Skip to main content

Chlodowsky-type Szász operators via Boas–Buck-type polynomials and some approximation properties

Abstract

In this paper, we construct the Chlodowsky-type Szász operators defined via Boas–Buck-type polynomials. We prove some approximation properties and obtain the rate of the convergence for these operators. We also study the Voronovskaya-type theorem and weighted approximation.

1 Introduction and preliminaries

The basic sequence of Szász operators is given by

$$ S_{n}(f,\xi )=e^{-n\xi }\sum_{\imath =0}^{\infty }{ \frac{(n\xi )^{\imath }}{\imath !}f \biggl( \frac{\imath }{n} \biggr) } $$

for \(x\in{}[ 0,\infty )\). Generalizations of these operators have been studied by many authors. In [21] the authors have obtained a generalization of Szász operators by means of the Appell polynomials defined as follows:

$$ P_{n}(f,\xi )=\frac{e^{-n\xi }}{g(1)}\sum_{\imath =0}^{\infty }{p_{ \imath }(n \xi )f \biggl( \frac{\imath }{n} \biggr) }, $$

where \(p_{\imath }(\xi )\), \(\imath \geq 0\), are the Appell polynomials defined by

$$ g(t)e^{\xi t}=\sum_{\imath =0}^{\infty }{p_{\imath }( \xi ) \frac{t^{\imath }}{\imath !}}\quad \text{and} \quad g(t)=\sum_{\imath =0}^{\infty }{a_{\imath } \frac{t^{\imath }}{\imath !}}, $$

and \(g(t)\) is an analytic function in the disk \(\vert t \vert < R\), \(R>1\), and \(g(1)\neq 0\). A further generalization was given by Ismail [19] by using the Sheffer operators

$$ T_{n}(f,\xi )=\frac{e^{-n\xi H(1)}}{g(1)}\sum_{\imath =0}^{\infty }{s_{\imath }(n \xi )f \biggl( \frac{\imath }{n} \biggr) } $$

for \(n\in \mathbb{N}\), where \(s_{\imath }(\xi )\), \(\imath \geq 0\), are the Sheffer polynomials defined by

$$ g(t)e^{\xi H(t)}=\sum_{\imath =0}^{\infty }{s_{\imath }( \xi ) \frac{t^{\imath }}{\imath !}}, $$

\(H(t)=\sum_{\imath =0}^{\infty }{h_{\imath } \frac{t^{\imath }}{\imath !}} \) is an analytic function in the disk \(\vert t \vert < R\), \(R>1\), \(g(1)\neq 0\), and \(H^{{\prime }}(1)=1\).

The multiple Sheffer polynomials \(\{S_{k_{1},k_{2}}(\xi )\}_{k_{1},k_{2}=0}^{\infty }\) are defined as follows. The generating function is

$$ A(t_{1},t_{2})e^{\xi H(t_{1},t_{2})}=\sum _{k_{1}=0}^{ \infty }\sum_{k_{2}=0}^{ \infty }S_{k_{1},k_{2}}( \xi ) \frac{t_{1}^{k_{1}}t_{2}^{k_{2}}}{k_{1}!k_{2}!}, $$
(1.1)

where \(A(t_{1},t_{2})\) and \(H(t_{1},t_{2})\) are of the forms

$$ A(t_{1},t_{2})=\sum_{k_{1}=0}^{\infty } \sum_{k_{2}=0}^{ \infty }a_{k_{1},k_{2}} \frac{t_{1}^{k_{1}}t_{2}^{k_{2}}}{k_{1}!k_{2}!} $$
(1.2)

and

$$ H(t_{1},t_{2})=\sum_{k_{1}=0}^{\infty } \sum_{k_{2}=0}^{ \infty }h_{k_{1},k_{2}} \frac{t_{1}^{k_{1}}t_{2}^{k_{2}}}{k_{1}!k_{2}!}, $$
(1.3)

respectively, and satisfy the conditions \(A(0,0)=a_{0,0}\neq 0\) and \(H(0,0)=h_{0,0}\neq 0\). The positive linear operators involving multiple Sheffer polynomials for \(\xi \in{}[ 0,\infty )\) were defined in [3] as follows:

$$ G_{n}(f,\xi )= \frac{e^{-\frac{n\xi }{2}H(1,1)}}{A(1,1)}\sum_{k_{1}=0}^{\infty } \sum_{k_{2}=0}^{\infty } \frac{S_{k_{1},k_{2}} ( \frac{n\xi }{2} ) }{k_{1}!k_{2}!}f \biggl( \frac{k_{1}+k_{2}}{n} \biggr) , $$
(1.4)

provided that the series in the above relations are convergent and the following conditions are satisfied:

  1. (1)

    \(S_{k_{1},k_{2}}(\xi )\geq 0\), \(k_{1},k_{2}\in \mathbb{N}\),

  2. (2)

    \(A(1,1)\neq 0\), \(H_{t_{1}}(1,1)=1\), \(H_{t_{2}}(1,1)=1\),

  3. (3)

    Series (1.1), (1.2), and (1.3) are convergent for \(\vert t_{1} \vert < R\), \(\vert t_{2} \vert < R\), and \((R_{1},R_{2})>1\).

In [12] the authors have studied the Kantorovich variant of Szász operators induced by multiple Sheffer polynomials for \(\xi \in{}[ 0,\infty )\) as follows:

$$ K_{n}^{(S)}(f,\xi )=\frac{ne^{-\frac{n\xi }{2}H(1,1)}}{A(1,1)}\sum _{k_{1}=0}^{\infty }\sum_{k_{2}=0}^{\infty } \frac{S_{k_{1},k_{2}} ( \frac{n\xi }{2} ) }{k_{1}!k_{2}!} \int _{ \frac{k_{1}+k_{2}}{n}}^{\frac{k_{1}+k_{2}+1}{n}}{f(t)}\,dt, $$

under the condition that the right side of the above relation exists. Szász-type operators involving Charlier polynomials were studied in [2].

We will treat the Chlodowsky variant of the Szász type operators induced by Boas-Buck-type polynomials. The generating functions for the Boas–Buck-type polynomials [20] are

$$ A(t)B \bigl(\xi H(t) \bigr)=\sum_{k=0}^{\infty }{p_{k}( \xi )t^{k}}, $$
(1.5)

where A, B, and H are analytic functions given by the following expressions:

$$\begin{aligned}& A(t)=\sum_{r=0}^{\infty}{a_{r}t^{r}}, \quad a_{0}\neq 0, \end{aligned}$$
(1.6)
$$\begin{aligned}& B(t)=\sum_{r=0}^{\infty}{b_{r}t^{r}}, \quad b_{r}\neq 0, r\geq 0, \end{aligned}$$
(1.7)
$$\begin{aligned}& H(t)=\sum_{r=0}^{\infty}{h_{r}t^{r}}, \quad h_{1}\neq 0. \end{aligned}$$
(1.8)

In what follows, we assume that the above polynomials satisfy the following conditions:

  1. (1)

    \(A(1)\neq 0\), \(H^{{\prime }}(1)=1\), \(p_{k}(\xi )\geq 0\), \(k=0,1,2,\ldots \) ,

  2. (2)

    \(B:\mathbb{R}\rightarrow (0,\infty )\),

  3. (3)

    The power series (1.5), (1.6), (1.7), and (1.8) are convergent for \(\vert t \vert < R \) (\(R>1\)).

The Chlodowsky variant of the Szász-type operators induced by Boas–Buck-type polynomials given in [26] (see also [1]) is defined as follows:

$$ B_{n}^{\ast }(f;\xi )= \frac{1}{A(1)B ( \frac{n}{b_{n}}\xi H(1) ) }\sum _{k=0}^{\infty }{p_{k} \biggl( \frac{n}{b_{n}}\xi \biggr) f \biggl( \frac{k}{n}b_{n} \biggr) }, $$
(1.9)

where \((b_{n})\) is a numerical positive increasing sequence such that

$$ {b_{n}}\rightarrow \infty , \quad\quad {\frac{b_{n}}{n}}\rightarrow 0 \quad (n\rightarrow \infty ). $$

The sequence \((b_{n})=(\sqrt{n})\) satisfies the above conditions.

We assume the operators \(B_{n}^{\ast }\) to be positive. Also, we consider

$$ \lim_{n\rightarrow \infty }{\frac{B^{(k)}(y)}{B(y)}}=1\quad \text{for } k \in \{1,2,3,\ldots,r\}, r\in \mathbb{N}. $$

In the recent years, different classes of operators were studied together with Korovkin- and Voronovskaja-type theorems (see [411, 1318, 23, 27, 28, 30] and [22, 24, 25]).

2 Basic results

Here we calculate the moments and central moments for \(B_{n}^{\ast }\) (see [29]).

Lemma 2.1

[26] For all \(\xi \in{}[ 0,\infty )\),

$$\begin{aligned}& B_{n}^{\ast }(e_{0};\xi )=1, \\& B_{n}^{\ast }(e_{1};\xi )= \frac{B^{\prime } (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}x+ \frac{b_{n}}{n} \frac{A^{\prime }(1)}{A(1)}, \\& \begin{aligned} B_{n}^{\ast }(e_{2};\xi )&= \frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )} \xi ^{2}+\frac{b_{n}}{n} \frac{B^{\prime } (\frac{n}{b_{n}}\xi H(1) ) [ A(1)+2A^{\prime }(1)+H^{\prime \prime }(1)A(1) ] }{A(1)B (\frac{n}{b_{n}}\xi H(1) )}x \\ &\quad {} +\frac{b_{n}^{2}}{n^{2}} \frac{A^{\prime }(1)+A^{\prime \prime }(1)}{A(1)}, \end{aligned} \\& \begin{aligned} B_{n}^{\ast }(e_{3};\xi )&= \frac{B^{\prime \prime \prime } (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}\xi ^{3}+ \bigl( 3A^{\prime }(1)+3H^{\prime \prime }(1)A(1)+3A(1) \bigr) \frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )}\frac{b_{n}}{n}\xi ^{2} \\ &\quad {} + \bigl( 3A^{\prime \prime }(1) + 3H^{\prime \prime }(1)A^{ \prime }(1) + H^{\prime \prime \prime }(1)A(1) + 6A^{\prime }(1)+3H^{ \prime \prime }(1)A(1) + A(1) \bigr) \\ &\quad{}\cdot \frac{B^{\prime } (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )}\frac{b_{n}^{2}}{n^{2}} \xi \\ & \quad {} + \bigl( A^{\prime \prime \prime }(1)+3A^{\prime \prime }(1)+A^{ \prime }(1) \bigr) \frac{b_{n}^{3}}{A(1)n^{3}}, \end{aligned} \\& \begin{aligned} B_{n}^{\ast }(e_{4};\xi )&= \frac{B^{(4)} (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}\xi ^{4}+ \bigl( 4A^{\prime }(1)+6H^{ \prime \prime }(1)A(1)+6A(1) \bigr) \frac{B^{(3)} (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )}\frac{b_{n}}{n}\xi ^{3} \\ &\quad {} + \bigl( 6A^{\prime \prime }(t) + 12H^{\prime \prime }(1) + A^{ \prime }(1) + 4H^{\prime \prime \prime }(1)A(1) + 3H^{\prime \prime }(1)^{2}A(1) + 18A^{\prime }(1) \\ &\quad {} + 18H^{\prime \prime }(1)A(1) + 7A(1) \bigr) \frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )}\frac{b_{n}^{2}}{n^{2}}\xi ^{2} \\ &\quad {}+ \bigl( 4A^{ \prime \prime \prime }(1)+6A^{\prime \prime }(1)H^{\prime \prime }(1)+4A^{ \prime }(1)H^{\prime \prime \prime }(1)+A(1)H^{(4)}(1)+18A^{\prime \prime }(1) \\ &\quad {} + 18H^{\prime \prime }(1)A^{\prime }(1)+6H^{\prime \prime \prime }(1)A(1)+14A^{\prime }(1)+7H^{\prime \prime }(1)A(1)+A(1) \bigr) \\ &\quad {} \cdot\frac{B^{\prime } (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )} \frac{b_{n}^{3}}{n^{3}}\xi \\ &\quad {} + \bigl( A^{(4)}(1)+6A^{(3)}(1)+7A^{\prime \prime }(1)+A^{\prime }(1) \bigr) \frac{b_{n}^{4}}{A(1)n^{4}}. \end{aligned} \end{aligned}$$

Proposition 2.2

[26] We have

$$\begin{aligned}& B_{n}^{\ast } \bigl((e_{1}-\xi );\xi \bigr)= \frac{B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}x+\frac{b_{n}}{n}\frac{A^{\prime }(1)}{A(1)}, \\& \begin{aligned} B_{n}^{\ast } \bigl((e_{1}-\xi )^{2}; \xi \bigr)&= \frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )-2B^{\prime } (\frac{n}{b_{n}}\xi H(1) )+B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )} \xi ^{2} \\ &\quad {} +\frac{b_{n}}{n} \frac{(A(1)+2A^{\prime }(1)+A(1)H^{\prime \prime }(1))B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-2A^{\prime }(1)B (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )}\xi \\ & \quad {} +\frac{b_{n}^{2}}{n^{2}} \frac{A^{\prime }(1)+A^{\prime \prime }(1)}{A(1)}, \end{aligned} \\& B_{n}^{\ast } \bigl((e_{1}-\xi )^{4}; \xi \bigr) \\& \quad = \frac{\xi ^{4}}{B (\frac{n}{b_{n}}\xi H(1) )} \biggl[ B^{(4)} \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) -4B^{(3)} \biggl( \frac{n}{b_{n}} \xi H(1) \biggr) +6B^{ \prime \prime } \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) \\& \quad\quad {} - 4B^{\prime } \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) +B \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) \biggr] + \frac{2\xi ^{3}b_{n}}{nA(1)B ( \frac{n}{b_{n}}\xi H(1) ) } \\& \quad\quad {} \cdot \biggl[ \bigl( 2A^{\prime }(1)+3A(1)H^{\prime \prime }(1)+3A(1) \bigr) B^{(3)} \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) -6 \bigl( A^{ \prime }(1)+A(1)H^{\prime \prime }(1)+A(1) \bigr) \\& \quad\quad {} \cdot B^{\prime \prime } \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) +3 \bigl( 2A^{\prime }(1)+A(1)H^{\prime \prime }(1)+A(1) \bigr) B^{\prime } \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) \\& \quad\quad {} -2A^{\prime }(1)B \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) \biggr] +\frac{\xi ^{2}b_{n}^{2}}{n^{2}A(1)B ( \frac{n}{b_{n}}\xi H(1) ) } [ \bigl( 6A^{\prime \prime }(1)+12A^{\prime }(1)H^{\prime \prime }(1) \\& \quad\quad {} +4A(1)H^{\prime \prime \prime }(1)+21A(1)H^{\prime \prime }(1)+18A^{ \prime }(1) +7A(1) \bigr) B^{\prime \prime } \biggl( \frac{n}{b_{n}}\xi H(1) \biggr). \end{aligned}$$

