Skip to main content

Conformable fractional Newton-type inequalities with respect to differentiable convex functions

Abstract

The authors propose a new method of investigation of an integral identity according to conformable fractional operators. Moreover, some Newton-type inequalities are considered for differentiable convex functions by taking the modulus of the newly established equality. In addition, we prove several Newton-type inequalities with the aid of Hölder and power-mean inequalities. Furthermore, several new results are given by using special choices of the obtained inequalities. Finally, we give several inequalities of conformable fractional Newton-type for functions of bounded variation.

1 Introduction

Simpson’s second rule has the rule of the three-point Newton–Cotes quadrature. Computations for three steps with a quadratic kernel are usually called Newton-type results. In the literature, these results are called Newton-type inequalities. Newton-type inequalities have been investigated extensively by many mathematicians. For instance, in [14], Newton-type inequalities were considered for functions whose second derivatives are convex. Noor et al. established Newton-type inequalities associated with harmonic convex and p-harmonic convex functions in [28] and [29], respectively. In [25], Newton-type inequalities were proved by postquantum integrals. Moreover, several error estimates of the Newton-type quadrature formula by bounded variation and Lipschitzian mappings were presented in [12]. Furthermore, Newton-type inequalities were presented for quantum differentiable convex functions in [4]. The reader is referred to [18, 20, 27, 32] and the references therein for more information and unexplained subjects about Newton-type inequalities including convex differentiable functions.

Fractional calculus has increased in popularity in recent years because of its applications in a wide range of different domains of science. Due to the significance of fractional calculus, one can be considered different fractional integral operators. By using the Hermite–Hadamard-type and Simpson-type inequalities, the bounds of new formulas can be obtained. For example, in [31], Hermite–Hadamard-type and trapezoidal-type inequalities were established for the first time using the Riemann–Liouville fractional integrals. In [32], sundry Newton-type inequalities were established by using Riemann–Liouville fractional integrals for differentiable convex functions and the authors also acquired several Riemann–Liouville fractional Newton-type inequalities for functions of bounded variation. In addition, sundry Newton-type inequalities for the case of functions whose first derivatives in absolute value at certain powers are arithmetically harmonically convex were obtained in [11]. Furthermore, several Newton-type inequalities were given and some applications for the case of special cases of real functions were also presented in [14]. See [9, 10, 16, 19, 20, 35] for details and unexplained subjects.

Riemann–Liouville fractional integrals, conformable fractional integrals, and many types of fractional integrals have been considered with inequalities. Nowadays, it has piqued the curiosity of mathematicians, engineers, and physicists [6, 33]. In addition to this, fractional derivatives are also used to model a wide range of mathematical biology problems, as well as chemical processes and engineering problems [7, 13]. By using the derivative’s fundamental limit formulation, a newly well-behaved fundamental fractional derivative known as the conformable derivative has proved in [23]. Several major requirements that cannot be applied by the Riemann–Liouville and Caputo definitions are applied by the conformable derivative. In [1] the author proved that the conformable approach in [23] cannot yield good results when compared to the Caputo definition for the case of specific functions. This flaw in the conformable definition was recovered by several extensions of the conformable approach [3, 8, 17, 26, 34].

This study takes the form of six sections, including the introduction. With the help of the ongoing studies and the above-mentioned papers, we investigated Newton-type inequalities involving conformable fractional operators. The fundamental definitions of fractional calculus and other relevant research in this discipline are given in Sect. 2. We will prove an integral equality in Sect. 3 that is critical in establishing the primary results of the presented paper. Moreover, sundry new Newton-type inequalities for conformable fractional integrals will be proven. In Sect. 4, several results will be given by using special choices of obtained inequalities. In Sect. 5, we will present some inequalities of conformable fractional Newton-type for functions of bounded variation. Finally, in Sect. 6, we will give several ideas for the further direction of research.

2 Preliminaries

Simpson-type inequalities are inequalities that are generated from Simpson’s following rules:

  1. i.

    Simpson’s quadrature formula (Simpson’s 1/3 rule):

    $$ \int _{\sigma }^{\delta }\mathcal{F} ( x )\,dx\approx \frac{\delta -\sigma }{6} \biggl[ \mathcal{F} ( \sigma ) +4 \mathcal{F} \biggl( \frac{\sigma +\delta }{2} \biggr) +\mathcal{F} ( \delta ) \biggr] . $$
  2. ii.

    Newton–Cotes quadrature formula or Simpson’s second formula (Simpson’s 3/8 rule):

    $$ \int _{\sigma }^{\delta }\mathcal{F} ( x )\,dx\approx \frac{\delta -\sigma }{8} \biggl[ \mathcal{F} ( \sigma ) +3 \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + \mathcal{F} ( \delta ) \biggr] . $$

Definition 1

(See [30])

Let us consider that I is an interval of real numbers. Then, a function \(\mathcal{F}:I\rightarrow \mathbb{R} \) is said to be convex, if

$$ \mathcal{F} \bigl( \mu x+ ( 1-\mu ) y \bigr) \leq \mu \mathcal{F} ( x ) + ( 1-\mu ) \mathcal{F} ( y ) $$

is valid \(\forall x,y\in I\) and \(\forall \mu \in {}[ 0,1]\).

Definition 2

(See [15, 24])

Let \(\mathcal{F}\in L_{1}[\sigma ,\delta ]\), \(\sigma ,\delta \in \mathbb{R}\) with \(\sigma <\delta \). The Riemann–Liouville fractional integrals \(J_{\sigma ^{+}}^{\beta } \mathcal{F}\) and \(J_{\delta ^{-}}^{\beta } \mathcal{F}\) of order \(\beta >0\) are defined by

$$ \begin{aligned} &J_{\sigma ^{+}}^{\beta } \mathcal{F}(x)= \frac{1}{\Gamma (\beta )}\int _{\sigma }^{x} ( x-\mu ) ^{\beta -1}\mathcal{F}( \mu )\,d\mu , \quad x>\sigma \end{aligned} $$
(1)

and

$$ \begin{aligned}& J_{\delta ^{-}}^{\beta } \mathcal{F}(x)= \frac{1}{\Gamma (\beta )}\int _{x}^{\delta } ( \mu -x ) ^{\beta -1}\mathcal{F}( \mu )\,d\mu ,\quad x< \delta ,\end{aligned} $$
(2)

respectively. Here, Γ denotes the Gamma function defined by

$$ \Gamma (\beta )= \int _{0}^{\infty }e^{-u}u^{\beta -1}\,du. $$

Let us note that \(J_{\sigma +}^{0}\mathcal{F}(x)=J_{\delta -}^{0}\mathcal{F}(x)=\mathcal{F}(x)\).

The fractional conformable integral operators were considered in [22]. These authors also derived sundry characteristics and relationships between these operators and some other fractional operators in the literature. The fractional conformable integral operators are defined as follows:

Definition 3

(See [22])

Let \(\beta >0\) and \(\alpha \in (0,1]\). For \(\mathcal{F}\in L_{1}[\sigma ,\delta ]\), the fractional conformable integral operator the generalized fractional Riemann–Liouville integrals (FCIOs) \({}_{+}^{\beta }\mathcal{J}_{\sigma }^{\alpha }\mathcal{F}\) and \({}_{-}^{\beta }\mathcal{J}_{\delta }^{\alpha }\mathcal{F}\) are defined by

$$ \begin{aligned} &{}_{+}^{\beta }\mathcal{J}_{\sigma }^{\alpha } \mathcal{F}(x)= \frac{1}{\Gamma (\beta )} \int _{\sigma }^{x} \biggl( \frac{(x-\sigma )^{\alpha }-(\mu -\sigma )^{\alpha }}{\alpha } \biggr) ^{\beta -1}\frac{\mathcal{F}(\mu )}{(\mu -\sigma )^{1-\alpha }}\,d\mu ,\quad x>\sigma \end{aligned} $$
(3)

and

$$ \begin{aligned} &{}_{-}^{\beta }\mathcal{J}_{\delta }^{\alpha } \mathcal{F}(x)= \frac{1}{\Gamma (\beta )} \int _{x}^{\delta } \biggl( \frac{(\delta -x)^{\alpha }-(\delta -\mu )^{\alpha }}{\alpha } \biggr) ^{\beta -1}\frac{\mathcal{F}(\mu )}{(\delta -\mu )^{1-\alpha }}\,d\mu , \quad x< \delta ,\end{aligned} $$
(4)

respectively.

Let us consider \(\alpha =1\) in equalities (3) and (4). Then, the fractional integral in (3) and (4) coincides with the Riemann–Liouville fractional integral in (1) and (2), respectively. See Refs. [2, 21] and the references therein for further information.

3 Main results

Throughout the paper, we assume that \(\alpha \in ( 0,1 ] \), \(\beta \in \mathbb{R} ^{+}\).

