i,j=1 ∈ Mm(Mn),

1. A and Ã are unitarily similar;
2. if A is positive-semidefinite, so is Ã.

The next lemma is standard in matrix analysis.

Lemma 2.2 [4, p. 511] Let A, B ∈ Mn be positive-semidefinite. Then,

det(A) + det(B) ≤ det(A + B).

For the convenience of proofs, we also need to list some recent results as lemmas.

Lemma 2.3 [7] Let A ∈ Mm(Mn) be positive-semidefinite. Then,

det2 A ≥ 0.

Lemma 2.4 [2, Theorem 6] Let A ∈ Mm(Mn) be positive-semidefinite. Then,
1. det1 A ≥ 0,
2. det(tr2 A) ≥ tr(det1 A).

Lemma 2.5 [3, Proposition 2.1] Let A ∈ Mm(Mn) be positive-semidefinite. Then,

det(tr1 A) ≤
(

tr A
n

)n

and det(tr2 A) ≤
(

tr A
m

)m

.

As an analog of Theorem 1.1, we prove the following inequalities for unitarily invariant
norms.

Theorem 2.6 Let A = [Ai,j]m
i,j=1 ∈ Mm(Mn) be a sector block matrix. Then, the inequalities
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hold for any unitarily invariant norm ‖ · ‖.
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Proof To prove the desired results, by Ky Fan’s dominance theorem [1, p. 93], we just need
to show that for all k = 1, . . . , n,
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which means that
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.

By Lemma 2.1, we have tr(Re A) = tr(R̃e A) = tr(Re Ã). Therefore, by R̃e A = Re Ã,

∥
∥det2(Re A)
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∥det1(R̃e A)
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n
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∥
∥
∥

. �

Remark 1 When A = [Ai,j]m
i,j=1 ∈ Mm(Mn) is positive-semidefinite in Theorem 2.6, our re-

sult is Theorem 1.1. Thus, our result is a generalization of Theorem 1.1.

Next, we will prove two determinantal inequalities for accretive block matrices involving
partial determinants.
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Theorem 2.7 Let A = [Ai,j]m
i,j=1 ∈ Mm(Mn) be an accretive block matrix. Then,

det
(

det1(Re A)
) ≤ (tr(|A|))mn

mmnnn

and

det
(

det2(Re A)
) ≤ (tr(|A|))mn

nmnmm .

Proof Let λj, j = 1, . . . , m, be the eigenvalues of det2(Re A). Then, by the AM-GM inequality
and Lemma 2.5, we have the following result:

det
(

det2(Re A)
)

= λ1 · · ·λm

≤
(

λ1 + λ2 + · · · + λm

m

)m

=
(

tr(det2(Re A))
m

)m

=
(∑m

i=1 det(Re A)ii

m

)m

≤
(

det(
∑m

i=1(Re A)ii)
m

)m

(by Lemma 2.2)

=
(

det(tr1(Re A))
m

)m

≤
( ( tr(Re A)

n )n

m

)m

(by Lemma 2.5)

≤ (tr(|A|))nm

nnmmm ,

which means that

det
(

det2(Re A)
) ≤ (tr(|A|))nm

nnmmm .

On the other hand, by det1(Re A) = det2(R̃e A) and Lemma 2.1, we have

det
(

det1(Re A)
)

= det(det2 R̃e A) = det
(

det2(Re Ã)
) ≤ (tr(|Ã|))mn

mmnnn =
(tr(|A|))mn

mmnnn . �

We would like to know whether or not the inequalities above hold in the case of replacing
A with Aτ . Now, we will present a result on sector block matrices that is the same as it was
under the positive-semidefinite condition.

Theorem 2.8 If A = [Ai,j]m
i,j=1 ∈ Mm(Mn) is a sector block matrix, then

det1
(

Aτ
)

= det1 A and det2
(

Aτ
)

= (det2 A)T = det2
(

AT)

.

Proof Since Aτ = [Aj,i]m
i,j=1 and Ã = [Gl,k]n

l,k=1, we have Ãτ = [G T
l,k ]n

l,k=1.
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Hence,

det1
(

Aτ
)

= det2
(

Ãτ
)

=
[

det G T
l,k

]n
l,k=1

=
[

det
[

aj,i
l,k

]m
i,j=1

]n
l,k=1

=
[

det
[

ai,j
l,k

]m
i,j=1

]n
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= det1 A.

On the other hand,
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det A T
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=
[
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[
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]m
i,j=1

=
[

det
[

aj,i
l,k

]n
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]m
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= det2
(

Aτ
)

= [det Aj,i]m
i,j=1

=
(

[det Ai,j]m
i,j=1

)T

= (det2 A)T . �

The following result for sector block matrices involving partial determinants of Aτ can
be regarded as a complement of Theorem 2.7.

Theorem 2.9 Let A = [Ai,j]m
i,j=1 ∈ Mm(Mn) be a sector matrix. Then,

det
(

det1(Re A)τ
) ≤ (tr(|A|))mn

mmnnn

and

det
(

det2(Re A)τ
) ≤ (tr(|A|))mn

nnmmm .

Proof The proof is similar to that of Theorem 2.7. �

Remark 2 In fact, the analogous inequalities below for partial traces are also valid using a
similar idea to that of Lemma 2.5:

det
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(

Re Aτ
)) ≤

(
tr(Re A)

n
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≤
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tr(|A|)
n

)n
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(
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(

Re Aτ
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(
tr(Re A)

m
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≤
(

tr(|A|)
m

)m
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Next, we give inequalities for partial determinants of Aτ involving unitarily invariant
norms.

Theorem 2.10 Let A = [Ai,j]m
i,j=1 ∈ Mm(Mn) be a sector matrix. Then, the inequalities
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)∥
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∥
∥
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(
tr |A|

m
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∥
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(
tr |A|

n

)n

Im

∥
∥
∥
∥

hold for any unitarily invariant norm ‖ · ‖.

Proof Note that det1((Re A)τ ) = det1(Re A), det2(Re Aτ ) = det2((Re A)T ) by Theorem 2.8
and tr A = tr(AT ), hence the proof is similar to that of Theorem 2.6. �
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