3 Rates of convergence

By \(BV[0,\infty )\) we denote the class of all functions of bounded variation on \([0,\infty ) \), and by \(\bigvee_{a}^{b}{f}\) we denote the total variation of a function f on \([a,b]\), i.e.,

$$ \bigvee_{a}^{b}{f}=V \bigl(f;[a,b] \bigr)=\sup_{P\in \mathbb{P}}{ \Biggl( \sum_{i=1}^{n}{ \bigl\vert f(\xi _{i})-f(\xi _{i-1}) \bigr\vert } \Biggr) }, $$

where \(\mathbb{P}\) is the class of all partitions \(P:a=\xi _{0}<\xi _{1}<\cdots <\xi _{n}=b\). We denote

$$ C_{2}[0,\infty )= \bigl\{ f\in C[0,\infty ): \bigl\vert f(t) \bigr\vert \leq M_{2} \bigl(1+t^{2} \bigr)\ \forall t\geq 0 \bigr\} , $$

where \(M_{2}\) is a constant, and

$$ D_{BV[0,\infty )}= \bigl\{ f\in C_{2}[0,\infty ):f^{{\prime }}\in BV[0, \infty ) \bigr\} . $$

Let

$$ f_{\xi }^{{\prime }}(\theta )=\textstyle\begin{cases} f^{{\prime }}(\theta )-f^{{\prime }}(\xi -) & \text{for } 0\leq \theta < \xi , \\ 0, & \text{for } \theta =\xi , \\ f^{{\prime }}(\theta )-f^{{\prime }}(\xi +) & \text{for }\xi < \theta < \infty .\end{cases} $$
(3.1)

From the construction of operators \(B_{n}^{\ast }(f;\xi )\) we obtain the following relation:

$$ B_{n}^{\ast }(f;\xi )= \int _{0}^{\infty }{f(\theta ) \frac{\partial \{K_{n}(\xi ,\theta )\}}{\partial \theta }}\,d \theta , $$
(3.2)

where

$$ K_{n}(\xi ,\theta )=\textstyle\begin{cases} \sum_{k\leq n\theta}{P_{k,n}(\xi )} & \text{for } 0< \theta < \infty , \\ 0 & \text{for } \theta =0,\end{cases} $$

and

$$ P_{k,n}(\xi )=\frac{1}{A(1)B ( \frac{n}{b_{n}}\xi H(1) ) }{p_{k} \biggl( \frac{n}{b_{n}}\xi \biggr) }. $$

Also, let

$$ \beta _{n}(\xi ;\theta )= \int _{0}^{\theta }{ \frac{\partial \{K_{n}(\xi ,u)\}}{\partial u}}\,du. $$
(3.3)

From the above relation it follows that

$$ \beta _{n}(\xi ;\theta )\leq 1. $$

We provide the following result.

Theorem 3.1

Let \(f\in D_{BV[0,\infty )}\). Then for sufficiently large n,

$$\begin{aligned}& \bigl\vert B_{n}^{\ast }(f;\xi )-f(\xi ) \bigr\vert \\& \quad \leq \biggl\vert \frac{1}{2} \bigl(f^{{\prime}}(\xi +)+f^{{\prime }}(\xi -) \bigr) \biggr\vert \cdot \bigl\vert B_{n}^{ \ast }(t-\xi ;\xi ) \bigr\vert + \frac{B_{n}^{\ast }((\xi -t)^{2};\xi )}{\xi } \sum_{k=1}^{[\sqrt{n}]}{ \Biggl( \bigvee_{x-\frac{x}{\sqrt{n}}}^{x+\frac{x}{\sqrt{n}}}{f_{x}^{{\prime}}} \Biggr) } \\& \quad\quad {}+\frac{x}{\sqrt{n}} \Biggl( \bigvee_{x- \frac{x}{\sqrt{n}}}^{x+\frac{x}{\sqrt{n}}}{f_{x}^{{\prime }}} \Biggr) + \biggl( \frac{M_{2}}{\xi ^{2}}+4M_{2}+\frac{ \vert f(\xi ) \vert }{\xi ^{2}} \biggr) B_{n}^{\ast } \bigl((t-\xi )^{2};\xi \bigr) \\& \quad\quad {}+ \bigl\vert f^{{\prime }}(\xi +) \bigr\vert \sqrt{B_{n}^{\ast } \bigl((t-\xi )^{2};\xi \bigr)} +\frac{B_{n}^{\ast }((t-\xi )^{2};\xi )}{\xi ^{2}} \bigl\vert f(2\xi )-f(\xi )- \xi f^{{\prime }}(\xi +) \bigr\vert \\& \quad\quad {}+ \biggl\vert \frac{1}{2} \bigl(f^{{\prime }}( \xi +)-f^{{\prime }}(\xi -) \bigr) \biggr\vert \cdot \sqrt{ \bigl\vert B_{n}^{\ast } \bigl((t- \xi )^{2};\xi \bigr) \bigr\vert }. \end{aligned}$$

We need some auxiliary results. We start with the following:

Lemma 3.2

For any \(x\in (0,\infty )\) and \(n\in \mathbb{N}\), we have

$$\begin{aligned}& \begin{aligned} (1)\quad \beta _{n}(\xi ;t)&= \int _{0}^{t}{ \frac{\partial \{K_{n}(\xi ,u)\}}{\partial u}}\,du \\ &\leq \biggl(\frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )-2B^{\prime } (\frac{n}{b_{n}}\xi H(1) )+B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}\xi ^{2} \\ &\quad{} +\frac{b_{n}}{n}\frac{(A(1)+2A^{\prime }(1)+A(1)H^{\prime \prime }(1))B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-2A^{\prime }(1)B (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )}\xi \biggr) \\ &\quad {} /{(\xi -t)^{2}}, \end{aligned} \\& \quad \quad \textit{for }0\leq t< \xi ;\\& \begin{aligned} (2)\quad &1-\beta _{n}(\xi ;t) \\ &\quad = \int _{t}^{\infty }{ \frac{\partial \{K_{n}(\xi ,u)\}}{\partial u}}\,du \\ &\quad \leq \biggl(\frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )-2B^{\prime } (\frac{n}{b_{n}}\xi H(1) )+B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}\xi ^{2} \\ &\quad\quad {} +\frac{b_{n}}{n}\frac{(A(1)+2A^{\prime }(1)+A(1)H^{\prime \prime }(1))B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-2A^{\prime }(1)B (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )}\xi \biggr) \\ &\quad \quad {} /{(t-\xi )^{2}} \end{aligned} \\& \quad \quad \textit{for }\xi < t< \infty . \end{aligned}$$

Proof

(1) Let \(0\leq t<\xi \). Then Lemma 2.1 gives

$$ \int _{0}^{t}{\frac{\partial \{K_{n}(x,u)\}}{\partial u}}\,du\leq \int _{0}^{t}{ \biggl( \frac{\xi -u}{\xi -t} \biggr) ^{2} \frac{\partial \{K_{n}(\xi ,u)\}}{\partial u}}\,du\leq \frac{B_{n}^{\ast }((\xi -u)^{2};\xi )}{(\xi -t)^{2}}. $$

(2) In the case \(\xi < t<\infty \), in a similar way, we obtain

$$ \int _{t}^{\infty }{\frac{\partial \{K_{n}(\xi ,u)\}}{\partial u}}\,du \leq \int _{0}^{\infty }{ \biggl( \frac{\xi -u}{\xi -t} \biggr) ^{2} \frac{\partial \{K_{n}(\xi ,u)\}}{\partial u}}\,du\leq \frac{B_{n}^{\ast }((\xi -u)^{2};\xi )}{(t-\xi )^{2}}. $$

 □

Lemma 3.3

Let \(f\in D_{BV[0,\infty )}\). Then for sufficiently large n,

$$\begin{aligned} \bigl\vert B_{n}^{\ast }(f;\xi )-f(\xi ) \bigr\vert &\leq \biggl\vert \frac{1}{2} \bigl(f^{{\prime}}(\xi +)+f^{{\prime }}(\xi -) \bigr) \biggr\vert \cdot \bigl\vert B_{n}^{ \ast }(t-\xi ;\xi ) \bigr\vert \\ &\quad {} + \vert I_{1} \vert + \vert I_{2} \vert + \biggl\vert \frac{1}{2} \bigl(f^{{\prime }}(\xi +)-f^{{\prime}}(\xi -) \bigr) \biggr\vert \cdot \sqrt{ \bigl\vert B_{n}^{\ast } \bigl((t- \xi )^{2}; \xi \bigr) \bigr\vert }, \end{aligned}$$

where \(I_{1}=\int _{0}^{\xi }{ [ \int _{t}^{\xi }{f_{\xi }^{{\prime }}(u)\,du} ] }\frac{\partial K_{n}(\xi ,t)}{\partial t}\,dt\) and \(I_{2}=\int _{\xi }^{\infty }{ [ \int _{\xi }^{t}{f_{\xi }^{{\prime}}(u)\,du} ] }\frac{\partial K_{n}(\xi ,t)}{\partial t}\,dt\).

Proof

For \(f\in D_{BV[0,\infty )}\), we may write

$$ \begin{aligned} f^{{\prime }}(t)={}&\frac{1}{2} \bigl[f^{{\prime }}( \xi +)+f^{{\prime }}( \xi -) \bigr]+f_{\xi }^{{\prime }}(t)+ \frac{1}{2} \bigl[f^{{\prime }}(\xi +)-f^{{\prime}}(\xi -) \bigr] \operatorname{sgn}(t-\xi ) \\ &{}+\delta _{\xi }(t) \biggl[ f^{{\prime }}(t)- \frac{1}{2} \bigl[f^{{\prime }}(\xi +)+f^{{\prime }}(\xi -) \bigr] \biggr] , \end{aligned} $$

where

$$ \delta _{\xi }(t)=\textstyle\begin{cases} 1, & t=\xi , \\ 0, & t\neq \xi .\end{cases} $$

From the above facts we get

$$\begin{aligned}& \bigl\vert B_{n}^{\ast }(f;\xi )-f(\xi ) \bigr\vert \\& \quad = \int _{0}^{\infty }{ \bigl(f(t)-f(\xi ) \bigr) \frac{\partial \{K_{n}(\xi ,t)\}}{\partial t}}\,dt= \int _{0}^{\infty }{ \biggl[ \int _{\xi }^{t}{f^{{\prime }}(u)\,du} \biggr] \frac{\partial \{K_{n}(\xi ,t)\}}{\partial t}}\,dt\\& \quad = \int _{0}^{\infty }{ \biggl[ \int _{\xi }^{t} \biggl\{ \frac{1}{2} \bigl[f^{{\prime}}(\xi +)+f^{{\prime }}(\xi -) \bigr]+f_{\xi }^{{\prime }}(u)+ \frac{1}{2} \bigl[f^{{\prime }}(\xi +)-f^{{\prime }}(\xi -) \bigr]\operatorname{sgn}(u-\xi )}\\& \quad\quad{} +\delta _{\xi }(u) \biggl[ f^{{\prime }}(u)-\frac{1}{2} \bigl[f^{{\prime }}( \xi +)+f^{{\prime }}(\xi -) \bigr] \biggr] \,du \biggr\} \frac{\partial \{K_{n}(\xi ,t)\}}{\partial t} \biggr]\,dt. \end{aligned}$$

Since \(\int _{\xi }^{t}{\delta _{\xi }(u)}\,du=0\), we obtain

$$\begin{aligned} B_{n}^{\ast }(f;\xi )-f(\xi )&=\frac{1}{2} \bigl[f^{{\prime }}(\xi +)+f^{{\prime}}(\xi -) \bigr] \int _{0}^{\infty }{(t-\xi ) \frac{\partial \{K_{n}(\xi ,t)\}}{\partial t}} \,dt\\ &\quad {} + \int _{0}^{\infty }{ \biggl[ \int _{\xi }^{t}{f_{\xi }^{{\prime }}(u) \,du} \biggr] \frac{\partial \{K_{n}(\xi ,t)\}}{\partial t}}\,dt \\ &\quad\quad{} +\frac{1}{2} \bigl[f^{{\prime}}( \xi +)-f^{{\prime }}(\xi -) \bigr] \int _{0}^{\infty }{(t-\xi ) \frac{\partial \{K_{n}(\xi ,t)\}}{\partial t}} \,dt. \end{aligned}$$

Let us now break the second term in the above relation into two parts:

$$\begin{aligned} \int _{0}^{\infty }{ \biggl[ \int _{\xi }^{t}{f^{{\prime }}(u)\,du} \biggr] \frac{\partial \{K_{n}(\xi ,t)\}}{\partial t}}\,dt&=- \int _{0}^{\xi }{ \biggl[ \int _{t}^{\xi }{f_{\xi }^{{\prime }}(u) \,du} \biggr] \frac{\partial \{K_{n}(\xi ,t)\}}{\partial t}}\,dt \\ &\quad{} + \int _{\xi }^{\infty }{ \biggl[ \int _{\xi }^{t}{f_{\xi }^{{\prime }}(u) \,du} \biggr] \frac{\partial \{K_{n}(\xi ,t)\}}{\partial t}}\,dt=-I_{1}+I_{2}. \end{aligned}$$