Lemma 1

Let \(\mathcal{F}:[\sigma ,\delta ]\rightarrow \mathbb{R}\) be a differentiable mapping on \((\sigma ,\delta )\) with \(\beta >0\) and \(\alpha \in (0,1]\). If \(\mathcal{F}^{\prime }\in L[\sigma ,\delta ]\), then the following FCIOs identity holds:

$$\begin{aligned} & \frac{3^{\alpha \beta -1}\alpha ^{\beta }}{ ( \delta -\sigma ) ^{\alpha \beta }}\Gamma ( \beta +1 ) \biggl[ _{+}^{\beta } \mathcal{J}_{\sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{\frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \biggr] \\ &\qquad {} -\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3 \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \\ &\quad =\frac{ ( \delta -\sigma ) \alpha ^{\beta }}{9} [ I_{1}+I_{2}+I_{3} ] , \end{aligned}$$
(5)

where \(\Gamma ( \beta ) \) is an Euler Gamma function and

$$\begin{aligned}& I_{1} = \int _{0}^{1} \biggl( \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{5}{8\alpha ^{\beta }} \biggr) \mathcal{F}^{\prime } \biggl( \mu \sigma + ( 1-\mu ) \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr)\,d\mu , \\& I_{2} = \int _{0}^{1} \biggl( \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{1}{2\alpha ^{\beta }} \biggr) \mathcal{F}^{\prime } \biggl( \mu \biggl( \frac{2\sigma +\delta }{3} \biggr) + ( 1-\mu ) \biggl( \frac{\sigma +2\delta }{3} \biggr) \biggr)\,d\mu , \\& I_{3} = \int _{0}^{1} \biggl( \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{3}{8\alpha ^{\beta }} \biggr) \mathcal{F}^{\prime } \biggl( \mu \biggl( \frac{\sigma +2\delta }{3} \biggr) + ( 1-\mu ) \delta \biggr)\,d\mu . \end{aligned}$$

Proof

Using integration by parts and changing variables with \(x=\mu \sigma + ( 1-\mu ) ( \frac{2\sigma +\delta }{3} ) \), we obtain

$$\begin{aligned} I_{1} ={}& \int _{0}^{1} \biggl( \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{5}{8\alpha ^{\beta }} \biggr) \mathcal{F}^{\prime } \biggl( \mu \sigma + ( 1-\mu ) \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr)\,d\mu \\ ={}&-\frac{3}{ \delta -\sigma } \biggl( \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{5}{8\alpha ^{\beta }} \biggr) \mathcal{F} \biggl( \mu \sigma + ( 1- \mu ) \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr) \bigg\vert _{0}^{1} \\ &{} +\frac{3\beta }{ \delta -\sigma } \int _{0}^{1} \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta -1} ( 1-\mu ) ^{\alpha -1}\mathcal{F} \biggl( \mu \sigma + ( 1-\mu ) \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr)\,d\mu \\ ={}&- \biggl[ \frac{9}{8\alpha ^{\beta } ( \delta -\sigma ) } \mathcal{F} ( \sigma ) + \frac{15}{8\alpha ^{\beta } ( \delta -\sigma ) } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr] \\ & {}+ \biggl( \frac{3}{\delta -\sigma } \biggr) ^{1+\alpha \beta } \beta \int _{\sigma }^{\frac{2\sigma +\delta }{3}} \biggl( \frac{ ( \frac{\delta -\sigma }{3} ) ^{\alpha }- ( x-\sigma ) ^{\alpha }}{\alpha } \biggr) ^{\beta -1} \frac{\mathcal{F} ( x ) }{ ( x-\sigma ) ^{1-\alpha }}\,dx \\ ={}&- \biggl[ \frac{9}{8\alpha ^{\beta } ( \delta -\sigma ) } \mathcal{F} ( \sigma ) + \frac{15}{8\alpha ^{\beta } ( \delta -\sigma ) } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr] \\ & {}+ \frac{3^{1+\alpha \beta }\Gamma ( \beta +1 ) }{ ( \delta -\sigma ) ^{1+\alpha \beta }} \biggl[ _{+}^{\beta } \mathcal{J}_{\sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr] . \end{aligned}$$

Similar to the foregoing process, changing variables with \(x=\mu ( \frac{2\sigma +\delta }{3} ) + ( 1-\mu ) ( \frac{\sigma +2\delta }{3} ) \) and \(x=\mu ( \frac{\sigma +2\delta }{3} ) + ( 1-\mu ) \delta \), we have

$$\begin{aligned} I_{2} ={}& \int _{0}^{1} \biggl( \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{1}{2\alpha ^{\beta }} \biggr) \mathcal{F}^{\prime } \biggl( \mu \biggl( \frac{2\sigma +\delta }{3} \biggr) + ( 1-\mu ) \biggl( \frac{\sigma +2\delta }{3} \biggr) \biggr)\,d\mu \\ ={}&-\frac{3}{ ( \delta -\sigma ) } \biggl( \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{1}{2\alpha ^{\beta }} \biggr) \mathcal{F} \biggl( \mu \biggl( \frac{2\sigma +\delta }{3} \biggr) + ( 1-\mu ) \biggl( \frac{\sigma +2\delta }{3} \biggr) \biggr) \bigg\vert _{0}^{1} \\ & {}+\frac{3\beta }{ ( \delta -\sigma ) } \int _{0}^{1} \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta -1} ( 1-\mu ) ^{\alpha -1}\mathcal{F} \biggl( \mu \biggl( \frac{2\sigma +\delta }{3} \biggr) \\ &{}+ ( 1- \mu ) \biggl( \frac{\sigma +2\delta }{3} \biggr) \biggr)\,d\mu \\ ={}&- \biggl[ \frac{3}{2\alpha ^{\beta } ( \delta -\sigma ) } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + \frac{3}{2\alpha ^{\beta } ( \delta -\sigma ) }\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr] \\ & {}+ \biggl( \frac{3}{\delta -\sigma } \biggr) ^{1+\alpha \beta } \beta \int _{\frac{2\sigma +\delta }{3}}^{ \frac{\sigma +2\delta }{3}} \biggl( \frac{ ( \frac{\delta -\sigma }{3} ) ^{\alpha }- ( x-\frac{2\sigma +\delta }{3} ) ^{\alpha }}{\alpha } \biggr) ^{\beta -1} \frac{\mathcal{F} ( x ) }{ ( x-\frac{2\sigma +\delta }{3} ) ^{1-\alpha }}\,dx \\ ={}&- \biggl[ \frac{3}{2\alpha ^{\beta } ( \delta -\sigma ) } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + \frac{3}{2\alpha ^{\beta } ( \delta -\sigma ) }\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr] \\ & {}+ \frac{3^{1+\alpha \beta }\Gamma ( \beta +1 ) }{ ( \delta -\sigma ) ^{1+\alpha \beta }} \biggl[ _{+}^{\beta } \mathcal{J}_{\frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned} I_{3} ={}& \int _{0}^{1} \biggl( \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{3}{8\alpha ^{\beta }} \biggr) \mathcal{F}^{\prime } \biggl( \mu \biggl( \frac{\sigma +2\delta }{3} \biggr) + ( 1-\mu ) \delta \biggr)\,d\mu \\ ={}&-\frac{3}{ \delta -\sigma } \biggl( \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{3}{8\alpha ^{\beta }} \biggr) \mathcal{F} \biggl( \mu \biggl( \frac{\sigma +2\delta }{3} \biggr) + ( 1-\mu ) \delta \biggr) \bigg\vert _{0}^{1} \\ & {}+\frac{3\beta }{ \delta -\sigma } \int _{0}^{1} \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta -1} ( 1-\mu ) ^{\alpha -1}\mathcal{F} \biggl( \mu \biggl( \frac{\sigma +2\delta }{3} \biggr) + ( 1- \mu ) \delta \biggr)\,d\mu \\ ={}&- \biggl[ \frac{9}{8\alpha ^{\beta } ( \delta -\sigma ) } \mathcal{F} ( \delta ) + \frac{15}{8\alpha ^{\beta } ( \delta -\sigma ) } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) \biggr] \\ & {}+ \biggl( \frac{3}{\delta -\sigma } \biggr) ^{1+\alpha \beta } \beta \int _{\frac{\sigma +2\delta }{3}}^{\delta } \biggl( \frac{ ( \frac{\delta -\sigma }{3} ) ^{\alpha }- ( x-\frac{\sigma +2\delta }{3} ) ^{\alpha }}{\alpha } \biggr) ^{\beta -1} \frac{\mathcal{F} ( x ) }{ ( x-\frac{\sigma +2\delta }{3} ) ^{1-\alpha }}\,dx \\ ={}&- \biggl[ \frac{9}{8\alpha ^{\beta } ( \delta -\sigma ) } \mathcal{F} ( \delta ) + \frac{15}{8\alpha ^{\beta } ( \delta -\sigma ) } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) \biggr] \\ & {}+ \frac{3^{1+\alpha \beta }\Gamma ( \beta +1 ) }{ ( \delta -\sigma ) ^{1+\alpha \beta }} \bigl[ _{+}^{\beta } \mathcal{J}_{\frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \bigr] . \end{aligned}$$

Finally, if we multiply \(I_{1}+I_{2}+I_{3}\) by \(\frac{ ( \delta -\sigma ) \alpha ^{\beta }}{9}\), then we have (5). This completes the proof of Lemma 1. □

Theorem 1

Assume that all the assumptions of Lemma 1hold. Moreover, let \(\vert \mathcal{F}^{\prime } \vert \) be a convex function on \([ \sigma ,\delta ] \). Then, we have

$$\begin{aligned} & \biggl\vert \frac{3^{\alpha \beta -1}\alpha ^{\beta }}{ ( \delta -\sigma ) ^{\alpha \beta }} \Gamma ( \beta +1 ) \biggl[ _{+}^{\beta }\mathcal{J}_{ \sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \biggr] \\ &\qquad {}-\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \\ &\quad \leq \frac{ ( \delta -\sigma ) \alpha ^{\beta }}{27} \bigl[ \bigl( 2A_{2} ( \alpha ,\beta ) +A_{1} ( \alpha ,\beta ) +A_{4} ( \alpha ,\beta ) +A_{3} ( \alpha ,\beta ) +A_{5} ( \alpha ,\beta ) \bigr) \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert \\ &\qquad {}+ \bigl( A_{2} ( \alpha ,\beta ) -A_{1} ( \alpha ,\beta ) +2A_{4} ( \alpha ,\beta ) -A_{3} ( \alpha ,\beta ) \\ &\qquad {}+3A_{6} ( \alpha ,\beta ) -A_{5} ( \alpha ,\beta ) \bigr) \bigl\vert \mathcal{F}^{ \prime } ( \delta ) \bigr\vert \bigr] , \end{aligned}$$
(6)