Now we have the following estimate:

$$\begin{aligned}& \begin{aligned} \bigl\vert B_{n}^{\ast }(f;\xi )-f(\xi ) \bigr\vert \leq{}& \biggl\vert \frac{1}{2} \bigl[f^{{\prime}}(\xi +)+f^{{\prime }}(\xi -) \bigr] \biggr\vert \cdot \bigl\vert B_{n}^{ \ast } \bigl((t-\xi ),\xi \bigr) \bigr\vert + \vert I_{1} \vert + \vert I_{2} \vert \\ &{}+ \biggl\vert \frac{1}{2} \bigl[f^{{\prime }}(\xi +)-f^{{\prime }}( \xi -) \bigr] \biggr\vert \cdot B_{n}^{\ast } \bigl( \vert t- \xi \vert , \xi \bigr).\end{aligned} \end{aligned}$$

Applying the Cauchy–Schwarz inequality to the above relation, we get

$$\begin{aligned}& \begin{aligned} \bigl\vert B_{n}^{\ast }(f;\xi )-f(\xi ) \bigr\vert \leq{}& \biggl\vert \frac{1}{2} \bigl[f^{{\prime}}(\xi +)+f^{{\prime }}(\xi -) \bigr] \biggr\vert \cdot \bigl\vert B_{n}^{ \ast } \bigl((t-\xi ),\xi \bigr) \bigr\vert + \vert I_{1} \vert + \vert I_{2} \vert \\ &{} + \biggl\vert \frac{1}{2} \bigl[f^{{\prime }}(\xi +)-f^{{\prime }}( \xi -) \bigr] \biggr\vert \cdot \sqrt{B_{n}^{\ast } \bigl((t-\xi )^{2},\xi \bigr)}.\end{aligned} \end{aligned}$$

 □

Lemma 3.4

Let \(f\in D_{BV[0,\infty )}\), and let n be sufficiently large. Then

$$ \vert I_{1} \vert \leq \frac{B_{n}^{\ast }((\xi -u)^{2};\xi )}{\xi }\sum _{k=1}^{[ \sqrt{n}]}{ \Biggl( \bigvee _{\xi -\frac{\xi }{\sqrt{n}}}^{\xi }{f_{\xi }^{{\prime}}} \Biggr) }+\frac{\xi }{\sqrt{n}} \Biggl( \bigvee_{\xi - \frac{\xi }{\sqrt{n}}}^{\xi }{f_{\xi }^{{\prime }}} \Biggr) , $$

where \(I_{1}=\int _{0}^{\xi }{ [ \int _{t}^{\xi }{f_{\xi }^{{\prime }}(u)\,du} ] }\frac{\partial K_{n}(\xi ,t)}{\partial t}\,dt\).

Proof

By integration by parts we have

$$\begin{aligned} \vert I_{1} \vert &= \biggl\vert \int _{0}^{\xi }{ \biggl[ \int _{\xi }^{t}{f_{\xi }^{{\prime}}(u) \,du} \biggr] }\frac{\partial K_{n}(\xi ,t)}{\partial t}\,dt \biggr\vert \\ & = \biggl\vert \int _{0}^{\xi }{f_{\xi }(t)} \frac{\partial K_{n}(\xi ,t)}{\partial t}\,dt \biggr\vert + \biggl\vert \int _{0}^{\xi }{ \biggl[ \int _{0}^{t}{ \frac{\partial K_{n}(\xi ,u)}{\partial t}\,du} \biggr] f_{\xi }^{{\prime }}(t)}\,dt \biggr\vert \\ &\leq \int _{0}^{\xi -\frac{\xi }{\sqrt{n}}}{ \biggl\vert \int _{0}^{t}{ \frac{\partial K_{n}(\xi ,u)}{\partial t}\,du} \biggr\vert \bigl\vert f_{\xi }^{{\prime}}(t) \bigr\vert } \,dt+ \int _{\xi -\frac{\xi }{\sqrt{n}}}^{\xi }{ \biggl\vert \int _{0}^{t}{ \frac{\partial K_{n}(\xi ,u)}{\partial t}\,du} \biggr\vert \bigl\vert f_{\xi }^{{\prime}}(t) \bigr\vert }\,dt. \end{aligned}$$

Using Lemma 3.2, we obtain

$$\begin{aligned} \vert I_{1} \vert &\leq B_{n}^{\ast } \bigl(( \xi -u)^{2};\xi \bigr) \int _{0}^{\xi - \frac{\xi }{\sqrt{n}}}{ \Biggl( \bigvee _{t}^{\xi }{f_{\xi }^{{\prime }}} \Biggr) \frac{1}{(\xi -t)^{2}}}\,dt+ \int _{\xi -\frac{\xi }{\sqrt{n}}}^{\xi }{ \Biggl( \bigvee _{\xi -\frac{\xi }{\sqrt{n}}}^{\xi }{f_{\xi }^{{\prime }}} \Biggr) } \,dt\\ &\leq B_{n}^{\ast } \bigl((\xi -u)^{2};\xi \bigr) \int _{0}^{\xi - \frac{\xi }{\sqrt{n}}}{ \Biggl( \bigvee _{t}^{\xi }{f_{\xi }^{{\prime}}} \Biggr) \frac{1}{(\xi -t)^{2}}}\,dt+\frac{\xi }{\sqrt{n}} \Biggl( \bigvee _{\xi -\frac{\xi }{\sqrt{n}}}^{ \xi }{f_{\xi }^{{\prime }}} \Biggr) . \end{aligned}$$

Substituting \(u=\frac{\xi }{\xi -t}\), we get

$$ \int _{0}^{\xi -\frac{\xi }{\sqrt{n}}}{ \Biggl( \bigvee _{t}^{\xi }{f_{ \xi }^{{\prime }}} \Biggr) \frac{1}{(\xi -t)^{2}}}\,dt=\frac{1}{\xi } \int _{1}^{\sqrt{n}}{ \Biggl( \bigvee _{\xi -\frac{\xi }{\sqrt{n}}}^{\xi }{f_{ \xi }^{{\prime }}} \Biggr) } \,du\leq \frac{1}{\xi }\sum_{k=1}^{[\sqrt{n}]}{ \Biggl( \bigvee_{\xi -\frac{\xi }{\sqrt{n}}}^{\xi }{f_{\xi }^{{\prime}}} \Biggr) }, $$

which yields that

$$ \vert I_{1} \vert \leq \frac{B_{n}^{\ast }((\xi -u)^{2};\xi )}{\xi }\sum _{k=1}^{[ \sqrt{n}]}{ \Biggl( \bigvee _{\xi -\frac{\xi }{\sqrt{n}}}^{\xi }{f_{x}^{{\prime}}} \Biggr) }+\frac{\xi }{\sqrt{n}} \Biggl( \bigvee_{\xi - \frac{\xi }{\sqrt{n}}}^{\xi }{f_{\xi }^{{\prime }}} \Biggr) . $$

 □

Lemma 3.5

Let \(f\in D_{BV[0,\infty )}\), and let n be sufficiently large. Then

$$\begin{aligned} \vert I_{2} \vert &\leq \biggl( \frac{M_{2}}{\xi ^{2}}+4M_{2}+ \frac{ \vert f(\xi ) \vert }{\xi ^{2}} \biggr) B_{n}^{\ast } \bigl((t- \xi )^{2};\xi \bigr)+ \bigl\vert f^{{\prime }}(\xi +) \bigr\vert \sqrt {B_{n}^{\ast } \bigl((t-\xi )^{2}; \xi \bigr)}\\ &\quad {} +\frac{B_{n}^{\ast }((t-\xi )^{2};\xi )}{(t-\xi )^{2}} \bigl\vert f(2\xi )-f( \xi )-\xi f^{{\prime }}(\xi +) \bigr\vert + \frac{\xi }{\sqrt{n}} \Biggl( \bigvee_{\xi }^{\xi +\frac{\xi }{\sqrt{n}}}{f_{\xi }^{{\prime }}} \Biggr) \\ &\quad {} +B_{n}^{\ast } \bigl((t- \xi )^{2};\xi \bigr) \sum_{k=1}^{[\sqrt{n}]}{ \Biggl( \bigvee _{\xi }^{ \xi +\frac{\xi }{k}}{f_{\xi }^{{\prime }}} \Biggr) }, \end{aligned}$$

where \(I_{2}=\int _{\xi }^{\infty }{ [ \int _{\xi }^{t}{f_{\xi }^{{\prime}}(u)\,du} ] }\frac{\partial K_{n}(\xi ,t)}{\partial t}\,dt\).

Proof

By the properties of integrals we have

$$\begin{aligned}& \begin{gathered} \biggl\vert \int _{\xi }^{\infty }{ \biggl[ \int _{\xi }^{t}{f_{\xi }^{{\prime}}(u) \,du} \biggr] }\frac{\partial K_{n}(\xi ,t)}{\partial t}\,dt \biggr\vert \\ \quad \leq \biggl\vert \int _{2\xi }^{\infty }{ \biggl[ \int _{ \xi }^{t}{f_{\xi }^{{\prime }}(u) \,du} \biggr] } \frac{\partial K_{n}(\xi ,t)}{\partial t}\,dt \biggr\vert + \biggl\vert \int _{\xi }^{2\xi }{ \biggl[ \int _{\xi }^{t}{f_{\xi }^{{\prime }}(u) \,du} \biggr] }\frac{\partial K_{n}(\xi ,t)}{\partial t}\,dt \biggr\vert \\ \quad =I_{2}^{{\prime }}+I_{2}^{{\prime \prime }},\end{gathered} \\& \begin{aligned} I_{2}^{{\prime }}&= \biggl\vert \int _{2\xi }^{\infty }{ \biggl[ \int _{ \xi }^{t}{ \bigl(f_{\xi }^{{\prime }}(u)-f_{\xi }^{{\prime }}( \xi +) \bigr)\,du} \biggr] } \frac{\partial K_{n}(\xi ,t)}{\partial t}\,dt \biggr\vert \\ &\leq \biggl\vert \int _{2\xi }^{\infty }{{ \bigl(f(t)-f(\xi ) \bigr)}} \frac{\partial K_{n}(\xi ,t)}{\partial t}\,dt \biggr\vert + \bigl\vert f^{{\prime }}(\xi +) \bigr\vert \biggl\vert \int _{2\xi }^{\infty }{(t-\xi ) \frac{\partial K_{n}(\xi ,t)}{\partial t}}\,dt \biggr\vert \\ &\leq \int _{2\xi }^{ \infty }{ \bigl\vert f(t) \bigr\vert \frac{\partial K_{n}(\xi ,t)}{\partial t}}\,dt+ \bigl\vert f(\xi ) \bigr\vert \int _{2 \xi }^{\infty }{\frac{\partial K_{n}(\xi ,t)}{\partial t}}\,dt+ \bigl\vert f^{{\prime }}(\xi +) \bigr\vert \int _{2\xi }^{\infty }{ \vert t-\xi \vert \frac{\partial K_{n}(\xi ,t)}{\partial t}}\,dt \\ &=A_{1}+A_{2}+A_{3}.\end{aligned} \end{aligned}$$

Now we will estimate

$$ A_{1}\leq M_{2} \int _{2\xi }^{\infty }{ \bigl(1+t^{2} \bigr) \frac{\partial K_{n}(\xi ,t)}{\partial t}}\,dt. $$

Since \(t\geq 2\xi \), that is, \(t-\xi \geq \xi \), we get

$$\begin{aligned} A_{1}&\leq M_{2} \int _{2\xi }^{\infty }{\frac{(t-\xi )^{2}}{\xi ^{2}} \frac{\partial K_{n}(\xi ,t)}{\partial t}} \,dt+4M_{2} \int _{2\xi }^{\infty }{(t- \xi )^{2} \frac{\partial K_{n}(\xi ,t)}{\partial t}}\,dt\\ &\leq \biggl( \frac{M_{2}}{\xi ^{2}}+4M_{2} \biggr) B_{n}^{\ast } \bigl((t- \xi )^{2};\xi \bigr). \end{aligned}$$

Now we estimate

$$ A_{2}\leq \bigl\vert f(\xi ) \bigr\vert \int _{2\xi }^{\infty }{ \frac{(t-\xi )^{2}}{\xi ^{2}} \frac{\partial K_{n}(\xi ,t)}{\partial t}}\,dt\leq \frac{ \vert f(\xi ) \vert }{\xi ^{2}}B_{n}^{\ast } \bigl((t-\xi )^{2};\xi \bigr) $$

and

$$ A_{3}\leq \bigl\vert f^{{\prime }}(\xi +) \bigr\vert \int _{2x}^{\infty }{ \vert t-\xi \vert \frac{\partial K_{n}(\xi ,t)}{\partial t}}\,dt\leq \bigl\vert f^{{\prime }}(\xi +) \bigr\vert \sqrt {B_{n}^{\ast } \bigl((t-\xi )^{2};\xi \bigr)}. $$

From last three relations we get the upper bound

$$ \bigl\vert I_{2}^{{\prime }} \bigr\vert \leq \biggl( \frac{M_{2}}{\xi ^{2}}+4M_{2}+ \frac{ \vert f(\xi ) \vert }{\xi ^{2}} \biggr) B_{n}^{\ast } \bigl((t-\xi )^{2};\xi \bigr)+ \bigl\vert f^{{\prime }}( \xi +) \bigr\vert \sqrt {B_{n}^{\ast } \bigl((t-\xi )^{2};\xi \bigr)}. $$

Now we estimate

$$\begin{aligned} \bigl\vert I_{2}^{{\prime \prime }} \bigr\vert = \biggl\vert \int _{\xi }^{2\xi }{ \biggl[ \int _{\xi }^{t}{f_{\xi }^{{\prime }}(u) \,du} \biggr] } \frac{\partial K_{n}(\xi ,t)}{\partial t}\,dt \biggr\vert &\leq \bigl\vert 1-\beta _{n}( \xi ,2\xi ) \bigr\vert \biggl\vert \int _{\xi }^{2\xi }{f_{\xi }^{{\prime }}(u) \,du} \biggr\vert \\ &\quad {} + \biggl\vert \int _{\xi }^{2\xi }f_{\xi }^{{\prime }}(t) \bigl(1-\beta _{n}( \xi ,t) \bigr)\,dt \biggr\vert . \end{aligned}$$

From Lemma 3.2 we have

$$\begin{aligned}& \begin{aligned} \bigl\vert I_{2}^{{\prime \prime }} \bigr\vert &\leq \frac{B_{n}^{\ast }((t-\xi )^{2};\xi )}{\xi ^{2}} \biggl\vert \int _{ \xi }^{2\xi }{ \bigl(f{^{\prime }}(u)-f^{{\prime }}( \xi +) \bigr)}\,du \biggr\vert + \biggl\vert \int _{\xi }^{\xi +\frac{\xi }{\sqrt{n}}}{f_{ \xi }{^{\prime }}(t) \bigl(1-\beta _{n}(\xi ,t) \bigr)}\,dt \biggr\vert \\ &\quad {} + \biggl\vert \int _{\xi +\frac{\xi }{\sqrt{n}}}^{2\xi }{f_{\xi }{^{ \prime }}(t) \bigl(1-\beta _{n}(\xi ,t) \bigr)}\,dt \biggr\vert \\ & = \frac{B_{n}^{\ast }((t-\xi )^{2};\xi )}{\xi ^{2}} \bigl\vert f(2\xi )-f(\xi )- \xi f^{{\prime }}(\xi +) \bigr\vert \biggl\vert \int _{\xi }^{\xi +\frac{\xi }{\sqrt{n}}}{f_{\xi }{^{ \prime }}(t) \bigl(1-\beta _{n}(\xi ,t) \bigr)}\,dt \biggr\vert \\ &\quad{} + \biggl\vert \int _{\xi + \frac{\xi }{\sqrt{n}}}^{2\xi }{f_{\xi }{^{\prime }}(t) \bigl(1-\beta _{n}(\xi ,t) \bigr)}\,dt \biggr\vert ,\end{aligned} \\& \biggl\vert \int _{\xi }^{\xi +\frac{\xi }{\sqrt{n}}}{f_{\xi }{^{ \prime }}(t) \bigl(1-\beta _{n}(\xi ,t) \bigr)}\,dt \biggr\vert \leq \int _{\xi }^{\xi + \frac{\xi }{\sqrt{n}}}{ \Biggl( \bigvee _{\xi }^{t}{f_{\xi }^{{\prime }}} \Biggr) } \,dt\leq \frac{\xi }{\sqrt{n}} \Biggl( \bigvee_{\xi }^{\xi + \frac{\xi }{\sqrt{n}}}{f_{\xi }^{{\prime }}} \Biggr) , \end{aligned}$$

and

$$ \biggl\vert \int _{\xi +\frac{\xi }{\sqrt{n}}}^{2\xi }{f_{\xi }{^{ \prime }}(t) \bigl(1-\beta _{n}(\xi ,t) \bigr)}\,dt \biggr\vert \leq B_{n}^{\ast } \bigl((t-\xi )^{2}; \xi \bigr) \int _{\xi +\frac{\xi }{\sqrt{n}}}^{2\xi }{ \Biggl( \bigvee _{ \xi }^{t}{f_{\xi }^{{\prime }}} \Biggr) }\frac{1}{(\xi -t)^{2}}\,dt. $$

For \(u=\frac{\xi }{t-\xi }\), we get

$$\begin{aligned} \biggl\vert \int _{\xi +\frac{\xi }{\sqrt{n}}}^{2\xi }{f_{\xi }{^{ \prime }}(t) \bigl(1-\beta _{n}(\xi ,t) \bigr)}\,dt \biggr\vert &\leq \frac{B_{n}^{\ast }((t-\xi )^{2};\xi )}{\xi } \int _{1}^{\sqrt{n}}{ \Biggl( \bigvee _{\xi }^{\xi +\frac{\xi }{u}}{f_{\xi }^{{\prime }}} \Biggr) } \,du\\ &\leq \frac{B_{n}^{\ast }((t-\xi )^{2};\xi )}{\xi }\sum_{k=1}^{[\sqrt{n}]}{ \Biggl( \bigvee_{\xi }^{\xi +\frac{\xi }{k}}{f_{\xi }^{{\prime }}} \Biggr) }. \end{aligned}$$

From the last relations we obtain that

$$ \begin{aligned} \bigl\vert I_{2}^{{\prime \prime }} \bigr\vert \leq{}& \frac{B_{n}^{\ast }((t-\xi )^{2};\xi )}{\xi ^{2}} \bigl\vert f(2\xi )-f(\xi )- \xi f^{{\prime }}(\xi +) \bigr\vert +\frac{\xi }{\sqrt{n}} \Biggl( \bigvee _{\xi }^{\xi +\frac{\xi }{\sqrt{n}}}{f_{\xi }^{{\prime}}} \Biggr) \\ &{}+\frac{B_{n}^{\ast }((t-\xi )^{2};\xi )}{\xi }\sum_{k=1}^{[ \sqrt{n}]}{ \Biggl( \bigvee_{\xi }^{\xi +\frac{\xi }{k}}{f_{\xi }^{{\prime }}} \Biggr) }. \end{aligned} $$

Hence

$$\begin{aligned}& \begin{aligned} \vert I_{2} \vert \leq \bigl\vert I_{2}^{{\prime }} \bigr\vert + \bigl\vert I_{2}^{{\prime \prime }} \bigr\vert &\leq \biggl( \frac{M_{2}}{\xi ^{2}}+4M_{2}+ \frac{ \vert f(\xi ) \vert }{\xi ^{2}} \biggr) B_{n}^{\ast } \bigl((t-\xi )^{2};\xi \bigr)+ \bigl\vert f^{{\prime }}(\xi +) \bigr\vert \sqrt {B_{n}^{\ast } \bigl((t-\xi )^{2};\xi \bigr)}\\ &\quad {} +\frac{B_{n}^{\ast }((t-\xi )^{2};\xi )}{\xi ^{2}} \bigl\vert f(2\xi )-f(\xi )- \xi f^{{\prime }}(\xi +) \bigr\vert + \frac{\xi }{\sqrt{n}} \Biggl( \bigvee_{ \xi }^{\xi +\frac{\xi }{\sqrt{n}}}{f_{\xi }^{{\prime }}} \Biggr) \\ &\quad{} + \frac{B_{n}^{\ast }((t-\xi )^{2};\xi )}{\xi }\sum_{k=1}^{[\sqrt{n}]}{ \Biggl( \bigvee_{\xi }^{\xi +\frac{\xi }{k}}{f_{\xi }^{{\prime }}} \Biggr) }.\end{aligned} \end{aligned}$$

 □

Proof of Theorem 3.1

Based on Lemmas 3.2, 3.3, 3.4 and 3.5, we get the following estimate:

$$\begin{aligned}& \bigl\vert B_{n}^{\ast }(f;\xi )-f(\xi ) \bigr\vert \\ & \quad \leq \biggl\vert \frac{1}{2} \bigl(f^{{\prime}}(\xi +)+f^{{\prime }}(\xi -) \bigr) \biggr\vert \cdot \bigl\vert B_{n}^{ \ast }(t-\xi ;\xi ) \bigr\vert \\ & \quad\quad {} + \vert I_{1} \vert + \vert I_{2} \vert + \biggl\vert \frac{1}{2} \bigl(f^{{\prime }}(\xi +)-f^{{\prime}}(\xi -) \bigr) \biggr\vert \cdot \sqrt{ \bigl\vert B_{n}^{\ast } \bigl((t- \xi )^{2}; \xi \bigr) \bigr\vert }\\ & \quad \leq \biggl\vert \frac{1}{2} \bigl(f^{{\prime }}(\xi +)+f^{{\prime }}( \xi -) \bigr) \biggr\vert \cdot \bigl\vert B_{n}^{\ast }(t- \xi ;\xi ) \bigr\vert + \frac{B_{n}^{\ast }((\xi -t)^{2};\xi )}{\xi } \sum_{k=1}^{[\sqrt{n}]}{ \Biggl( \bigvee _{\xi -\frac{\xi }{\sqrt{n}}}^{\xi }{f_{\xi }^{{\prime}}} \Biggr) } \\ & \quad\quad {} +\frac{\xi }{\sqrt{n}} \Biggl( \bigvee_{\xi -\frac{\xi }{\sqrt{n}}}^{\xi }{f_{\xi }^{{\prime}}} \Biggr) + \biggl( \frac{M_{f}}{\xi ^{2}}+4M_{f}+\frac{ \vert f(\xi ) \vert }{\xi ^{2}} \biggr) B_{n}^{\ast } \bigl((t-\xi )^{2};\xi \bigr) \\ & \quad\quad {}+ \bigl\vert f^{{\prime }}(\xi +) \bigr\vert \sqrt{B_{n}^{\ast } \bigl((t-\xi )^{2};\xi \bigr)}+\frac{B_{n}^{\ast }((t-\xi )^{2};x)}{\xi ^{2}} \bigl\vert f(2\xi )-f(\xi )-\xi f^{{\prime}}(\xi +) \bigr\vert \\ & \quad\quad {} + \frac{\xi }{\sqrt{n}} \Biggl( \bigvee_{\xi }^{\xi+\frac{\xi }{\sqrt{n}}}{f_{\xi }^{{\prime }}} \Biggr) + \frac{B_{n}^{\ast }((t-\xi )^{2};\xi )}{\xi }\sum_{k=1}^{[\sqrt{n}]}{ \Biggl( \bigvee_{\xi }^{\xi +\frac{\xi }{k}}{f_{\xi }^{{\prime }}} \Biggr) }\\ & \quad\quad {} + \biggl\vert \frac{1}{2} \bigl(f^{{\prime }}(\xi +)-f^{{\prime }}( \xi -) \bigr) \biggr\vert \cdot \sqrt{ \bigl\vert B_{n}^{\ast } \bigl((t-\xi )^{2};\xi \bigr) \bigr\vert }. \end{aligned}$$

Since

$$ \Biggl( \bigvee_{a}^{b}{f} \Biggr) + \Biggl( \bigvee_{b}^{c}{f} \Biggr) = \Biggl( \bigvee_{a}^{c}{f} \Biggr) , $$

we obtain

$$\begin{aligned}& \bigl\vert B_{n}^{\ast }(f;\xi )-f(\xi ) \bigr\vert \\ & \quad \leq \biggl\vert \frac{1}{2} \bigl(f^{{\prime}}(\xi +)+f^{{\prime }}(\xi -) \bigr) \biggr\vert \cdot \bigl\vert B_{n}^{ \ast }(t-\xi ;\xi ) \bigr\vert \\ & \quad\quad {} + \vert I_{1} \vert + \vert I_{2} \vert + \biggl\vert \frac{1}{2} \bigl(f^{{\prime }}(\xi +)-f^{{\prime}}(\xi -) \bigr) \biggr\vert \cdot \sqrt{ \bigl\vert B_{n}^{\ast } \bigl((t- \xi )^{2}; \xi \bigr) \bigr\vert }\\ & \quad \leq \biggl\vert \frac{1}{2} \bigl(f^{{\prime }}(\xi +)+f^{{\prime }}( \xi -) \bigr) \biggr\vert \cdot \bigl\vert B_{n}^{\ast }(t- \xi ;\xi ) \bigr\vert + \frac{B_{n}^{\ast }((\xi -t)^{2};\xi )}{\xi } \sum_{k=1}^{[\sqrt{n}]}{ \Biggl( \bigvee _{\xi -\frac{\xi }{\sqrt{n}}}^{\xi + \frac{\xi }{\sqrt{n}}}{f_{\xi }^{{\prime }}} \Biggr) } \\ & \quad\quad {}+\frac{\xi }{\sqrt{n}} \Biggl( \bigvee_{\xi -\frac{\xi }{\sqrt{n}}}^{ \xi +\frac{\xi }{\sqrt{n}}}{f_{\xi }^{{\prime }}} \Biggr) + \biggl( \frac{M_{f}}{\xi ^{2}}+4M_{f}+\frac{ \vert f(\xi ) \vert }{\xi ^{2}} \biggr) B_{n}^{\ast } \bigl((t-\xi )^{2};\xi \bigr) \\ & \quad\quad {}+ \bigl\vert f^{{\prime }}(\xi +) \bigr\vert \sqrt{B_{n}^{\ast } \bigl((t-\xi )^{2};\xi \bigr)} +\frac{B_{n}^{\ast }((t-\xi )^{2};\xi )}{\xi ^{2}} \bigl\vert f(2\xi )-f(\xi )- \xi f^{{\prime }}(\xi +) \bigr\vert \\ & \quad\quad {} + \biggl\vert \frac{1}{2} \bigl(f^{{\prime }}( \xi +)-f^{{\prime }}(\xi -) \bigr) \biggr\vert \cdot \sqrt{ \bigl\vert B_{n}^{\ast } \bigl((t- \xi )^{2};\xi \bigr) \bigr\vert }. \end{aligned}$$