where

$$\begin{aligned} &A_{1} ( \alpha ,\beta ) = \int _{0}^{1}\mu \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{5}{8\alpha ^{\beta }} \biggr\vert \,d\mu \\ &\hphantom{A_{1} ( \alpha ,\beta )} =\frac{1}{\alpha ^{\beta }} \biggl[ \frac{5}{8} \biggl( C_{1}^{2}- \frac{1}{2} \biggr) +\frac{1}{\alpha } \biggl( 2\mathcal{B} \biggl( \beta +1, \frac{2}{\alpha }, \biggl( \frac{5}{8} \biggr) ^{\frac{1}{\beta }} \biggr) \\ &\hphantom{A_{1} ( \alpha ,\beta )=}{} -2\mathcal{B} \biggl( \beta +1, \frac{1}{\alpha }, \biggl( \frac{5}{8} \biggr) ^{\frac{1}{\beta }} \biggr) -\mathfrak{B} \biggl( \beta +1,\frac{2}{\alpha } \biggr) +\mathfrak{B} \biggl( \beta +1, \frac{1}{\alpha } \biggr) \biggr) \biggr] , \\ &A_{2} ( \alpha ,\beta ) = \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{5}{8\alpha ^{\beta }} \biggr\vert \,d\mu \\ & \hphantom{A_{2} ( \alpha ,\beta )}=\frac{1}{\alpha ^{\beta }} \biggl[ \frac{5}{8} ( 2C_{1}-1 ) + \frac{1}{\alpha } \biggl( \mathfrak{B} \biggl( \beta +1,\frac{1}{\alpha } \biggr) -2\mathcal{B} \biggl( \beta +1,\frac{1}{\alpha }, \biggl( \frac{5}{8} \biggr) ^{\frac{1}{\beta }} \biggr) \biggr) \biggr] , \\ &A_{3} ( \alpha ,\beta ) = \int _{0}^{1}\mu \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{1}{2\alpha ^{\beta }} \biggr\vert \,d\mu \\ &\hphantom{A_{3} ( \alpha ,\beta ) } =\frac{1}{\alpha ^{\beta }} \biggl[ \frac{1}{2} \biggl( C_{2}^{2}- \frac{1}{2} \biggr) +\frac{1}{\alpha } \biggl( 2\mathcal{B} \biggl( \beta +1, \frac{2}{\alpha }, \biggl( \frac{1}{2} \biggr) ^{\frac{1}{\beta }} \biggr) \\ & \hphantom{A_{3} ( \alpha ,\beta ) =}{} -2\mathcal{B} \biggl( \beta +1, \frac{1}{\alpha }, \biggl( \frac{1}{2} \biggr) ^{\frac{1}{\beta }} \biggr) -\mathfrak{B} \biggl( \beta +1,\frac{2}{\alpha } \biggr) +\mathfrak{B} \biggl( \beta +1, \frac{1}{\alpha } \biggr) \biggr) \biggr] , \\ &A_{4} ( \alpha ,\beta ) = \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{1}{2\alpha ^{\beta }} \biggr\vert \,d\mu \\ &\hphantom{A_{4} ( \alpha ,\beta )} =\frac{1}{\alpha ^{\beta }} \biggl[ \frac{1}{2} ( 2C_{2}-1 ) + \frac{1}{\alpha } \biggl( \mathfrak{B} \biggl( \beta +1,\frac{1}{\alpha } \biggr) -2\mathcal{B} \biggl( \beta +1,\frac{1}{\alpha }, \biggl( \frac{1}{2} \biggr) ^{\frac{1}{\beta }} \biggr) \biggr) \biggr] , \\ &A_{5} ( \alpha ,\beta ) = \int _{0}^{1}\mu \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{3}{8\alpha ^{\beta }} \biggr\vert \,d\mu \\ & \hphantom{A_{5} ( \alpha ,\beta )}=\frac{1}{\alpha ^{\beta }} \biggl[ \frac{3}{8} \biggl( C_{3}^{2}- \frac{1}{2} \biggr) +\frac{1}{\alpha } \biggl( 2\mathcal{B} \biggl( \beta +1, \frac{2}{\alpha }, \biggl( \frac{3}{8} \biggr) ^{\frac{1}{\beta }} \biggr) \\ &\hphantom{A_{5} ( \alpha ,\beta )=}{} -2\mathcal{B} \biggl( \beta +1, \frac{1}{\alpha }, \biggl( \frac{3}{8} \biggr) ^{\frac{1}{\beta }} \biggr) -\mathfrak{B} \biggl( \beta +1,\frac{2}{\alpha } \biggr) +\mathfrak{B} \biggl( \beta +1, \frac{1}{\alpha } \biggr) \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned} A_{6} ( \alpha ,\beta ) & = \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{3}{8\alpha ^{\beta }} \biggr\vert \,d\mu \\ & =\frac{1}{\alpha ^{\beta }} \biggl[ \frac{3}{8} ( 2C_{3}-1 ) + \frac{1}{\alpha } \biggl( \mathfrak{B} \biggl( \beta +1,\frac{1}{\alpha } \biggr) -2\mathcal{B} \biggl( \beta +1,\frac{1}{\alpha }, \biggl( \frac{3}{8} \biggr) ^{\frac{1}{\beta }} \biggr) \biggr) \biggr] . \end{aligned}$$

Here, \(C_{1}=1- ( 1- ( \frac{5}{8} ) ^{\frac{1}{\beta }} ) ^{\frac{1}{\alpha }}\), \(C_{2}=1- ( 1- ( \frac{1}{2} ) ^{\frac{1}{\beta }} ) ^{\frac{1}{\alpha }}\), \(C_{3}=1- ( 1- ( \frac{3}{8} ) ^{\frac{1}{\beta }} ) ^{\frac{1}{\alpha }}\), the functions \(\mathfrak{B} ( \cdot ,\cdot ) \) and \(\mathcal{B} ( \cdot ,\cdot ,\cdot ) \) are the Beta function and the incomplete Beta function defined as

$$ \textstyle\begin{cases} \mathfrak{B} ( x,y ) =\int _{0}^{1}u^{x-1}(1-u)^{y-1}\,du, \\ \mathcal{B} ( x,y,r ) =\int _{0}^{r}u^{x-1}(1-u)^{y-1}\,du\end{cases} $$

for \(x,y>0\) and \(r\in [ 0,1 ] \).

Proof

By Lemma 1, integrating by parts and the convexity of \(\vert \mathcal{F}^{\prime } \vert \), we obtain

$$\begin{aligned} & \biggl\vert \frac{3^{\alpha \beta -1}\alpha ^{\beta }}{ ( \delta -\sigma ) ^{\alpha \beta }} \Gamma ( \beta +1 ) \biggl[ _{+}^{\beta }\mathcal{J}_{ \sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \biggr] \\ &\qquad {}-\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \\ &\quad \leq \frac{ ( \delta -\sigma ) \alpha ^{\beta }}{9} \biggl[ \biggl\vert \int _{0}^{1} \biggl( \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{5}{8\alpha ^{\beta }} \biggr) \mathcal{F}^{\prime } \biggl( \mu \sigma + ( 1-\mu ) \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr)\,d\mu \biggr\vert \\ &\qquad {}+ \biggl\vert \int _{0}^{1} \biggl( \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{1}{2\alpha ^{\beta }} \biggr) \mathcal{F}^{\prime } \biggl( \mu \biggl( \frac{2\sigma +\delta }{3} \biggr) + ( 1-\mu ) \biggl( \frac{\sigma +2\delta }{3} \biggr) \biggr)\,d\mu \biggr\vert \\ &\qquad {}+ \biggl\vert \int _{0}^{1} \biggl( \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{3}{8\alpha ^{\beta }} \biggr) \mathcal{F}^{\prime } \biggl( \mu \biggl( \frac{\sigma +2\delta }{3} \biggr) + ( 1-\mu ) \delta \biggr)\,d\mu \biggr\vert \biggr] \\ &\quad \leq \frac{ ( \delta -\sigma ) \alpha ^{\beta }}{9} \biggl[ \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{5}{8\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \biggl( \frac{2+\mu }{3} \biggr) \sigma + \biggl( \frac{1-\mu }{3} \biggr) \delta \biggr) \biggr\vert \,d\mu \\ &\qquad {}+ \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{1}{2\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \biggl( \frac{1+\mu }{3} \biggr) \sigma + \biggl( \frac{2-\mu }{3} \biggr) \delta \biggr) \biggr\vert \,d\mu \\ &\qquad {}+ \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{3}{8\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \frac{\mu }{3} \sigma + \biggl( \frac{3-\mu }{3} \biggr) \delta \biggr) \biggr\vert \,d\mu \biggr] \\ &\quad \leq \frac{ ( \delta -\sigma ) \alpha ^{\beta }}{9} \biggl[ \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert \int _{0}^{1} \biggl( \frac{2+\mu }{3} \biggr) \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{5}{8\alpha ^{\beta }} \biggr\vert \,d\mu \\ &\qquad {}+ \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert \int _{0}^{1} \biggl( \frac{1-\mu }{3} \biggr) \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{5}{8\alpha ^{\beta }} \biggr\vert \,d\mu \\ &\qquad {}+ \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert \int _{0}^{1} \biggl( \frac{1+\mu }{3} \biggr) \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{1}{2\alpha ^{\beta }} \biggr\vert \,d\mu \\ &\qquad {}+ \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert \int _{0}^{1} \biggl( \frac{2-\mu }{3} \biggr) \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{1}{2\alpha ^{\beta }} \biggr\vert \,d\mu \\ &\qquad {}+ \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert \int _{0}^{1}\frac{\mu }{3} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{3}{8\alpha ^{\beta }} \biggr\vert \,d\mu \\ &\qquad {}+ \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert \int _{0}^{1} \biggl( \frac{3-\mu }{3} \biggr) \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{3}{8\alpha ^{\beta }} \biggr\vert \,d\mu \biggr] \\ &\quad =\frac{ ( \delta -\sigma ) \alpha ^{\beta }}{27} \bigl[ \bigl( 2A_{2} ( \alpha ,\beta ) +A_{1} ( \alpha , \beta ) +A_{4} ( \alpha ,\beta ) +A_{3} ( \alpha ,\beta ) +A_{5} ( \alpha ,\beta ) \bigr) \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert \\ &\qquad {}+ \bigl( A_{2} ( \alpha ,\beta ) -A_{1} ( \alpha ,\beta ) +2A_{4} ( \alpha ,\beta ) -A_{3} ( \alpha ,\beta ) +3A_{6} ( \alpha ,\beta ) -A_{5} ( \alpha ,\beta ) \bigr) \bigl\vert \mathcal{F}^{ \prime } ( \delta ) \bigr\vert \bigr] . \end{aligned}$$

This is the desired result of Theorem 1. □

Theorem 2

Suppose that all the assumptions of Lemma 1hold. Suppose also that \(\vert \mathcal{F}^{\prime } \vert ^{q}\) is a convex function on \([ \sigma ,\delta ] \), where \(\frac{1}{p}+\frac{1}{q}=1\) with \(p,q>1\). Then, we have

$$\begin{aligned} & \biggl\vert \frac{3^{\alpha \beta -1}\alpha ^{\beta }}{ ( \delta -\sigma ) ^{\alpha \beta }} \Gamma ( \beta +1 ) \biggl[ _{+}^{\beta }\mathcal{J}_{ \sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \biggr] \\ &\qquad {}-\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \\ &\quad \leq \frac{ ( \delta -\sigma ) \alpha ^{\beta }}{9} \biggl[ A_{7}^{\frac{1}{p}} ( \alpha , \beta ,p ) \biggl( \frac{5 \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+ \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{6} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+A_{8}^{\frac{1}{p}} ( \alpha ,\beta ,p ) \biggl( \frac{ \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+ \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{2} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+A_{9}^{\frac{1}{p}} ( \alpha ,\beta ,p ) \biggl( \frac{ \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+5 \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{6} \biggr) ^{\frac{1}{q}} \biggr] , \end{aligned}$$
(7)

where

$$\begin{aligned} &A_{7} ( \alpha ,\beta ,p ) = \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{5}{8\alpha ^{\beta }} \biggr\vert ^{p}\,d\mu , \\ &A_{8} ( \alpha ,\beta ,p ) = \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{1}{2\alpha ^{\beta }} \biggr\vert ^{p}\,d\mu \end{aligned}$$

and

$$\begin{aligned} A_{9} ( \alpha ,\beta ,p ) & = \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{3}{8\alpha ^{\beta }} \biggr\vert ^{p}\,d\mu . \end{aligned}$$

Proof

If we consider Lemma 1, then we can readily obtain

$$\begin{aligned} & \biggl\vert \frac{3^{\alpha \beta -1}\alpha ^{\beta }}{ ( \delta -\sigma ) ^{\alpha \beta }} \Gamma ( \beta +1 ) \biggl[ _{+}^{\beta }\mathcal{J}_{ \sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \biggr] \\ &\qquad {}-\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \\ &\quad \leq \frac{ ( \delta -\sigma ) \alpha ^{\beta }}{9} \biggl[ \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{5}{8\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \biggl( \frac{2+\mu }{3} \biggr) \sigma + \biggl( \frac{1-\mu }{3} \biggr) \delta \biggr) \biggr\vert \,d\mu \\ &\qquad {}+ \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{1}{2\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \biggl( \frac{1+\mu }{3} \biggr) \sigma + \biggl( \frac{2-\mu }{3} \biggr) \delta \biggr) \biggr\vert \,d\mu \\ &\qquad {}+ \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{3}{8\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \frac{\mu }{3} \sigma + \biggl( \frac{3-\mu }{3} \biggr) \delta \biggr) \biggr\vert \,d\mu \biggr] . \end{aligned}$$
(8)

Now, we consider the integrals on the right side of (8). Using the convexity of \(\vert \mathcal{F}^{\prime } \vert ^{q}\) and the well-known Hölder inequality, we have

$$\begin{aligned} & \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{5}{8\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \biggl( \frac{2+\mu }{3} \biggr) \sigma + \biggl( \frac{1-\mu }{3} \biggr) \delta \biggr) \biggr\vert \,d\mu \\ &\quad \leq \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{5}{8\alpha ^{\beta }} \biggr\vert ^{p}\,d\mu \biggr) ^{\frac{1}{p}} \\ &\qquad {}\times \biggl( \int _{0}^{1} \biggl\vert \mathcal{F}^{\prime } \biggl( \biggl( \frac{2+\mu }{3} \biggr) \sigma + \biggl( \frac{1-\mu }{3} \biggr) \delta \biggr) \biggr\vert ^{q}\,d\mu \biggr) ^{\frac{1}{q}} \\ &\quad \leq A_{7}^{\frac{1}{p}} ( \alpha ,\beta ,p ) \biggl( \int _{0}^{1} \biggl( \frac{2+\mu }{3} \bigl\vert \mathcal{F}^{ \prime } ( \sigma ) \bigr\vert ^{q}+ \frac{1-\mu }{3} \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr)\,d\mu \biggr) ^{\frac{1}{q}} \\ &\quad =A_{7}^{\frac{1}{p}} ( \alpha ,\beta ,p ) \biggl[ \frac{5 \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+ \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{6} \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(9)

In a similar manner, we readily obtain

$$\begin{aligned} & \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{1}{2\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \biggl( \frac{1+\mu }{3} \biggr) \sigma + \biggl( \frac{2-\mu }{3} \biggr) \delta \biggr) \biggr\vert \,d\mu \\ & \quad \leq \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{1}{2\alpha ^{\beta }} \biggr\vert ^{p}\,d\mu \biggr) ^{\frac{1}{p}} \\ &\qquad {}\times \biggl( \int _{0}^{1} \biggl\vert \mathcal{F}^{\prime } \biggl( \biggl( \frac{1+\mu }{3} \biggr) \sigma + \biggl( \frac{2-\mu }{3} \biggr) \delta \biggr) \biggr\vert ^{q}\,d\mu \biggr) ^{\frac{1}{q}} \\ &\quad \leq A_{8}^{\frac{1}{p}} ( \alpha ,\beta ,p ) \biggl( \int _{0}^{1} \biggl( \frac{1+\mu }{3} \bigl\vert \mathcal{F}^{ \prime } ( \sigma ) \bigr\vert ^{q}+ \frac{2-\mu }{3} \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr)\,d\mu \biggr) ^{\frac{1}{q}} \\ & \quad =A_{8}^{\frac{1}{p}} ( \alpha ,\beta ,p ) \biggl[ \frac{ \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+ \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{2} \biggr] ^{\frac{1}{q}} \end{aligned}$$
(10)

and

$$\begin{aligned} & \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{3}{8\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \frac{\mu }{3} \sigma + \biggl( \frac{3-\mu }{3} \biggr) \delta \biggr) \biggr\vert \,d\mu \\ & \quad \leq \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{3}{8\alpha ^{\beta }} \biggr\vert ^{p}\,d\mu \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{1} \biggl\vert \mathcal{F}^{\prime } \biggl( \frac{\mu }{3}\sigma + \biggl( \frac{3-\mu }{3} \biggr) \delta \biggr) \biggr\vert ^{q}\,d\mu \biggr) ^{ \frac{1}{q}} \\ &\quad \leq A_{9}^{\frac{1}{p}} ( \alpha ,\beta ,p ) \biggl( \int _{0}^{1} \biggl( \frac{\mu }{3} \bigl\vert \mathcal{F}^{ \prime } ( \sigma ) \bigr\vert ^{q}+ \frac{3-\mu }{3} \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr)\,d\mu \biggr) ^{\frac{1}{q}} \\ & \quad =A_{9}^{\frac{1}{p}} ( \alpha ,\beta ,p ) \biggl[ \frac{ \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+5 \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{6} \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(11)

If we insert from (9)–(11) into (8), then we have

$$\begin{aligned} & \biggl\vert \frac{3^{\alpha \beta -1}\alpha ^{\beta }}{ ( \delta -\sigma ) ^{\alpha \beta }} \Gamma ( \beta +1 ) \biggl[ _{+}^{\beta }\mathcal{J}_{ \sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \biggr] \\ & \qquad {} -\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \\ & \quad \leq \frac{ ( \delta -\sigma ) \alpha ^{\beta }}{9} \biggl[ A_{7}^{\frac{1}{p}} ( \alpha , \beta ,p ) \biggl( \frac{5 \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+ \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{6} \biggr) ^{\frac{1}{q}} \\ & \qquad {} +A_{8}^{\frac{1}{p}} ( \alpha ,\beta ,p ) \biggl( \frac{ \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+ \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{2} \biggr) ^{\frac{1}{q}}+A_{9}^{\frac{1}{p}} ( \alpha ,\beta ,p ) \biggl( \frac{ \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+5 \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{6} \biggr) ^{\frac{1}{q}} \biggr] . \end{aligned}$$

This completes the proof of Theorem 2. □

Theorem 3

Let us consider that all the assumptions of Lemma 1hold. If \(\vert \mathcal{F}^{\prime } \vert ^{q}\) is convex on \([\sigma ,\delta ]\), where \(q\geq 1\), then we have the following Newton-type inequality

$$\begin{aligned} & \biggl\vert \frac{3^{\alpha \beta -1}\alpha ^{\beta }}{ ( \delta -\sigma ) ^{\alpha \beta }} \Gamma ( \beta +1 ) \biggl[ _{+}^{\beta }\mathcal{J}_{ \sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \biggr] \\ &\qquad {}-\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \\ &\quad \leq \frac{ ( \delta -\sigma ) \alpha ^{\beta }}{9} \biggl[ A_{2}^{1-\frac{1}{q}} ( \alpha , \beta ) \biggl( \biggl( \frac{2A_{2} ( \alpha ,\beta ) +A_{1} ( \alpha ,\beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert ^{q} \\ &\qquad {}+ \biggl( \frac{A_{2} ( \alpha ,\beta ) -A_{1} ( \alpha ,\beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+A_{4}^{1-\frac{1}{q}} ( \alpha ,\beta ) \biggl( \biggl( \frac{A_{4} ( \alpha ,\beta ) +A_{3} ( \alpha ,\beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert ^{q} \\ &\qquad {}+ \biggl( \frac{2A_{4} ( \alpha ,\beta ) -A_{3} ( \alpha ,\beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr) ^{ \frac{1}{q}} \\ &\qquad {}+A_{6}^{1-\frac{1}{q}} ( \alpha ,\beta ) \biggl( \frac{A_{5} ( \alpha ,\beta ) }{3} \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert ^{q}+ \biggl( \frac{3A_{6} ( \alpha ,\beta ) -A_{5} ( \alpha ,\beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr] , \end{aligned}$$
(12)

where \(A_{1} ( \alpha ,\beta ) \), \(A_{2} ( \alpha ,\beta ) \), \(A_{3} ( \alpha ,\beta ) \), \(A_{4} ( \alpha ,\beta ) \), \(A_{5} ( \alpha ,\beta ) \), and \(A_{6} ( \alpha ,\beta ) \) are defined in Theorem 1.