 □

4 Voronovskaya-type theorems

The Voronovskaya-type theorem for the Chlodowsky-type Szász operators based on Boas–Buck-type polynomials under certain conditions is known. First, we introduce following assumptions [26]:

$$\begin{aligned} & \lim_{n\rightarrow \infty } \frac{n}{b_{n}} \frac{B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}=l_{1}( \xi ); \end{aligned}$$
(4.1)
$$\begin{aligned} & \lim_{n\rightarrow \infty } \frac{n}{b_{n}} \frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )-2B^{\prime } (\frac{n}{b_{n}}\xi H(1) )+B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}=l_{2}( \xi ); \end{aligned}$$
(4.2)
$$\begin{aligned} & \lim_{n\rightarrow \infty } \biggl( \frac{n}{b_{n}} \biggr) ^{2}\frac{1}{B (\frac{n}{b_{n}}\xi H(1) )} \biggl[ B^{(4)} \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) -4B^{(3)} \biggl( \frac{n}{b_{n}} \xi H(1) \biggr) +6B^{\prime \prime } \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) \\ & \quad {} - 4B^{\prime } \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) +B \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) \biggr] =l_{3}(\xi ); \end{aligned}$$
(4.3)
$$\begin{aligned} & \lim_{n\rightarrow \infty } \frac{n}{b_{n}} \frac{1}{B ( \frac{n}{b_{n}}\xi H(1) ) A(1)} \biggl[ \bigl( 2A^{\prime }(1)+3A(1)H^{ \prime \prime }(1)+3A(1) \bigr) B^{(3)} \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) -6 \bigl( A^{\prime }(1) \\ & \quad {} + A(1)H^{\prime \prime }(1)+A(1) \bigr) B^{\prime \prime } \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) +3 \bigl( 2A^{\prime }(1)+A(1)H^{ \prime \prime }(1)+A(1) \bigr) B^{\prime } \biggl( \frac{n}{b_{n}} \xi H(1) \biggr) \\ & \quad {} -2A^{\prime }(1)B \biggl( \frac{n}{b_{n}}\xi H(1) \biggr) \biggr] =l_{4}(\xi ). \end{aligned}$$
(4.4)

Remark 4.1

[26] As a consequence of the above assumption, we obtain

  1. i)

    \(\lim_{n\rightarrow \infty } \frac{n}{b_{n}}B_{n}^{\ast } ( e_{1}-\xi ;\xi ) =\eta _{1}(\xi )\),

  2. ii)

    \(\lim_{n\rightarrow \infty } \frac{n}{b_{n}}B_{n}^{\ast } ( (e_{1}-\xi )^{2};\xi ) =\eta _{2}( \xi )\),

  3. iii)

    \(\lim_{n\rightarrow \infty } ( \frac{n}{b_{n}} ) ^{2}B_{n}^{\ast } ( (e_{1}-\xi )^{4}; \xi ) =\eta _{3}(\xi )\),

where

$$\begin{aligned} & \eta _{1}(\xi )=\xi l_{1}(\xi )+\frac{A^{\prime }(1)}{A(1)}, \qquad \eta _{2}(\xi )=\xi ^{2}l_{2}(\xi )+\xi \bigl( 1+H^{\prime \prime }(1) \bigr) , \\ & \eta _{3}(\xi )=\xi ^{4}l_{3}(\xi )+2\xi ^{3}l_{4}(\xi )+3\xi ^{2} \bigl( H^{\prime \prime }(1)^{2}+2H^{\prime \prime }(1)+1 \bigr) . \end{aligned}$$

Theorem 4.2

[26] (Voronovskaya-type theorem) For every \(f\in C_{E}({\mathbb{R}}_{0}^{+})\) such that \(f^{\prime },f^{\prime \prime }\in C_{E}({\mathbb{R}}_{0}^{+})\), we have

$$ \lim_{n\rightarrow \infty }\frac{n}{b_{n}} \bigl[B_{n}^{\ast }(f; \xi )-f( \xi ) \bigr]= \biggl( \xi l_{1}(\xi )+\frac{A^{\prime }(1)}{A(1)} \biggr) f^{ \prime }(\xi )+\frac{1}{2} ( \xi ^{2}l_{2}( \xi )+\xi \bigl(1+H^{ \prime \prime }(1) \bigr) f^{\prime \prime }(\xi ), $$

uniformly with respect to \(\xi \in{}[ 0,a]\), \(a>0\), where \(l_{i}(\xi )\), \(i=1,2\), are defined in (4.1) and (4.2).

Example 4.3

Write

$$ NB_{n}^{\ast }(h,\xi )=(1+u_{n})B_{n}^{\ast }(h, \xi ), $$

where

$$ u_{n}=\textstyle\begin{cases} \frac{b_{m}^{2}}{m^{2}}, & m^{2}-m\leq n\leq m^{2}-1, \\ \frac{b_{m}^{3}}{m^{3}}, & n=m^{2}, m\in \mathbb{N}\setminus \{1\}, \\ 0 & \text{otherwise}.\end{cases} $$

Lemma 4.4

For the fourth-order central moment, we have the following estimate:

$$ \biggl( \frac{n}{b_{n}} \biggr) ^{2}NB_{n}^{\ast } \bigl((y-\xi )^{4};\xi \bigr) \rightarrow \eta _{3}(\xi ) \quad \textit{on } {}[ 0,M] \textit{ as } n\rightarrow \infty . $$

Proof

From Proposition 2.2 we have

$$ \biggl( \frac{n}{b_{n}} \biggr) ^{2}NB_{n}^{\ast } \bigl((y-\xi )^{4};\xi \bigr)= \biggl( \frac{n}{b_{n}} \biggr) ^{2}(1+u_{n})B_{n}^{\ast } \bigl((y-\xi )^{4}; \xi \bigr), $$

from which we obtain that

$$ \lim_{n\rightarrow \infty }{ \biggl( \frac{n}{b_{n}} \biggr) ^{2}(1+u_{n})B_{n}^{ \ast } \bigl((y-\xi )^{4};\xi \bigr)}=\eta _{3}(\xi )\quad \text{on }[0,M]. $$

 □

Theorem 4.5

Let \(f\in C^{B}[0,\infty )\), the space of bounded and continuous functions in \([0,\infty )\), and suppose that \(f^{{\prime }},f^{{\prime \prime }}\in C^{B}[0,\infty )\). Then

$$ \begin{aligned}& \biggl( \frac{n}{b_{n}} \biggr) \bigl[NB_{n}^{\ast }(f;\xi )-f( \xi ) \bigr] \\ &\quad \sim f^{{\prime }}(\xi ) \biggl( l_{1}(\xi )\xi + \frac{A^{\prime }(1)}{A(1)} \biggr) \\ &\quad\quad {} +\frac{f^{{\prime \prime }}(\xi )}{2} \biggl(l_{2}(\xi )\xi ^{2}+ \frac{(A(1)+2A^{\prime }(1)+A(1)H^{\prime \prime }(1))-2A^{\prime }(1)}{A(1)B} \xi \biggr) (st_{T}) \end{aligned}$$

for each \(x\in{}[ 0,M]\) and any finite M.

Proof

Taylor’s formula gives

$$ f(y)=f(\xi )+(y-\xi )f^{{\prime }}(\xi )+ \frac{1}{2}(y-\xi )^{2}f^{{ \prime \prime }}(\xi )+(y-\xi )^{2}\psi (y- \xi ), $$
(4.5)

where \(\psi (y-\xi )\rightarrow 0\) as \(y-\xi \rightarrow 0\). Applying \(NB_{n}^{\ast }\) to both sides of relation (4.5), we get

$$\begin{aligned} NB_{n}^{\ast }(f)={}&(1+u_{n})f(\xi )+(1+u_{n})f^{{\prime }}(\xi ) \biggl( \frac{B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}x+ \frac{b_{n}}{n}\frac{A^{\prime }(1)}{A(1)} \biggr) \\ & {} +(1+u_{n})\frac{f^{{\prime \prime }}(\xi )}{2} \biggl( \frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )-2B^{\prime } (\frac{n}{b_{n}}\xi H(1) )+B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )} \xi ^{2} \\ & {} +\frac{b_{n}}{n} \frac{(A(1)+2A^{\prime }(1)+A(1)H^{\prime \prime }(1))B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-2A^{\prime }(1)B (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )}x \\ & {} +\frac{b_{n}^{2}}{n^{2}} \frac{A^{\prime }(1)+A^{\prime \prime }(1)}{A(1)} \biggr)+(1+u_{n})NB_{n}^{\ast } \bigl(\Phi ^{2}\psi (y-\xi );\xi \bigr). \end{aligned}$$

This yields

$$\begin{aligned} \biggl( \frac{n}{b_{n}} \biggr) NB_{n}^{\ast }(f)={}& \biggl( \frac{n}{b_{n}} \biggr) (1+u_{n})f(\xi ) \\ &{}+ \biggl( \frac{n}{b_{n}} \biggr) (1+u_{n})f^{{\prime}}(\xi ) \biggl( \frac{B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}x+ \frac{b_{n}}{n}\frac{A^{\prime }(1)}{A(1)} \biggr) \\ & {} + \biggl( \frac{n}{b_{n}} \biggr) (1+u_{n}) \frac{f^{{\prime \prime }}(\xi )}{2} \biggl( \frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )-2B^{\prime } (\frac{n}{b_{n}}\xi H(1) )+B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}\xi ^{2} \\ & {} +\frac{b_{n}}{n} \frac{(A(1)+2A^{\prime }(1)+A(1)H^{\prime \prime }(1))B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-2A^{\prime }(1)B (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )}\xi \\ & {} +\frac{b_{n}^{2}}{n^{2}} \frac{A^{\prime }(1)+A^{\prime \prime }(1)}{A(1)} \biggr)+ \biggl( \frac{n}{b_{n}} \biggr) (1+u_{n})NB_{n}^{\ast } \bigl(\Phi ^{2} \psi (y-\xi );\xi \bigr). \end{aligned}$$

Therefore

$$\begin{aligned}& \biggl\vert \biggl( \frac{n}{b_{n}} \biggr) \biggl[NB_{n}^{\ast } (f;\xi )-f(\xi )-f^{{\prime }} (\xi ) \biggl( \frac{B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}x+ \frac{A^{\prime }(1)}{A(1)} \biggr) \\& \quad\quad{} -\frac{f^{{\prime \prime }}(\xi )}{2} \biggl(\frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )-2B^{\prime } (\frac{n}{b_{n}}\xi H(1) )+B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}{ \xi }^{2} \\& \quad\quad{} + \frac{(A(1)+2A^{\prime }(1)+A(1)H^{\prime \prime }(1))B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-2A^{\prime }(1)B (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )} \xi \biggr) \biggr] \biggr\vert \\& \quad \leq \biggl( \frac{n}{b_{n}} \biggr) { Ku}_{n} + \biggl( \frac{n}{b_{n}} \biggr) { K}_{1}{ u}_{n} \biggl\vert \biggl( \frac{B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )} \xi + \frac{A^{\prime }(1)}{A(1)} \biggr) \biggr\vert \\& \quad\quad{} + \biggl( \frac{b_{n}}{n} \biggr) \frac{K_{2}}{2} \biggl\vert \frac{A^{\prime }(1)+A^{\prime \prime }(1)}{A(1)} \biggr\vert \\& \quad\quad{} + \biggl( \frac{n}{b_{n}} \biggr) { u}_{n} \frac{K_{2}}{2} \biggl\vert \frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )-2B^{\prime } (\frac{n}{b_{n}}\xi H(1) )+B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}{ \xi }^{2} + \frac{b_{n}}{n} \frac{A^{\prime }(1)+A^{\prime \prime }(1)}{A(1)} \biggr\vert \\& \quad\quad{} + \biggl( \frac{n}{b_{n}} \biggr) \bigl\vert NB_{n}^{\ast } \bigl((y-\xi )^{2} \psi (y-\xi ); \xi \bigr) \bigr\vert +u_{n} \biggl( \frac{n}{b_{n}} \biggr) \bigl\vert NB_{n}^{ \ast } \bigl((y-\xi )^{2} \psi (y-\xi );\xi \bigr) \bigr\vert , \end{aligned}$$

where \(K=\sup_{\xi \in{}[ 0,M]}{ \vert f(\xi ) \vert }\), \(K_{1}=\sup_{\xi \in{}[ 0,M]}{ \vert f^{{\prime }}(\xi ) \vert }\), and \(K_{2}=\sup_{\xi \in{}[ 0,M]}{ \vert f^{{\prime \prime }}(\xi ) \vert }\).

Now we will prove that

$$ \lim_{n\rightarrow \infty }{ \biggl( \frac{n}{b_{n}} \biggr) \bigl\vert NB_{n}^{ \ast } \bigl((y-\xi )^{2}\psi (y-\xi );\xi \bigr) \bigr\vert }=0. $$

Applying the Cauchy–Schwartz inequality, we get

$$ \biggl( \frac{n}{b_{n}} \biggr) \bigl\vert NB_{n}^{\ast } \bigl((y- \xi )^{2}\psi (y- \xi );\xi \bigr) \bigr\vert \leq \biggl[ \biggl( \frac{n}{b_{n}} \biggr) ^{2}NB_{n}^{ \ast } \bigl((y-\xi )^{4};\xi \bigr) \biggr] ^{\frac{1}{2}} \cdot {} \bigl[ NB_{n}^{ \ast } \bigl(\psi ^{2};\xi \bigr) \bigr]^{\frac{1}{2}}. $$
(4.6)

Also, by setting \(\eta _{\xi }(y)=(\psi (y-\xi ))^{2}\) we have that \(\eta _{\xi }(\xi )=0\) and \(\eta _{\xi }(\cdot )\in C[0,M]\). So

$$ NB_{n}^{\ast }(\eta _{\xi })\rightarrow 0(st_{ \mathfrak{T}})\quad \text{on }{}[ 0,M]. $$
(4.7)

Now from the last relation, (4.6), (4.7), and Lemma 4.4 we obtain that

$$ \biggl( \frac{n}{b_{n}} \biggr) ^{2}NB_{n}^{\ast } \bigl((y- \xi )^{2}\psi (y- \xi );\xi \bigr)\rightarrow 0(st_{\mathfrak{T}})\quad \text{on } {}[ 0,M]. $$
(4.8)

From the definition of the sequence \((u_{n})\) we obtain \(( \frac{n}{b_{n}} ) u_{n}\rightarrow 0(st_{\mathfrak{T}})\) on \([0,M]\).