Proof

If we consider the convexity of \(\vert \mathcal{F}^{\prime } \vert ^{q}\) and power-mean inequality, then we obtain

$$\begin{aligned} & \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{5}{8\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \biggl( \frac{2+\mu }{3} \biggr) \sigma + \biggl( \frac{1-\mu }{3} \biggr) \delta \biggr) \biggr\vert \,d\mu \\ &\quad \leq \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{5}{8\alpha ^{\beta }} \biggr\vert \,d\mu \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{5}{8\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{ \prime } \biggl( \biggl( \frac{2+\mu }{3} \biggr) \sigma + \biggl( \frac{1-\mu }{3} \biggr) \delta \biggr) \biggr\vert ^{q}\,d\mu \biggr) ^{\frac{1}{q}} \\ &\quad =A_{2}^{1-\frac{1}{q}} ( \alpha ,\beta ) \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{5}{8\alpha ^{\beta }} \biggr\vert \\ &\qquad {}\times \biggl\vert \mathcal{F}^{\prime } \biggl( \biggl( \frac{2+\mu }{3} \biggr) \sigma + \biggl( \frac{1-\mu }{3} \biggr) \delta \biggr) \biggr\vert ^{q}\,d\mu \biggr) ^{\frac{1}{q}} \\ &\quad \leq A_{2}^{1-\frac{1}{q}} ( \alpha ,\beta ) \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{5}{8\alpha ^{\beta }} \biggr\vert \\ &\qquad {} \times \biggl[ \frac{2+\mu }{3} \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert ^{q}+\frac{1-\mu }{3} \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr]\,d\mu \biggr) ^{\frac{1}{q}} \\ &\quad =A_{2}^{1-\frac{1}{q}} ( \alpha ,\beta ) \biggl( \biggl( \frac{2A_{2} ( \alpha ,\beta ) +A_{1} ( \alpha ,\beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert ^{q} \\ &\qquad {}+ \biggl( \frac{A_{2} ( \alpha ,\beta ) -A_{1} ( \alpha ,\beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}}. \end{aligned}$$
(13)

In a similar manner, we have

$$\begin{aligned} & \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{1}{2\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \biggl( \frac{1+\mu }{3} \biggr) \sigma + \biggl( \frac{2-\mu }{3} \biggr) \delta \biggr) \biggr\vert \,d\mu \\ &\quad \leq \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{1}{2\alpha ^{\beta }} \biggr\vert \,d\mu \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{1}{2\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{ \prime } \biggl( \biggl( \frac{1+\mu }{3} \biggr) \sigma + \biggl( \frac{2-\mu }{3} \biggr) \delta \biggr) \biggr\vert ^{q}\,d\mu \biggr) ^{\frac{1}{q}} \\ &\quad =A_{4}^{1-\frac{1}{q}} ( \alpha ,\beta ) \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{1}{2\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \biggl( \frac{1+\mu }{3} \biggr) \sigma + \biggl( \frac{2-\mu }{3} \biggr) \delta \biggr) \biggr\vert ^{q}\,d\mu \biggr) ^{\frac{1}{q}} \\ &\quad \leq A_{4}^{1-\frac{1}{q}} ( \alpha ,\beta ) \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{1}{2\alpha ^{\beta }} \biggr\vert \\ &\qquad {}\times \biggl[ \frac{1+\mu }{3} \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert ^{q}+\frac{2-\mu }{3} \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr]\,d\mu \biggr) ^{\frac{1}{q}} \\ &\quad =A_{4}^{1-\frac{1}{q}} ( \alpha ,\beta ) \biggl( \biggl( \frac{A_{4} ( \alpha ,\beta ) +A_{3} ( \alpha ,\beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert ^{q} \\ &\qquad {}+ \biggl( \frac{2A_{4} ( \alpha ,\beta ) -A_{3} ( \alpha ,\beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \end{aligned}$$
(14)

and

$$\begin{aligned} & \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{3}{8\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \frac{\mu }{3} \sigma + \biggl( \frac{3-\mu }{3} \biggr) \delta \biggr) \biggr\vert \,d\mu \\ &\quad \leq \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{3}{8\alpha ^{\beta }} \biggr\vert \,d\mu \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }- \frac{3}{8\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{ \prime } \biggl( \frac{\mu }{3}\sigma + \biggl( \frac{3-\mu }{3} \biggr) \delta \biggr) \biggr\vert ^{q}\,d\mu \biggr) ^{\frac{1}{q}} \\ &\quad =A_{6}^{1-\frac{1}{q}} ( \alpha ,\beta ) \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{3}{8\alpha ^{\beta }} \biggr\vert \biggl\vert \mathcal{F}^{\prime } \biggl( \frac{\mu }{3}\sigma + \biggl( \frac{3-\mu }{3} \biggr) \delta \biggr) \biggr\vert ^{q}\,d\mu \biggr) ^{ \frac{1}{q}} \\ &\quad \leq A_{6}^{1-\frac{1}{q}} ( \alpha ,\beta ) \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\mu ) ^{\alpha }}{\alpha } \biggr) ^{\beta }-\frac{3}{8\alpha ^{\beta }} \biggr\vert \biggl[ \frac{\mu }{3} \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert ^{q}+\frac{3-\mu }{3} \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr]\,d\mu \biggr) ^{\frac{1}{q}} \\ &\quad =A_{6}^{1-\frac{1}{q}} ( \alpha ,\beta ) \biggl( \frac{A_{5} ( \alpha ,\beta ) }{3} \bigl\vert \mathcal{F}^{ \prime } ( \sigma ) \bigr\vert ^{q}+ \biggl( \frac{3A_{6} ( \alpha ,\beta ) -A_{5} ( \alpha ,\beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}}. \end{aligned}$$
(15)

If we insert (13)–(15) into (8), then the proof of Theorem 3 is finished. □

4 Special cases

Remark 1

If we choose \(\alpha =1\) in (5), then the equality reduces to

$$\begin{aligned} & \frac{3^{\beta -1}}{ ( \delta -\sigma ) ^{\beta }} \Gamma ( \beta +1 ) \biggl[ J_{\sigma ^{+}}^{\beta } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +J_{ ( \frac{2\sigma +\delta }{3} ) ^{+}}^{\beta } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +J_{ ( \frac{\sigma +2\delta }{3} ) ^{+}}^{\beta } \mathcal{F} ( \delta ) \biggr] \\ &\qquad {}-\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3 \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \\ &\quad =\frac{\delta -\sigma }{9} \bigl[ I_{1}^{\ast }+I_{2}^{\ast }+I_{3}^{ \ast } \bigr] , \end{aligned}$$

where

$$\begin{aligned} &I_{1}^{\ast } = \int _{0}^{1} \biggl( \mu ^{\beta }- \frac{5}{8} \biggr) \mathcal{F}^{\prime } \biggl( \mu \sigma + ( 1- \mu ) \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr)\,d\mu , \\ &I_{2}^{\ast } = \int _{0}^{1} \biggl( \mu ^{\beta }- \frac{1}{2} \biggr) \mathcal{F}^{\prime } \biggl( \mu \biggl( \frac{2\sigma +\delta }{3} \biggr) + ( 1-\mu ) \biggl( \frac{\sigma +2\delta }{3} \biggr) \biggr)\,d\mu , \\ &I_{3}^{\ast } = \int _{0}^{1} \biggl( \mu ^{\beta }- \frac{3}{8} \biggr) \mathcal{F}^{\prime } \biggl( \mu \biggl( \frac{\sigma +2\delta }{3} \biggr) + ( 1-\mu ) \delta \biggr)\,d\mu . \end{aligned}$$

This coincides with [32, Lemma 1].

Remark 2

If we select \(\alpha =1\) in (6), then we obtain

$$\begin{aligned} & \biggl\vert \frac{3^{\beta -1}}{ ( \delta -\sigma ) ^{\beta }}\Gamma ( \beta +1 ) \biggl[ J_{\sigma ^{+}}^{\beta } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +J_{ ( \frac{2\sigma +\delta }{3} ) ^{+}}^{\beta } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +J_{ ( \frac{\sigma +2\delta }{3} ) ^{+}}^{\beta } \mathcal{F} ( \delta ) \biggr] \\ &\qquad {}-\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \\ &\quad \leq \frac{\delta -\sigma }{27} \bigl[ \bigl( 2A_{2}^{\ast } ( \beta ) +A_{1}^{\ast } ( \beta ) +A_{4}^{\ast } ( \beta ) +A_{3}^{\ast } ( \beta ) +A_{5}^{ \ast } ( \beta ) \bigr) \bigl\vert \mathcal{F}^{ \prime } ( \sigma ) \bigr\vert \\ &\qquad {}+ \bigl( A_{2}^{\ast } ( \beta ) -A_{1}^{ \ast } ( \beta ) +2A_{4}^{\ast } ( \beta ) -A_{3}^{ \ast } ( \beta ) +3A_{6}^{\ast } ( \beta ) -A_{5}^{ \ast } ( \beta ) \bigr) \bigl\vert \mathcal{F}^{ \prime } ( \delta ) \bigr\vert \bigr] . \end{aligned}$$

Here,

$$\begin{aligned}& A_{1}^{\ast } ( \beta ) = \int _{0}^{1}\mu \biggl\vert \mu ^{\beta }- \frac{5}{8} \biggr\vert \,d\mu = \frac{\beta }{\beta +2} \biggl( \frac{5}{8} \biggr) ^{\frac{\beta +2}{\beta }}+\frac{1}{\beta +2}- \frac{5}{16}, \\& A_{2}^{\ast } ( \beta ) = \int _{0}^{1} \biggl\vert \mu ^{\beta }- \frac{5}{8} \biggr\vert \,d\mu = \frac{2\beta }{\beta +1} \biggl( \frac{5}{8} \biggr) ^{\frac{\beta +1}{\beta }}+\frac{1}{\beta +1}- \frac{5}{8}, \\& A_{3}^{\ast } ( \beta ) = \int _{0}^{1}\mu \biggl\vert \mu ^{\beta }- \frac{1}{2} \biggr\vert \,d\mu = \frac{\beta }{\beta +2} \biggl( \frac{1}{2} \biggr) ^{\frac{\beta +2}{\beta }}+\frac{1}{\beta +2}- \frac{1}{4}, \\& A_{4}^{\ast } ( \beta ) = \int _{0}^{1} \biggl\vert \mu ^{\beta }- \frac{1}{2} \biggr\vert \,d\mu = \frac{2\beta }{\beta +1} \biggl( \frac{1}{2} \biggr) ^{\frac{\beta +1}{\beta }}+\frac{1}{\beta +1}- \frac{1}{2}, \\& A_{5}^{\ast } ( \beta ) = \int _{0}^{1}\mu \biggl\vert \mu ^{\beta }- \frac{3}{8} \biggr\vert \,d\mu = \frac{\beta }{\beta +2} \biggl( \frac{3}{8} \biggr) ^{\frac{\beta +2}{\beta }}+\frac{1}{\beta +2}- \frac{3}{16}, \\& A_{6}^{\ast } ( \beta ) = \int _{0}^{1} \biggl\vert \mu ^{\beta }- \frac{3}{8} \biggr\vert \,d\mu = \frac{2\beta }{\beta +1} \biggl( \frac{3}{8} \biggr) ^{\frac{\beta +1}{\beta }}+\frac{1}{\beta +1}- \frac{3}{8}, \end{aligned}$$

which is established by Sitthiwirattham et al. [32, Theorem 4].

Remark 3

Consider \(\alpha =\beta =1\) in (6). Then, (6) becomes

$$\begin{aligned} & \biggl\vert \frac{1}{\delta -\sigma } \int _{\sigma }^{ \delta }\mathcal{F} ( \mu )\,d\mu - \frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \\ &\quad \leq \frac{25 ( \delta -\sigma ) }{576} \bigl( \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert + \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert \bigr) , \end{aligned}$$

which is given in [32, Remark 3].

Remark 4

Note that the inequality (7) for \(\alpha =1\) reduces to

$$\begin{aligned} & \biggl\vert \frac{3^{\beta -1}}{ ( \delta -\sigma ) ^{\beta }}\Gamma ( \beta +1 ) \biggl[ J_{\sigma ^{+}}^{\beta } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +J_{ ( \frac{2\sigma +\delta }{3} ) ^{+}}^{\beta } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +J_{ ( \frac{\sigma +2\delta }{3} ) ^{+}}^{\beta } \mathcal{F} ( \delta ) \biggr] \\ &\qquad {}-\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \\ &\quad \leq \frac{\delta -\sigma }{9} \biggl[ \bigl( A_{7}^{\ast } ( \beta ,p ) \bigr) ^{\frac{1}{p}} \biggl( \frac{5 \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+ \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{6} \biggr) ^{ \frac{1}{q}} \\ &\qquad {}+ \bigl( A_{8}^{\ast } ( \beta ,p ) \bigr) ^{\frac{1}{p}} \biggl( \frac{ \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+ \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{2} \biggr) ^{\frac{1}{q}}+ \bigl( A_{9}^{\ast } ( \beta ,p ) \bigr) ^{\frac{1}{p}} \biggl( \frac{ \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+5 \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{6} \biggr) ^{\frac{1}{q}} \biggr] , \end{aligned}$$

where

$$\begin{aligned}& A_{7}^{\ast } ( \beta ,p ) = \int _{0}^{1} \biggl\vert \mu ^{\beta }- \frac{5}{8} \biggr\vert ^{p}\,d\mu , \\& A_{8}^{\ast } ( \beta ,p ) = \int _{0}^{1} \biggl\vert \mu ^{\beta }- \frac{1}{2} \biggr\vert ^{p}\,d\mu , \\& A_{9}^{\ast } ( \beta ,p ) = \int _{0}^{1} \biggl\vert \mu ^{\beta }- \frac{3}{8} \biggr\vert ^{p}\,d\mu . \end{aligned}$$

This is proved by Sitthiwirattham et al. [32].

Remark 5

Consider \(\alpha =\beta =1\) in (7). Then, (7) coincides with

$$\begin{aligned} & \biggl\vert \frac{1}{\delta -\sigma } \int _{\sigma }^{ \delta }\mathcal{F} ( \mu )\,d\mu - \frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \\ &\quad \leq \frac{\delta -\sigma }{9} \biggl[ \biggl( \frac{5^{p+1}+3^{p+1}}{8^{p+1} ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{ \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+5 \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{6} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{2^{p} ( p+1 ) } \biggr) ^{ \frac{1}{p}} \biggl( \frac{ \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+ \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{2} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{5^{p+1}+3^{p+1}}{8^{p+1} ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{5 \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+ \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{6} \biggr) ^{\frac{1}{q}} \biggr] , \end{aligned}$$

which is given in [32, Remark 5].

Remark 6

For \(\alpha =1\), the inequality (12) becomes

$$\begin{aligned} & \biggl\vert \frac{3^{\beta -1}}{ ( \delta -\sigma ) ^{\beta }}\Gamma ( \beta +1 ) \biggl[ J_{\sigma ^{+}}^{\beta } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +J_{ ( \frac{2\sigma +\delta }{3} ) ^{+}}^{\beta } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +J_{ ( \frac{\sigma +2\delta }{3} ) ^{+}}^{\beta } \mathcal{F} ( \delta ) \biggr] \\ &\qquad {}-\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \\ &\quad \leq \frac{\delta -\sigma }{9} \biggl[ \bigl( A_{2}^{\ast } ( \beta ) \bigr) ^{1-\frac{1}{q}} \biggl( \biggl( \frac{2A_{2}^{\ast } ( \beta ) +A_{1}^{\ast } ( \beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert ^{q}+ \biggl( \frac{A_{2}^{\ast } ( \beta ) -A_{1}^{\ast } ( \beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \bigl( A_{4}^{\ast } ( \beta ) \bigr) ^{1- \frac{1}{q}} \biggl( \biggl( \frac{A_{4}^{\ast } ( \beta ) +A_{3}^{\ast } ( \beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert ^{q}+ \biggl( \frac{2A_{4}^{\ast } ( \beta ) -A_{3}^{\ast } ( \beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr) ^{ \frac{1}{q}} \\ &\qquad {}+ \bigl( A_{6}^{\ast } ( \beta ) \bigr) ^{1- \frac{1}{q}} \biggl( \frac{A_{5}^{\ast } ( \beta ) }{3} \bigl\vert \mathcal{F}^{\prime } ( \sigma ) \bigr\vert ^{q}+ \biggl( \frac{3A_{6}^{\ast } ( \beta ) -A_{5}^{\ast } ( \beta ) }{3} \biggr) \bigl\vert \mathcal{F}^{\prime } ( \delta ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr] . \end{aligned}$$

Here, \(A_{1}^{\ast } ( \beta ) \), \(A_{2}^{\ast } ( \beta ) \), \(A_{3}^{\ast } ( \beta ) \), \(A_{4}^{\ast } ( \beta ) \), \(A_{5}^{\ast } ( \beta ) \), \(A_{6}^{\ast } ( \beta ) \) are defined in Remark 2. For the proof, we refer to [32, Theorem 5].

Remark 7

Consider \(\alpha =\beta =1\) in (12). Then, (12) becomes

$$\begin{aligned} & \biggl\vert \frac{1}{\delta -\sigma } \int _{\sigma }^{ \delta }\mathcal{F} ( \mu )\,d\mu - \frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \\ &\quad \leq \frac{\delta -\sigma }{36} \biggl[ \biggl( \frac{17}{16} \biggr) ^{1-\frac{1}{q}} \biggl( \frac{251 \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+973 \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{1152} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{ \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+ \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{2} \biggr) ^{\frac{1}{q}} + \biggl( \frac{17}{16} \biggr) ^{1- \frac{1}{q}} \biggl( \frac{973 \vert \mathcal{F}^{\prime } ( \sigma ) \vert ^{q}+251 \vert \mathcal{F}^{\prime } ( \delta ) \vert ^{q}}{1152} \biggr) ^{\frac{1}{q}} \biggr] , \end{aligned}$$

which is given in [32, Remark 4].

5 Fractional Newton-type inequality for functions of bounded variation

In this section, we establish a fractional Newton-type inequality for function of bounded variation.

Theorem 4

Let us consider that \(\mathcal{F}: [ \sigma ,\delta ] \rightarrow \mathbb{R} \) is a function of bounded variation on \([ \sigma ,\delta ] \). Then, we obtain the following Newton-type inequality for FCIOs

$$\begin{aligned} & \biggl\vert \frac{3^{\alpha \beta -1}\alpha ^{\beta }}{ ( \delta -\sigma ) ^{\alpha \beta }} \Gamma ( \beta +1 ) \biggl[ _{+}^{\beta }\mathcal{J}_{ \sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \biggr] \\ &\quad {} -\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \leq \frac{5}{24}\bigvee_{\sigma }^{\delta }( \mathcal{F}). \end{aligned}$$

Here, \(\bigvee_{c}^{d}(\mathcal{F})\) is the total variation of \(\mathcal{F}\) on \([ c,d ] \).