Let \(\epsilon >0\). Define the following sets:

$$\begin{aligned}& \begin{aligned} A={}& \biggl\vert \{n: \vert \biggl( \frac{n}{b_{n}} \biggr) \biggl[NB_{n}^{ \ast }(f; \xi )-f(\xi )-f^{{\prime }}(\xi ) \biggl( \frac{B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}\xi + \frac{A^{\prime }(1)}{A(1)} \biggr) \\ & {} -\frac{f^{{\prime \prime }}(\xi )}{2} \biggl( \frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )-2B^{\prime } (\frac{n}{b_{n}}\xi H(1) )+B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )} \xi ^{2} \\ & {} + \frac{(A(1)+2A^{\prime }(1)+A(1)H^{\prime \prime }(1))B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-2A^{\prime }(1)B (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )}\xi \biggr) \biggr] \biggr\vert , \end{aligned} \\& A_{1} = \biggl\vert \biggl\{ n: \biggl\vert \biggl( \frac{n}{b_{n}} \biggr) u_{n} \biggr\vert \geq \frac{\epsilon }{3K} \biggr\} \biggr\vert , \\& A_{2} = \biggl\vert \biggl\{ n: \biggl\vert \biggl( \frac{n}{b_{n}} \biggr) NB_{n}^{\ast } \bigl((y-\xi )^{2}\psi (y-\xi );\xi \bigr) \biggr\vert \geq \frac{\epsilon }{3} \biggr\} \biggr\vert , \\& A_{3} = \biggl\vert \biggl\{ n: \biggl\vert \biggl( \frac{n}{b_{n}} \biggr) u_{n}NB_{n}^{\ast } \bigl((y-\xi )^{2}\psi (y-\xi );\xi \bigr) \biggr\vert \geq \frac{\epsilon }{3} \biggr\} \biggr\vert . \end{aligned}$$

From last relations we obtain that \(A\leq A_{1}+A_{2}+A_{3}\). Hence the result follows. □

Theorem 4.6

Let \(f,f^{{\prime }},f^{{\prime \prime }}\in C^{B}[0,\infty )\) and \(\lim_{n\rightarrow \infty }{ ( \frac{n}{b_{n}} ) ^{3}B_{n}^{ \ast }((e_{1}-\xi )^{6},\xi )}=\eta _{4}(\xi )\). Then

$$\begin{aligned} & \biggl\vert \biggl( \frac{n}{b_{n}} \biggr) \bigl( B_{n}^{\ast }(f, \xi )-f( \xi ) \bigr) -f^{{\prime }}(\xi ) \biggl( \frac{n}{b_{n}} \biggr) \biggl( \frac{B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}x+\frac{b_{n}}{n} \frac{A^{\prime }(1)}{A(1)} \biggr) \\ &\quad {} -\frac{f^{{\prime \prime }}(\xi )}{2}\cdot \biggl( \frac{n}{b_{n}} \biggr) \biggl[ \frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )-2B^{\prime } (\frac{n}{b_{n}}\xi H(1) )+B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}\xi ^{2} \\ &\quad {} +\frac{b_{n}}{n} \frac{(A(1)+2A^{\prime }(1)+A(1)H^{\prime \prime }(1))B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-2A^{\prime }(1)B (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )}x \\ &\quad {} +\frac{b_{n}^{2}}{n^{2}} \frac{A^{\prime }(1)+A^{\prime \prime }(1)}{A(1)} \biggr] \biggr\vert =O(1) \omega \biggl( f^{{\prime \prime }}, \biggl( \frac{b_{n}}{{n}} \biggr) ^{-\frac{1}{2}} \biggr) \end{aligned}$$

as \(n\rightarrow \infty \) for every \(\xi \in{}[ 0,\infty )\).

Proof

By Taylor’s theorem we get

$$ f(u)=f(\xi )+f^{{\prime }}(\xi ) (u-\xi )+ \frac{f^{{\prime \prime }}(\xi )}{2}(u-\xi )^{2}+R(u,\xi ), $$

where \(R(u,\xi )= \frac{f^{{\prime \prime }}(\theta )-f^{{\prime \prime }}(\xi )}{2}(u- \xi )^{2}\) for \(\theta \in (u,\xi )\). From this we have

$$ \biggl\vert B_{n}^{\ast }(f,\xi )-f(\xi )-f^{{\prime }}( \xi )B_{n}^{ \ast } \bigl((u-\xi );\xi \bigr)- \frac{f^{{\prime \prime }}(\xi )}{2}B_{n}^{ \ast } \bigl((u-\xi )^{2}; \xi \bigr) \biggr\vert \leq B_{n}^{\ast } \bigl( \bigl\vert R(u,\xi ) \bigr\vert , \xi \bigr), $$

from which we get that

$$\begin{aligned} & \biggl\vert \biggl( \frac{n}{b_{n}} \biggr) \bigl( B_{n}^{\ast }(f, \xi )-f( \xi ) \bigr) -f^{{\prime }}(\xi ) \biggl( \frac{n}{b_{n}} \biggr) \biggl( \frac{B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}\xi +\frac{b_{n}}{n} \frac{A^{\prime }(1)}{A(1)} \biggr) \\ & \quad\quad {} - \frac{f^{{\prime \prime }}(\xi )}{2}\cdot \biggl( \frac{n}{b_{n}} \biggr) \biggl[ \frac{B^{\prime \prime } (\frac{n}{b_{n}}\xi H(1) )-2B^{\prime } (\frac{n}{b_{n}}\xi H(1) )+B (\frac{n}{b_{n}}\xi H(1) )}{B (\frac{n}{b_{n}}\xi H(1) )}\xi ^{2} \\ &\quad\quad {} +\frac{b_{n}}{n} \frac{(A(1)+2A^{\prime }(1)+A(1)H^{\prime \prime }(1))B^{\prime } (\frac{n}{b_{n}}\xi H(1) )-2A^{\prime }(1)B (\frac{n}{b_{n}}\xi H(1) )}{A(1)B (\frac{n}{b_{n}}\xi H(1) )}\xi \\ &\quad\quad {} +\frac{b_{n}^{2}}{n^{2}} \frac{A^{\prime }(1)+A^{\prime \prime }(1)}{A(1)} \biggr] \biggr\vert \\ &\quad \leq \biggl( \frac{n}{b_{n}} \biggr) \cdot B_{n}^{\ast } \bigl( \bigl\vert R(u,\xi ) \bigr\vert , \xi \bigr). \end{aligned}$$

From the properties of modulus of continuity we obtain

$$ \biggl\vert \frac{f^{{\prime \prime }}(\theta )-f^{{\prime \prime }}(\xi )}{2!} \biggr\vert \leq \frac{1}{2!} \biggl( 1+ \frac{ \vert \theta -\xi \vert }{\delta } \biggr) \omega \bigl(f^{{\prime \prime }},\delta \bigr). $$

We know that

$$ \biggl\vert \frac{f^{{\prime \prime }}(\theta )-f^{{\prime \prime }}(\xi )}{2!} \biggr\vert \leq \textstyle\begin{cases} \omega (f^{{\prime \prime },\delta }), & \vert u-\xi \vert \leq \delta , \\ \frac{(t-\xi )^{4}}{\delta ^{4}}\omega (f^{{\prime \prime }},\delta ), & \vert u-\xi \vert \geq \delta .\end{cases} $$

For \(0<\delta <1\), we obtain that

$$ \biggl\vert \frac{f^{{\prime \prime }}(\theta )-f^{{\prime \prime }}(\xi )}{2!} \biggr\vert \leq \omega \bigl(f^{{\prime \prime }},\delta \bigr) \biggl( 1+ \frac{(u-\xi )^{4}}{\delta ^{4}} \biggr) , $$

which implies that

$$ \bigl\vert R(u,\xi ) \bigr\vert \leq \omega \bigl(f^{{\prime \prime }},\delta \bigr) \biggl( 1+ \frac{(u-\xi )^{4}}{\delta ^{4}} \biggr) (u-\xi )^{2}=\omega \bigl(f^{{ \prime \prime }}, \delta \bigr) \biggl( (u-\xi )^{2}+ \frac{(u-\xi )^{6}}{\delta ^{4}} \biggr) . $$

By the linearity of \(B_{n}^{\ast }\) and the above relation we obtain

$$ B_{n}^{\ast } \bigl( \bigl\vert R(u,\xi ) \bigr\vert ,\xi \bigr)\leq \omega \bigl(f^{{\prime \prime }}, \delta \bigr) \biggl( B_{n}^{\ast } \bigl((u-\xi )^{2},\xi \bigr)+ \frac{1}{\delta ^{4}}B_{n}^{\ast } \bigl((u-\xi )^{6}, \xi \bigr) \biggr) . $$

By Remark 4.1, for any \(x\in{}[ 0,\infty )\), we obtain

$$ B_{n}^{\ast } \bigl( \bigl\vert R(u,\xi ) \bigr\vert ,\xi \bigr)\leq \omega \bigl(f^{{\prime \prime }}, \delta \bigr) \biggl( O \biggl( \frac{b_{n}}{n} \biggr) + \frac{1}{\delta ^{4}}O \biggl( \frac{b_{n}}{n} \biggr) ^{3} \biggr) =O \biggl( \frac{b_{n}}{n} \biggr) \omega \bigl(f^{{\prime \prime }}, \delta _{n} \bigr). $$

We complete the proof by taking \(\delta _{n}= ( \frac{b_{n}}{n} ) ^{-\frac{1}{2}}\). □

We prove the following results under the conditions given in the assumptions.

Theorem 4.7

Let \(f\in C^{B}[0,\infty )\) and \(f^{{\prime }},f^{{\prime \prime }}\in C[0,\infty )\). Then

$$ \lim_{n\rightarrow \infty }\frac{n}{b_{n}} \bigl[B_{n}^{\ast }(fg, \xi )-B_{n}^{ \ast }(f,\xi )B_{n}^{\ast }(g, \xi ) \bigr]=\frac{1}{2} ( \xi ^{2}l_{2}( \xi )+\xi \bigl(1+H^{\prime \prime }(1) \bigr) f^{{\prime }}(\xi )g^{{\prime}}(\xi ) $$

for any \(x\in{}[ 0,M]\), where \(M>0\).

Proof

After some calculations, we obtain

$$\begin{aligned}& \frac{n}{b_{n}} \bigl[B_{n}^{\ast }(fg,\xi )-B_{n}^{\ast }(f,\xi )B_{n}^{ \ast }(g,\xi ) \bigr] \\& \quad = \biggl[\frac{n}{b_{n}} \bigl( B_{n}^{\ast }(fg,\xi )-fg \bigr) ) - \biggl( \xi l_{1}(\xi )+\frac{A^{\prime }(1)}{A(1)} \biggr) (fg)^{{\prime}}(\xi ) \\& \quad\quad {}- \frac{1}{2} ( \xi ^{2}l_{2}(\xi )+\xi \bigl(1+H^{\prime \prime }(1) \bigr) \frac{(fg)^{{\prime \prime }}(\xi )}{2} \biggr] \\& \quad\quad {} -g(\xi ) \biggl[ \frac{n}{b_{n}} \bigl( B_{n}^{\ast }(f,\xi )-f(\xi ) \bigr) - \biggl( \xi l_{1}(\xi )+ \frac{A^{\prime }(1)}{A(1)} \biggr) f^{{\prime }}(\xi ) \\& \quad\quad {}- \frac{1}{2} ( \xi ^{2}l_{2}(\xi )+\xi \bigl(1+H^{\prime \prime }(1) \bigr) \frac{f^{{\prime \prime }}(\xi )}{2} \biggr] \\& \quad\quad {}-B_{n}^{\ast }(f, \xi ) \biggl[\frac{n}{b_{n}} \bigl( B_{n}^{\ast }(g,\xi )-g(\xi ) \bigr) - \biggl( \xi l_{1}( \xi )+\frac{A^{\prime }(1)}{A(1)} \biggr) g^{{\prime }}(\xi ) \\& \quad\quad {} -\frac{1}{2} ( \xi ^{2}l_{2}(\xi )+\xi \bigl(1+H^{\prime \prime }(1) \bigr) \frac{g^{{\prime \prime }}(\xi )}{2} \biggr]+\frac{1}{2} ( \xi ^{2}l_{2}(\xi )+\xi \bigl(1+H^{\prime \prime }(1) \bigr) f^{{\prime}}(\xi )g^{{\prime }}(\xi ) \\& \quad\quad {} +\frac{1}{2} ( \xi ^{2}l_{2}(\xi )+\xi \bigl(1+H^{\prime \prime }(1) \bigr) \frac{g^{{\prime \prime }}(\xi )}{2} \bigl[f(\xi )-B_{n}^{\ast }(f, \xi ) \bigr] \\& \quad\quad {}+ \biggl( \xi l_{1}( \xi )+\frac{A^{\prime }(1)}{A(1)} \biggr) g^{{\prime}}(\xi ) \bigl[f(\xi )-B_{n}^{\ast }(f,\xi ) \bigr]. \end{aligned}$$

Now the proof follows from Theorem 4.2 and Proposition 2.2. □

5 Weighted approximation

Now we will study some properties of \(B_{n}^{\ast }\) in weighted spaces. Also, we will suppose that

$$ \lim_{n\rightarrow \infty }{\frac{B^{(k)}(y)}{B(y)}}=1\quad \text{for every } k=1,2,\ldots,r; r\in \mathbb{N}. $$

Let \(\rho (x)=x^{2}+1\) be the weight function, and let \(M_{f}\) be a positive constant. We write

  1. (i)

    \(B_{\rho }[0,\infty )\) for the space of bounded functions \(\vert f(x) \vert \leq M_{f}\rho (x)\) with \(\Vert f \Vert _{\rho }=\sup_{x\geq 0}\frac{ \vert f(x) \vert }{\rho (x)}\).