Proof

Consider

$$ \Phi _{\alpha }^{\beta }(x)=\textstyle\begin{cases} ( ( \frac{\delta -\sigma }{3} ) ^{\alpha }- ( x- \sigma ) ^{\alpha } ) ^{\beta }-\frac{5}{8} ( \frac{\delta -\sigma }{3} ) ^{\alpha \beta }, & \sigma \leq x\leq \frac{2\sigma +\delta }{3}, \\ ( ( \frac{\delta -\sigma }{3} ) ^{\alpha }- ( x- \frac{2\sigma +\delta }{3} ) ^{\alpha } ) ^{\beta }-\frac{1}{2} ( \frac{\delta -\sigma }{3} ) ^{\alpha \beta } & \frac{2\sigma +\delta }{3}< x\leq \frac{\sigma +2\delta }{3}, \\ ( ( \frac{\delta -\sigma }{3} ) ^{\alpha }- ( x- \frac{\sigma +2\delta }{3} ) ^{\alpha } ) ^{\beta }-\frac{3}{8} ( \frac{\delta -\sigma }{3} ) ^{\alpha \beta } & \frac{\sigma +2\delta }{3}< x\leq \delta .\end{cases} $$

Then, this yields

$$\begin{aligned} & \int _{\sigma }^{\delta }\Phi _{\alpha }^{\beta }(x)\,d\mathcal{F}(x)= \int _{\sigma }^{\frac{2\sigma +\delta }{3}} \biggl( \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha }- ( x-\sigma ) ^{ \alpha } \biggr) ^{\beta }-\frac{5}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \biggr)\,d\mathcal{F}(x) \\ & \quad {}+ \int _{\frac{2\sigma +\delta }{3}}^{ \frac{\sigma +2\delta }{3}} \biggl( \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha }- \biggl( x-\frac{2\sigma +\delta }{3} \biggr) ^{\alpha } \biggr) ^{\beta }- \frac{1}{2} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \biggr)\,d\mathcal{F}(x) \\ & \quad {}+ \int _{\frac{\sigma +2\delta }{3}}^{\delta } \biggl( \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha }- \biggl( x- \frac{\sigma +2\delta }{3} \biggr) ^{\alpha } \biggr) ^{\beta }-\frac{3}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \biggr)\,d\mathcal{F}(x). \end{aligned}$$
(16)

By using integration by parts, we obtain

$$\begin{aligned} & \int _{\sigma }^{\frac{2\sigma +\delta }{3}} \biggl( \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha }- ( x-\sigma ) ^{ \alpha } \biggr) ^{\beta }-\frac{5}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \biggr)\,d\mathcal{F}(x) \\ &\quad = \biggl( \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{ \alpha }- ( x-\sigma ) ^{\alpha } \biggr) ^{\beta }- \frac{5}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \biggr) \mathcal{F}(x)\vert _{\sigma }^{\frac{2\sigma +\delta }{3}} \\ &\qquad {}+\alpha \beta \int _{\sigma }^{\frac{2\sigma +\delta }{3}} \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha }- ( x- \sigma ) ^{\alpha } \biggr) ^{\beta -1} ( x- \sigma ) ^{\alpha -1}\mathcal{F}(x)\,dx \\ &\quad =- \biggl[ \frac{3}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{ \alpha \beta }\mathcal{F} ( \sigma ) +\frac{5}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta }\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr] \\ &\qquad {} +\alpha ^{\beta }\Gamma ( \beta +1 ) \biggl[ _{+}^{\beta }\mathcal{J}_{\sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr] . \end{aligned}$$
(17)

In a similar manner, we obtain

$$\begin{aligned} & \int _{\frac{2\sigma +\delta }{3}}^{\frac{\sigma +2\delta }{3}} \biggl( \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha }- \biggl( x-\frac{2\sigma +\delta }{3} \biggr) ^{\alpha } \biggr) ^{\beta }-\frac{1}{2} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \biggr)\,d\mathcal{F}(x) \\ &\quad =- \biggl[ \frac{1}{2} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{ \alpha \beta }\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + \frac{1}{2} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) \biggr] \\ &\qquad {}+\alpha ^{\beta }\Gamma ( \beta +1 ) \biggl[ _{+}^{ \beta }\mathcal{J}_{\frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) \biggr] \end{aligned}$$
(18)

and

$$\begin{aligned} & \int _{\frac{\sigma +2\delta }{3}}^{\delta } \biggl( \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha }- \biggl( x- \frac{\sigma +2\delta }{3} \biggr) ^{\alpha } \biggr) ^{\beta }-\frac{3}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \biggr)\,d\mathcal{F}(x) \\ &\quad =- \biggl[ \frac{3}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{ \alpha \beta }\mathcal{F} ( \delta ) +\frac{5}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta }\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) \biggr] \\ &\qquad {}+\alpha ^{\beta }\Gamma ( \beta +1 ) \bigl[ _{+}^{ \beta }\mathcal{J}_{\frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \bigr] . \end{aligned}$$
(19)

By inserting the equalities (17)–(19) into (16), we have

$$\begin{aligned} & \int _{\sigma }^{\delta }\Phi _{\alpha }^{\beta }(x)\,d\mathcal{F}(x) \\ &\quad = \alpha ^{\beta }\Gamma ( \beta +1 ) \biggl[ _{+}^{\beta } \mathcal{J}_{\sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) + _{+}^{\beta }\mathcal{J}_{ \frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + _{+}^{\beta }\mathcal{J}_{\frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \biggr] \\ & \qquad {}-\frac{1}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{ \alpha \beta } \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3 \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] . \end{aligned}$$

Thus, it follows that

$$\begin{aligned} & \frac{3^{\alpha \beta -1}\alpha ^{\beta }}{ ( \delta -\sigma ) ^{\alpha \beta }}\Gamma ( \beta +1 ) \biggl[ _{+}^{\beta } \mathcal{J}_{\sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{\frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \biggr] \\ &\qquad {}-\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3 \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \\ &\quad = \frac{3^{\alpha \beta -1}}{ ( \delta -\sigma ) ^{\alpha \beta }}\int _{\sigma }^{\delta }\Phi _{\alpha }^{\beta }(x)\,d\mathcal{F}(x). \end{aligned}$$
(20)

If we take modules of equality (20), then we readily obtain

$$\begin{aligned} & \biggl\vert \frac{3^{\alpha \beta -1}\alpha ^{\beta }}{ ( \delta -\sigma ) ^{\alpha \beta }} \Gamma ( \beta +1 ) \biggl[ _{+}^{\beta }\mathcal{J}_{ \sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \biggr] \\ &\qquad {}-\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \\ &\quad \leq \frac{3^{\alpha \beta -1}}{ ( \delta -\sigma ) ^{\alpha \beta }} \biggl\vert \int _{\sigma }^{\delta }\Phi _{\alpha }^{\beta }(x)d\mathcal{F}(x) \biggr\vert . \end{aligned}$$
(21)

It is well known that if \(\mathcal{F},g: [ \sigma ,\delta ] \rightarrow \mathbb{R} \) are such that g is continuous on \([ \sigma ,\delta ] \) and \(\mathcal{F}\) is of bounded variation on \([ \sigma ,\delta ] \), then \(\int _{\sigma }^{\delta }g(\mu )\,d\mathcal{F}(\mu )\) exists and

$$ \biggl\vert \int _{\sigma }^{\delta }g(\mu )\,d\mathcal{F}(\mu ) \biggr\vert \leq \sup_{\mu \in [ \sigma ,\delta ] } \bigl\vert g(\mu ) \bigr\vert \bigvee _{\sigma }^{\delta }( \mathcal{F}). $$
(22)

By using the inequality (22), we obtain

$$\begin{aligned} & \biggl\vert \int _{\sigma }^{\delta }\Phi _{\alpha }^{\beta }(x)\,d\mathcal{F}(x) \biggr\vert \\ &\quad \leq \biggl\vert \int _{\sigma }^{ \frac{2\sigma +\delta }{3}} \biggl( \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha }- ( x-\sigma ) ^{\alpha } \biggr) ^{\beta }-\frac{5}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \biggr)\,d\mathcal{F}(x) \biggr\vert \\ &\qquad {}+ \biggl\vert \int _{\frac{2\sigma +\delta }{3}}^{ \frac{\sigma +2\delta }{3}} \biggl( \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha }- \biggl( x- \frac{2\sigma +\delta }{3} \biggr) ^{\alpha } \biggr) ^{\beta }- \frac{1}{2} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \biggr)\,d\mathcal{F}(x) \biggr\vert \\ &\qquad {}+ \biggl\vert \int _{\frac{\sigma +2\delta }{3}}^{\delta } \biggl( \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha }- \biggl( x-\frac{\sigma +2\delta }{3} \biggr) ^{\alpha } \biggr) ^{ \beta }-\frac{3}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \biggr)\,d\mathcal{F}(x) \biggr\vert \\ &\quad \leq \sup_{x\in [ \sigma ,\frac{2\sigma +\delta }{3} ] } \biggl\vert \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{ \alpha }- ( x-\sigma ) ^{\alpha } \biggr) ^{\beta }- \frac{5}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \biggr\vert \bigvee_{\sigma }^{\frac{2\sigma +\delta }{3}}( \mathcal{F}) \\ &\qquad {}+\sup_{x\in [ \frac{2\sigma +\delta }{3}, \frac{\sigma +2\delta }{3} ] } \biggl\vert \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha }- \biggl( x- \frac{2\sigma +\delta }{3} \biggr) ^{\alpha } \biggr) ^{\beta }- \frac{1}{2} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \biggr\vert \bigvee _{\frac{2\sigma +\delta }{3}}^{ \frac{\sigma +2\delta }{3}}(\mathcal{F}) \\ &\qquad {}+\sup_{x\in [ \frac{\sigma +2\delta }{3},\delta ] } \biggl\vert \biggl( \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha }- \biggl( x-\frac{\sigma +2\delta }{3} \biggr) ^{ \alpha } \biggr) ^{\beta }-\frac{3}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \biggr\vert \bigvee _{\frac{\sigma +2\delta }{3}}^{\delta }( \mathcal{F}) \\ &\quad = \Biggl[ \frac{5}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{ \alpha \beta }\bigvee_{\sigma }^{\frac{2\sigma +\delta }{3}}( \mathcal{F})+\frac{1}{2} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta }\bigvee_{\frac{2\sigma +\delta }{3}}^{\frac{\sigma +2\delta }{3}}( \mathcal{F})+ \frac{5}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \bigvee_{\frac{\sigma +2\delta }{3}}^{\delta }( \mathcal{F}) \Biggr] \\ &\quad \leq \frac{5}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta } \bigvee_{\sigma }^{\delta }(\mathcal{F}). \end{aligned}$$