  2. (ii)

    \(C_{\rho }[0,\infty )\) for the subspace of continuous functions in \(B_{\rho }[0,\infty )\).

  3. (iii)

    \(C_{\rho }^{\ast }[0,\infty )\) for the space of functions \(f\in C_{\rho }[0,\infty )\) with fn ite \(\lim_{x\rightarrow \infty }\frac{f(x)}{\rho (x)}\).

The weighted modulus of continuity \(\Omega (f;\delta )\) is defined by

$$ \Omega (f;\delta )=\sup_{x\geq 0, 0< \vert h \vert \leq \delta } \frac{ \vert f(x+h)-f(x) \vert }{(1+h^{2})\rho (x)}\quad \text{for all } f\in C_{\rho }^{\ast }[0, \infty ). $$

For any \(\mu \in{}[ 0,\infty )\),

$$ \Omega (f;\mu \delta )\leq 2(1+\mu ) \bigl(1+\delta ^{2} \bigr)\Omega (f;\delta ), $$

and

$$ \bigl\vert f(t)-f(x) \bigr\vert \leq 2 \biggl( \frac{ \vert t-x \vert }{\delta }+1 \biggr) \bigl(1+\delta ^{2} \bigr) \Omega (f;\delta ) \bigl(1+x^{2} \bigr) \bigl(1+(t-x)^{2} \bigr), \quad f\in C_{\rho }^{\ast }[0, \infty ). $$

Theorem 5.1

For \(f\in C_{\rho }^{\ast }[0,\infty )\), we have

$$ \lim_{n\rightarrow \infty } \bigl\Vert B_{n}^{\ast }(f;x)-f(x) \bigr\Vert _{ \rho }=0. $$

Proof

It suffices to check that \(B_{n}^{\ast }(e_{i};x)\) uniformly converges to \(e_{i}\) as \(n\rightarrow \infty \), where \(e_{i}(x)=x^{i}\), \(i=0,1,2\), and apply the weighted Korovkin-type theorem. Using Lemma 2.1, the case \(i=0\) is trivial. Now

$$ \bigl\Vert B_{n}^{\ast }e_{1}-e_{1} \bigr\Vert _{\rho }=\sup_{x \geq 0} \biggl\{ \frac{ \vert B_{n}^{\ast }e_{1}-e_{1} \vert }{\rho (x)} \biggr\} \leq \sup_{x\geq 0} \frac{ \vert \alpha _{1}(n,x) \vert }{\rho (x)}, $$

and by a similar consideration, we have

$$ \bigl\Vert B_{n}^{\ast }e_{2}-e_{2} \bigr\Vert _{\rho }=\sup_{x \geq 0} \biggl\{ \frac{ \vert B_{n}^{\ast }e_{2}-e_{2} \vert }{\rho (x)} \biggr\} \leq \sup_{x\geq 0} \biggl\{ \frac{ \vert \alpha _{2}(n,x) \vert }{\rho (x)} \biggr\} , $$

where

$$\begin{aligned}& \alpha _{1}(n,x)= \biggl( \frac{B^{{\prime }} ( \frac{n}{b_{n}}xH(1) ) }{B ( \frac{n}{b_{n}}xH(1) ) }-1 \biggr) x+ \frac{b_{n}}{n}\cdot \frac{A^{{\prime }}(1)}{A(1)}, \\& \begin{aligned} \alpha _{2}(n,x)&= \biggl( \frac{B^{\prime \prime } (\frac{n}{b_{n}}xH(1) )}{B (\frac{n}{b_{n}}xH(1) )}-1 \biggr) x^{2}+ \frac{b_{n}}{n} \frac{B^{\prime } (\frac{n}{b_{n}}xH(1) ) [ A(1)+2A^{\prime }(1)+H^{\prime \prime }(1)A(1) ] }{A(1)B (\frac{n}{b_{n}}xH(1) )}x \\ &\quad {} +\frac{b_{n}^{2}}{n^{2}} \frac{A^{\prime }(1)+A^{\prime \prime }(1)}{A(1)}. \end{aligned} \end{aligned}$$

We conclude that

$$ \lim_{n} \bigl\Vert B_{n}^{\ast }e_{i}-e_{i} \bigr\Vert _{\rho }=\lim_{n \rightarrow \infty } \bigl\Vert B_{n}^{\ast }e_{i}-e_{i} \bigr\Vert _{\rho }=0\quad (i=0,1,2), $$

which finishes the proof. □

Theorem 5.2

Let \(f\in C_{\rho }^{\ast }[0,\infty )\). Then

$$\begin{aligned} \sup_{x\in{} [0,\infty )}{ \frac{ \vert B_{n}^{*}(f;x)-f(x) \vert }{(1+x^{2})(A(n,x)+B(n,x)x+C(n,x)x^{2}+D(n,x)x^{3}+E(n,x)x^{4})}}\leq K \Omega \bigl(f;n^{-\frac{1}{4}} \bigr) \end{aligned}$$

for sufficiently large n, \(A(n,x)\), \(B(n,x)\), \(C(n,x)\), \(D(n,x)\), and \(E(n,x)\) depend on n and x, and K is a positive constant.

Proof

For \(x \in {}[0, \infty )\), we have

$$ B_{n}^{*}(f;x)-f(x) = \frac{1}{A(1)B (\frac{n}{b_{n}}xH(1) )}\sum _{k=0}^{\infty}{p_{k} \biggl( \frac{n}{b_{n}}x \biggr) \biggl[f \biggl( \frac{k}{n}b_{n} \biggr)-f(x) \biggr]}. $$

Using the properties of the weighted modulus, we obtain

$$\begin{aligned} & \bigl\vert B_{n}^{\ast }(f;x)-f(x) \bigr\vert \\ &\quad \leq \frac{1}{A(1)B ( \frac{n}{b_{n}}xH(1) ) }\sum_{k=0}^{ \infty }p_{k} \biggl( \frac{n}{b_{n}}x \biggr) 2 \bigl(1+\delta _{n}^{2} \bigr) \Omega (f;\delta _{n}) \bigl(1+x^{2} \bigr) \\ &\quad\quad{}\cdot { \biggl( \frac{ \vert ( \frac{k}{n}b_{n} ) -x \vert }{\delta _{n}}+1 \biggr) \bigl(1+(t-x)^{2} \bigr)}. \end{aligned}$$

Let us denote by \(S(t,x)= ( \frac{ \vert ( \frac{k}{n}b_{n} ) -x \vert }{\delta _{n}}+1 ) (1+(t-x)^{2})\). Then

$$ S(t,x)\leq \textstyle\begin{cases} 2(1+\delta _{n}^{2})&\text{if } \vert \frac{k}{n}b_{n}-x \vert \leq \delta _{n}, \\ 2(1+\delta _{n}^{2}) \frac{ ( \frac{k}{n}b_{n}-x ) ^{4}}{\delta _{n}^{4}}& \text{if } \vert \frac{k}{n}b_{n}-x \vert \geq \delta _{n}.\end{cases} $$

From last relation we get that

$$ S(x,t)\leq 2 \bigl(1+\delta _{n}^{2} \bigr) \biggl(1+ \frac{ ( \frac{k}{n}b_{n} -x )^{4}}{\delta _{n}^{4}} \biggr). $$

So

$$\begin{aligned} \begin{aligned} & \bigl\vert B_{n}^{*}(f;x)-f(x) \bigr\vert \\ &\quad \leq 4 \frac{1}{A(1)B (\frac{n}{b_{n}}xH(1) )}\sum_{k=0}^{\infty}p_{k} \biggl( \frac{n}{b_{n}}x \biggr) \bigl(1+\delta _{n}^{2} \bigr) \Omega (f;\delta _{n}) \bigl(1+x^{2} \bigr) \\ &\quad\quad{}\cdot { \bigl(1+ \delta _{n}^{2} \bigr) \biggl(1+ \frac{ ( \frac{k}{n}b_{n} -x )^{4}}{\delta _{n}^{4}} \biggr)}. \end{aligned} \end{aligned}$$

After some calculations, we get

$$\begin{aligned} & \sum_{k=0}^{\infty }p_{k} \biggl( \frac{n}{b_{n}}x \biggr) \biggl( 1+ \frac{ ( \frac{k}{n}b_{n}-x ) ^{4}}{\delta _{n}^{4}} \biggr) \\ &\quad =\sum_{k=0}^{\infty }p_{k} \biggl( \frac{n}{b_{n}}x \biggr) + \frac{1}{\delta _{n}^{4}}\sum _{k=0}^{\infty }p_{k} \biggl( \frac{n}{b_{n}}x \biggr) \biggl[ \biggl( \frac{k}{n} \biggr) ^{4}b_{n}^{4}-4 \biggl( \frac{k}{n} \biggr) ^{3}b_{n}^{3}x+6 \biggl( \frac{k}{n} \biggr) ^{2}b_{n}^{2}x^{2} \\ &\quad\quad{} -4 \biggl( \frac{k}{n} \biggr) b_{n}x^{3}+x^{4} \biggr] \\ &\quad = \biggl( 1+\frac{x^{4}}{\delta _{n}^{4}} \biggr) A(1)B \biggl( \frac{n}{b_{n}}xH(1) \biggr)+\frac{b_{n}^{4}}{n^{4}\delta _{n}^{4}}\sum _{k=0}^{\infty }k^{4}p_{k} \biggl( \frac{n}{b_{n}}x \biggr) -4 \frac{xb_{n}^{3}}{n^{3}\delta _{n}^{4}}\sum _{k=0}^{\infty }k^{3}p_{k} \biggl( \frac{n}{b_{n}}x \biggr) \\ &\quad\quad {} +6\frac{x^{2}b_{n}^{2}}{n^{2}\delta _{n}^{4}}\sum _{k=0}^{\infty }k^{2}p_{k} \biggl( \frac{n}{b_{n}}x \biggr) -4\frac{x^{3}b_{n}}{n\delta _{n}^{4}}\sum_{k=0}^{\infty }kp_{k} \biggl( \frac{n}{b_{n}}x \biggr) . \end{aligned}$$

From these relations and Lemma 2.1 of [26]) we get

$$\begin{aligned}& \sum_{k=0}^{\infty}p_{k} \biggl( \frac{n}{b_{n}}x \biggr) \biggl(1+ \frac{ ( \frac{k}{n}b_{n} -x )^{4}}{\delta _{n}^{4}} \biggr) \\& \quad = \biggl(1+ \frac{x^{4}}{\delta _{n}^{4}} \biggr) A(1)B \biggl(\frac{n}{b_{n}}x H(1) \biggr) \\& \quad \quad {} -4\frac{x^{3}b_{n}}{n\delta _{n}^{4}} \biggl[ A^{\prime}(1)B \biggl( \frac{n}{b_{n} }x H(1) \biggr) +\frac{n}{b_{n}}x A(1)B^{\prime} \biggl( \frac{n}{b_{n}}x H(1) \biggr) \biggr] \\& \quad \quad {} +6 \frac{x^{2}b_{n}^{2}}{n^{2}\delta _{n}^{4}} \biggl[ \frac{n^{2}}{b_{n}^{2}}x^{2} A(1){B^{\prime \prime} \biggl(\frac{n}{b_{n}}x H(1) \biggr)} \\& \quad \quad {}+ \frac{n}{b_{n}}x{ \bigl( A(1)+2A^{\prime}(1)+H^{\prime \prime}(1)A(1) \bigr)B^{\prime} \biggl(\frac{n}{b_{n}}x H(1) \biggr)} \\& \quad \quad {} + \bigl(A^{\prime}(1)+A^{ \prime \prime}(1) \bigr)B \biggl( \frac{n}{b_{n}}x H(1) \biggr) \biggr] -4\frac{xb_{n}^{3}}{n^{3}\delta _{n}^{4}} \biggl[ \frac{n^{3}}{b_{n}^{3}}x^{3} A(1)B^{\prime \prime \prime} \biggl( \frac{n}{b_{n}}x H(1) \biggr) \\& \quad \quad {} + \frac{n^{2}}{b_{n}^{2}}x^{2} \bigl( 3A^{\prime}(1)+3H^{\prime \prime}(1)A(1)+3A(1) \bigr)B^{\prime \prime} \biggl(\frac{n}{b_{n}}x H(1) \biggr) \\& \quad \quad {} + \frac{n}{b_{n}}x \bigl(3A^{\prime \prime}(1) + 3H^{\prime \prime}(1)A^{\prime}(1) + H^{\prime \prime \prime}(1)A(1) + 6A^{\prime}(1) \\& \quad \quad {}+ 3H^{\prime \prime}(1)A(1) + A(1) \bigr)B^{\prime } \biggl(\frac{n}{b_{n}}x H(1) \biggr) + \bigl(A^{\prime \prime \prime}(1)+3A^{\prime \prime}(1)+A^{\prime}(1) \bigr)B \biggl( \frac{n}{b_{n}}x H(1) \biggr) \biggr] \\& \quad \quad {} +\frac{b_{n}^{4}}{n^{4}\delta _{n}^{4}} \biggl[ \frac{n^{4}}{b_{n}^{4}}x^{4} A(1)B^{(4)} \biggl(\frac{n}{b_{n}}x H(1) \biggr) \\& \quad \quad {}+ \frac{n^{3}}{b_{n}^{3}}x^{3} \bigl( 4A^{ \prime}(1)+6H^{\prime \prime}(1)A(1)+6A(1) \bigr)B^{\prime \prime \prime} \biggl( \frac{n}{b_{n}}x H(1) \biggr) \\& \quad \quad {} + \frac{n^{2}}{b_{n}^{2}}x^{2} \bigl(6A^{\prime \prime}(t) + 12H^{ \prime \prime}(1) + A^{\prime}(1) + 4H^{\prime \prime \prime}(1)A(1) + 3H^{ \prime \prime}(1)^{2}A(1) + 18A^{\prime}(1) \\& \quad \quad {} + 18H^{\prime \prime}(1)A(1) + 7A(1) \bigr) B^{\prime \prime} \biggl(\frac{n}{b_{n}}x H(1) \biggr) + \bigl(4A^{\prime \prime \prime}(1) + 6A^{\prime \prime}(1)H^{ \prime \prime}(1) \bigr] \\& \quad \quad {}+ 4A^{\prime}(1)H^{\prime \prime \prime}(1) + A(1)H^{(4)}(1) + 18A^{\prime \prime}(1) \\& \quad \quad {} + 18H^{\prime \prime}(1)A^{\prime}(1)+6H^{\prime \prime \prime}(1)A(1)+14A^{\prime}(1)+7H^{\prime \prime}(1)A(1)+A(1) \bigr)\frac{n}{b_{n}}xB^{ \prime} \biggl(\frac{n}{b_{n}}x H(1) \biggr) \\& \quad \quad {} + \bigl(A^{(4)}(1)+6A^{(3)}(1)+7A^{\prime \prime}(1)+A^{\prime}(1) \bigr)B \biggl(\frac{n}{b_{n}}x H(1) \biggr) \biggr]. \end{aligned}$$