Then, similar to the foregoing process, we readily have

$$ \biggl\vert \int _{\sigma }^{\delta }\Psi _{\alpha }(x)\,d\mathcal{F}(x) \biggr\vert \leq \frac{5}{8} \biggl( \frac{\delta -\sigma }{3} \biggr) ^{\alpha \beta }\bigvee_{\sigma }^{\delta }( \mathcal{F}). $$
(23)

If we substitute the inequality (23) in (21), then the following inequality holds:

$$\begin{aligned} & \biggl\vert \frac{3^{\alpha \beta -1}\alpha ^{\beta }}{ ( \delta -\sigma ) ^{\alpha \beta }} \Gamma ( \beta +1 ) \biggl[ _{+}^{\beta }\mathcal{J}_{ \sigma }^{\alpha } \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{2\sigma +\delta }{3}}^{\alpha } \mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) + _{+}^{\beta } \mathcal{J}_{ \frac{\sigma +2\delta }{3}}^{\alpha } \mathcal{F} ( \delta ) \biggr] \\ & \quad {} -\frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3\mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] \biggr\vert \leq \frac{5}{24}\bigvee_{\sigma }^{\delta }( \mathcal{F}), \end{aligned}$$

which is the desired result of Theorem 4. □

Remark 8

If we assign \(\alpha =1\) in Theorem 4, then we obtain the following inequality

$$\begin{aligned}& \biggl\vert \frac{1}{8} \biggl[ \mathcal{F} ( \sigma ) +3 \mathcal{F} \biggl( \frac{2\sigma +\delta }{3} \biggr) +3\mathcal{F} \biggl( \frac{\sigma +2\delta }{3} \biggr) +\mathcal{F} ( \delta ) \biggr] -\frac{1}{\delta -\sigma } \int _{\sigma }^{\delta }\mathcal{F}(\mu )\,d\mu \biggr\vert \\& \quad \leq \frac{5}{24}\bigvee_{\sigma }^{\delta }( \mathcal{F}), \end{aligned}$$

which is established by Alomari in [5].

6 Summary and concluding remarks

Several new versions of Newton-type inequalities are considered for the case of differentiable convex functions by using conformable fractional integrals. To be more precise, several Newton-type inequalities for differentiable convex functions are constructed by using the Hölder and power-mean inequalities. Furthermore, more results are presented by using special choices of the obtained inequalities. Finally, we establish some inequalities of conformable fractional Newton type for functions of bounded variation.

In the future work, the ideas and strategies for our results related to Newton-type inequalities by conformable fractional integrals may open up new ways for mathematicians in this area. Moreover, one can try to generalize our results by utilizing a different version of convex function classes or another type of fractional integral operators. Finally, one can obtain these type of inequalities by conformable fractional integrals for convex functions by using quantum calculus.

Availability of data and materials

Data sharing is not applicable to this paper as no data sets were generated or analyzed during the current study.

References

  1. Abdelhakim, A.A.: The flaw in the conformable calculus: it is conformable because it is not fractional. Fract. Calc. Appl. Anal. 22, 242–254 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdeljawad, T., Mohammed, P.O., Kashuri, A.: New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications. J. Funct. Spaces (2020)

  4. Ali, M.A., Budak, H., Zhang, Z.: A new extension of quantum Simpson’s and quantum Newton’s type inequalities for quantum differentiable convex functions. Math. Methods Appl. Sci. 45(4), 1845–1863 (2022)

    Article  MathSciNet  Google Scholar 

  5. Alomari, M.W.: A companion of Dragomir’s generalization of Ostrowski’s inequality and applications in numerical integration. Ukr. Math. J. 64, 435–450 (2012)

    Article  Google Scholar 

  6. Anastassiou, G.A.: Generalized Fractional Calculus: New Advancements and Aplications. Springer, Switzerland (2021)

    Book  MATH  Google Scholar 

  7. Attia, N., Akgül, A., Seba, D., Nour, A.: An efficient numerical technique for a biological population model of fractional order. Chaos Solitons Fractals 141, 110349 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bohner, M., Kashuri, A., Mohammed, P., Valdes, J.E.N.: Hermite-Hadamard-type inequalities for conformable integrals. Hacet. J. Math. Stat., 1–12 (2022)

  9. Du, T.S., Luo, C.Y., Cao, Z.J.: On the Bullen-type inequalities via generalized fractional integrals and their applications. Fractals 29(7), Article ID 2150188 (2021)

    Article  MATH  Google Scholar 

  10. Du, T.S., Zhou, T.C.: On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings. Chaos Solitons Fractals 156, Article ID 111846 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erden, S., Iftikhar, S., Kumam, P., Awan, M.U.: Some Newton’s like inequalities with applications. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(4), 1–13 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Erden, S., Iftikhar, S., Kumam, P., Thounthong, P.: On error estimations of Simpson’s second type quadrature formula. Math. Methods Appl. Sci. 2020, 1–13 (2020)

    Google Scholar 

  13. Gabr, A., Abdel Kader, A.H., Abdel Latif, M.S.: The effect of the parameters of the generalized fractional derivatives on the behavior of linear electrical circuits. Int. J. Appl. Comput. Math. 7, 247 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, S., Shi, W.: On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex. Int. J. Pure Appl. Math. 74(1), 33–41 (2012)

    MATH  Google Scholar 

  15. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order. Springer, Wien (1997)

    MATH  Google Scholar 

  16. Hezenci, F., Budak, H., Kösem, P.: A new version of Newton’s inequalities for Riemann-Liouville fractional integrals. Rocky Mt. J. Math. 52(6) (2022)

  17. Hyder, A., Soliman, A.H.: A new generalized θ-conformable calculus and its applications in mathematical physics. Phys. Scr. 96, 015208 (2020)

    Article  Google Scholar 

  18. Iftikhar, S., Erden, S., Ali, M.A., Baili, J., Ahmad, H.: Simpson’s second-type inequalities for co-ordinated convex functions and applications for cubature formulas. Fractal Fract. 6(1), 33 (2022)

    Article  Google Scholar 

  19. Iftikhar, S., Erden, S., Kumam, P., Awan, M.U.: Local fractional Newton’s inequalities involving generalized harmonic convex functions. Adv. Differ. Equ. 2020(1), 1 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iftikhar, S., Kumam, P., Erden, S.: Newton’s-type integral inequalities via local fractional integrals. Fractals 28(03), 2050037 (2020)

    Article  MATH  Google Scholar 

  21. Jarad, F., Abdeljawad, T., Baleanu, D.: On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 10(5), 2607–2619 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jarad, F., Uğurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, 247 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  25. Luangboon, W., Nonlaopon, K., Tariboon, J., Ntouyas, S.K.: Simpson-and Newton-type inequalities for convex functions via \(\mathit{(p,q)}\)-calculus. Mathematics 9(12), 1338 (2021)

    Article  MATH  Google Scholar 

  26. Mohammed, P.O., Hamasalh, F.K.: New conformable fractional integral inequalities of Hermite-Hadamard type for convex functions. Symmetry 11(2), 263 (2019)

    Article  MATH  Google Scholar 

  27. Noor, M.A., Noor, K.I., Awan, M.U.: Some Newton’s type inequalities for geometrically relative convex functions. Malaysian J. Math. Sci. 9(3), 491–502 (2015)

    MathSciNet  Google Scholar 

  28. Noor, M.A., Noor, K.I., Iftikhar, S.: Some Newton’s type inequalities for harmonic convex functions. J. Adv. Math. Stud. 9(1), 07 (2016)

    MathSciNet  Google Scholar 

  29. Noor, M.A., Noor, K.I., Iftikhar, S.: Newton inequalities for p-harmonic convex functions. Honam Math. J. 40(2), 239–250 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Pečarić, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, Boston (1992)

    MATH  Google Scholar 

  31. Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. Dyn. Syst. 57, 2403–2407 (2013)

    Article  MATH  Google Scholar 

  32. Sitthiwirattham, T., Nonlaopon, K., Ali, M.A., Budak, H.: Riemann-Liouville fractional Newton’s type inequalities for differentiable convex functions. Fractal Fract. 6(3), 175 (2022). https://doi.org/10.3390/fractalfract6030175

    Article  Google Scholar 

  33. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Springer, Germany (2013)

    Book  MATH  Google Scholar 

  34. Zhao, D., Luo, M.: General conformable fractional derivative and its physical interpretation. Calcolo 54, 903–917 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, T.C., Yuan, Z.R., Du, T.S.: On the fractional integral inclusions having exponential kernels for interval-valued convex functions. Math. Sci. 17(2), 107–120 (2023)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, F.H. and H.B.; investigation, C.U. and H.B.; methodology, F.H.; validation, C.U. and F.H.; visualization, H.B. and F.H.; writing-original draft, C.U. and F.H.; writing-review and editing, C.U. and H.B. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fatih Hezenci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünal, C., Hezenci, F. & Budak, H. Conformable fractional Newton-type inequalities with respect to differentiable convex functions. J Inequal Appl 2023, 85 (2023). https://doi.org/10.1186/s13660-023-02996-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-02996-0

MSC

Keywords