From last two relations we get

$$\begin{aligned}& \bigl\vert B_{n}^{*}(f;x)-f(x) \bigr\vert \\& \quad \leq 4 \frac{(1+\delta _{n}^{2})^{2} \Omega (f;\delta _{n})(1+x^{2})}{A(1)B (\frac{n}{b_{n}}xH(1) )}\sum_{k=0}^{\infty}p_{k} \biggl( \frac{n}{b_{n}}x \biggr) \biggl(1+ \frac{ ( \frac{k}{n}b_{n} -x )^{4}}{\delta _{n}^{4}} \biggr) \\& \quad \leq 4 \frac{(1+\delta _{n}^{2})^{2} \Omega (f;\delta _{n})(1+x^{2})}{A(1)B (\frac{n}{b_{n}}xH(1) )} \biggl\{ \biggl(1+\frac{x^{4}}{\delta _{n}^{4}} \biggr) A(1)B \biggl(\frac{n}{b_{n}}x H(1) \biggr) \\& \quad \quad {} -4\frac{x^{3}b_{n}}{n\delta _{n}^{4}} \biggl[ A^{\prime}(1)B \biggl( \frac{n}{b_{n} }x H(1) \biggr)+\frac{n}{b_{n}}x A(1)B^{\prime} \biggl( \frac{n}{b_{n}}x H(1) \biggr) \biggr] \\& \quad \quad {} +6 \frac{x^{2}b_{n}^{2}}{n^{2}\delta _{n}^{4}} \biggl[ \frac{n^{2}}{b_{n}^{2}}x^{2} A(1){B^{\prime \prime} \biggl(\frac{n}{b_{n}}x H(1) \biggr)} \\& \quad \quad {} + \frac{n}{b_{n}}x{ \bigl( A(1)+2A^{\prime}(1)+H^{\prime \prime}(1)A(1) \bigr)B^{\prime} \biggl(\frac{n}{b_{n}}x H(1) \biggr)} \\& \quad \quad {} + \bigl(A^{\prime}(1)+A^{ \prime \prime}(1) \bigr)B \biggl( \frac{n}{b_{n}}x H(1) \biggr) \biggr] \\& \quad \quad {} -4\frac{xb_{n}^{3}}{n^{3}\delta _{n}^{4}} \biggl[ \frac{n^{3}}{b_{n}^{3}}x^{3} A(1)B^{\prime \prime \prime} \biggl( \frac{n}{b_{n}}x H(1) \biggr) \\& \quad \quad {}+ \frac{n^{2}}{b_{n}^{2}}x^{2} \bigl( 3A^{\prime}(1)+3H^{\prime \prime}(1)A(1)+3A(1) \bigr)B^{\prime \prime} \biggl(\frac{n}{b_{n}}x H(1) \biggr) \\& \quad \quad {} + \frac{n}{b_{n}}x \bigl(3A^{\prime \prime}(1) + 3H^{\prime \prime}(1)A^{\prime}(1) + H^{\prime \prime \prime}(1)A(1) + 6A^{\prime}(1) + 3H^{\prime \prime}(1)A(1) \\& \quad \quad {} + A(1) \bigr)B^{\prime } \biggl(\frac{n}{b_{n}}x H(1) \biggr) + \bigl(A^{\prime \prime \prime}(1)+3A^{\prime \prime}(1)+A^{\prime}(1) \bigr)B \biggl( \frac{n}{b_{n}}x H(1) \biggr) \biggr] \\& \quad \quad {} +\frac{b_{n}^{4}}{n^{4}\delta _{n}^{4}} \biggl[ \frac{n^{4}}{b_{n}^{4}}x^{4} A(1)B^{(4)} \biggl(\frac{n}{b_{n}}x H(1) \biggr)+ \frac{n^{3}}{b_{n}^{3}}x^{3} \bigl( 4A^{ \prime}(1)+6H^{\prime \prime}(1)A(1) \\& \quad \quad {} +6A(1) \bigr)B^{\prime \prime \prime} \biggl( \frac{n}{b_{n}}x H(1) \biggr) + \frac{n^{2}}{b_{n}^{2}}x^{2} \bigl(6A^{\prime \prime}(t) + 12H^{ \prime \prime}(1) + A^{\prime}(1) + 4H^{\prime \prime \prime}(1)A(1) \\& \quad \quad {} + 3H^{ \prime \prime}(1)^{2}A(1) + 18A^{\prime}(1) + 18H^{\prime \prime}(1)A(1) + 7A(1) \bigr) B^{\prime \prime} \biggl(\frac{n}{b_{n}}x H(1) \biggr) \\& \quad \quad {}+ \bigl(4A^{\prime \prime \prime}(1) + 6A^{\prime \prime}(1)H^{ \prime \prime}(1) \bigr] + 4A^{\prime}(1)H^{\prime \prime \prime}(1) + A(1)H^{(4)}(1) + 18A^{\prime \prime}(1) \\& \quad \quad {} + 18H^{\prime \prime}(1)A^{\prime}(1)+6H^{\prime \prime \prime}(1)A(1)+14A^{\prime}(1)+7H^{\prime \prime}(1)A(1)+A(1) \bigr)\frac{n}{b_{n}}xB^{ \prime} \biggl(\frac{n}{b_{n}}x H(1) \biggr) \\& \quad \quad {} + \bigl(A^{(4)}(1)+6A^{(3)}(1)+7A^{\prime \prime}(1)+A^{\prime}(1) \bigr)B \biggl(\frac{n}{b_{n}}x H(1) \biggr) \biggr] \biggr\} . \end{aligned}$$

For \(\delta _{n}=n^{-\frac{1}{4}}\), we have

$$\begin{aligned}& \bigl\vert B_{n}^{\ast }(f;x)-f(x) \bigr\vert \\& \quad \leq 16 \Omega (f;\delta _{n}) \bigl(1+x^{2} \bigr) \bigl( A(n,x)+B(n,x)x+C(n,x)x^{2}+D(n,x)x^{3}+E(n,x)x^{4} \bigr) , \end{aligned}$$

where \(A(n,x)\), \(B(n,x)\), \(C(n,x)\), \(D(n,x)\), and \(E(n,x)\) depend on n and x.

Now from last relation we obtain

$$ \sup_{x\in{}[ 0,\infty )}{ \frac{ \vert B_{n}^{\ast }(f;x)-f(x) \vert }{(1+x^{2})(A(n,x)+B(n,x)x+C(n,x)x^{2}+D(n,x)x^{3}+E(n,x)x^{4})}}\leq K \Omega \bigl( f;n^{-\frac{1}{4}} \bigr) . $$

 □

Availability of data and materials

None.

Code availability

None.

References

  1. Aslan, R., Mursaleen, M.: Approximation by bivariate Chlodowsky type Szász-Durrmeyer operators and associated GBS operators on weighted spaces. J. Inequal. Appl. 2022, 26 (2022)

    Article  MATH  Google Scholar 

  2. Al-Abied, A.A.H., Ayman Mursaleen, M., Mursaleen, M.: Szász type operators involving Charlier polynomials and approximation properties. Filomat 35(15), 5149–5159 (2021)

    Article  MathSciNet  Google Scholar 

  3. Ali, M., Paris, R.B.: Generalization of Szász operators involving multiple Sheffer polynomials. arXiv:2006.11131v1 [math.CA] (2020)

  4. Anastassiou, G.A., Arsalan Khan, M.: Korovkin type statistical approximation theorem for a function of two variables. J. Comput. Anal. Appl. 21(7), 1176–1184 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Ayman Mursaleen, M., Serra-Capizzano, S.: Statistical convergence via q-calculus and a Korovkin’s type approximation theorem. Axioms 11, 70 (2022)

    Article  Google Scholar 

  6. Braha, N.L.: Some weighted equi-statistical convergence and Korovkin type-theorem. Results Math. 70, 433–446 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Braha, N.L.: Some properties of new modified Szász–Mirakyan operators in polynomial weight spaces via power summability method. Bull. Math. Anal. Appl. 10(3), 53–65 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Braha, N.L.: Some properties of Baskakov–Schurer–Szász operators via power summability method. Quaest. Math. 42(10), 1411–1426 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Braha, N.L.: Some properties of modified Szász–Mirakyan operators in polynomial spaces via the power summability method. J. Appl. Anal. 26(1), 79–90 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Braha, N.L., Kadak, U.: Approximation properties of the generalized Szasz operators by multiple Appell polynomials via power summability method. Math. Methods Appl. Sci. 43(5), 2337–2356 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Braha, N.L., Loku, V.: Korovkin type theorems and its applications via αβ-statistically convergence. J. Math. Inequal. 14(4), 951–966 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Braha, N.L., Mansour, T.: Some properties of Kantorovich variant of Szász operators induced by multiple Sheffer polynomials. (submitted to a journal)

  13. Braha, N.L., Mansour, T., Mursaleen, M.: Some properties of Kantorovich–Stancu-type generalization of Szász operators including Brenke-type polynomials via power series summability method. J. Funct. Spaces 2020, Article ID 3480607 (2020)

    MATH  Google Scholar 

  14. Braha, N.L., Mansour, T., Mursaleen, M.: Approximation by modified Meyer–König and Zeller operators via power series summability method. Bull. Malays. Math. Sci. Soc. 44(4), 2005–2019 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Braha, N.L., Mansour, T., Mursaleen, M.: Parametric generalization of the Baskakov–Schurer–Szász operators. Preprint

  16. Braha, N.L., Mansour, T., Mursaleen, M., Acar, T.: Some properties of λ-Bernstein operators via power summability method. J. Appl. Math. Comput. 65, 125–146 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Braha, N.L., Mansour, T., Srivastava, H.M.: A parametric generalization of the Baskakov–Schurer–Szász–Stancu approximation operators. Symmetry 13(6), 980 (2021)

    Article  Google Scholar 

  18. Braha, N.L., Srivastava, H.M., Et, M.: Some weighted statistical convergence and associated Korovkin and Voronovskaya type theorems. J. Appl. Math. Comput. 65, 429–450 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ismail, M.E.H.: On a generalization of Szász operators. Mathematica 39, 259–267 (1974)

    MATH  Google Scholar 

  20. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variables. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  21. Jakimovski, A., Leviatan, D.: Generalized Szász operators for the approximation in the infinite interval. Mathematica 11, 97–103 (1969)

    MathSciNet  MATH  Google Scholar 

  22. Kumar, A., Pratap, R.: Approximation by modified Szász–Kantorovich type operators based on Brenke type polynomials. Ann. Univ. Ferrara 67(2), 337–354 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Loku, V., Braha, N.L.: Some weighted statistical convergence and Korovkin type theorem. J. Inequal. Spec. Funct. 8(3), 139–150 (2017)

    MathSciNet  Google Scholar 

  24. Mishra, V.N., Patel, P.G.: Approximation properties of q-Baskakov–Durrmeyer–Stancu operators. Math. Sci. 7, 1–12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mishra, V.N., Patel, P.G., Mishra, L.N.: The integral type modification of Jain operators and its approximation properties. Numer. Funct. Anal. Optim. 39(12), 1265–1277 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mursaleen, M., Al-Abied, A.H., Acu, A.M.: Approximation by Chlodowsky type of Szász operators based on Boas–Buck-type polynomials. Turk. J. Math. 42(5), 2243–2259 (2018)

    Article  MATH  Google Scholar 

  27. Mursaleen, M., Alotaibi, A.: Statistical summability and approximation by de la Vallée-Poussin mean. Appl. Math. Lett. 24, 320–324 (2011) [Erratum: Appl. Math. Lett. 25, 665 (2012)]

    Article  MathSciNet  MATH  Google Scholar 

  28. Mursaleen, M., Alotaibi, A.: Korovkin type approximation theorem for functions of two variables through statistical A-summability. Adv. Differ. Equ. 2012, 65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mursaleen, M., Ansari, K.J.: On Chlodowsky variant of Szász operators by Brenke type polynomials. Appl. Math. Comput. 271, 991–1003 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Mursaleen, M., Karakaya, V., Erturk, M., Gursoy, F.: Weighted statistical convergence and its application to Korovkin type approximation theorem. Appl. Math. Comput. 218, 9132–9137 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Mursaleen, M., Kiliçman, A.: Korovkin second theorem via B-statistical A-summability. Abstr. Appl. Anal. 2013, Article ID 598963 (2013). https://doi.org/10.1155/2013/598963

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

N.B. and V.L. wrote the main manuscript text. M.M. checked and prepared the final manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to M. Mursaleen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braha, N.L., Loku, V. & Mursaleen, M. Chlodowsky-type Szász operators via Boas–Buck-type polynomials and some approximation properties. J Inequal Appl 2023, 95 (2023). https://doi.org/10.1186/s13660-023-03007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-03007-y

Mathematics Subject Classification

Keywords