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1 Introduction

Simpson’s second rule has the rule of the three-point Newton—Cotes quadrature. Com-
putations for three steps with a quadratic kernel are usually called Newton-type results.
In the literature, these results are called Newton-type inequalities. Newton-type inequal-
ities have been investigated extensively by many mathematicians. For instance, in [14],
Newton-type inequalities were considered for functions whose second derivatives are
convex. Noor et al. established Newton-type inequalities associated with harmonic con-
vex and p-harmonic convex functions in [28] and [29], respectively. In [25], Newton-type
inequalities were proved by postquantum integrals. Moreover, several error estimates of
the Newton-type quadrature formula by bounded variation and Lipschitzian mappings
were presented in [12]. Furthermore, Newton-type inequalities were presented for quan-
tum differentiable convex functions in [4]. The reader is referred to [18, 20, 27, 32] and the
references therein for more information and unexplained subjects about Newton-type in-
equalities including convex differentiable functions.

Fractional calculus has increased in popularity in recent years because of its applications
in a wide range of different domains of science. Due to the significance of fractional calcu-
lus, one can be considered different fractional integral operators. By using the Hermite—
Hadamard-type and Simpson-type inequalities, the bounds of new formulas can be ob-
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tained. For example, in [31], Hermite—Hadamard-type and trapezoidal-type inequalities
were established for the first time using the Riemann-Liouville fractional integrals. In
[32], sundry Newton-type inequalities were established by using Riemann—Liouville frac-
tional integrals for differentiable convex functions and the authors also acquired several
Riemann-Liouville fractional Newton-type inequalities for functions of bounded varia-
tion. In addition, sundry Newton-type inequalities for the case of functions whose first
derivatives in absolute value at certain powers are arithmetically harmonically convex
were obtained in [11]. Furthermore, several Newton-type inequalities were given and
some applications for the case of special cases of real functions were also presented in
[14]. See [9, 10, 16, 19, 20, 35] for details and unexplained subjects.

Riemann-Liouville fractional integrals, conformable fractional integrals, and many
types of fractional integrals have been considered with inequalities. Nowadays, it has
piqued the curiosity of mathematicians, engineers, and physicists [6, 33]. In addition to
this, fractional derivatives are also used to model a wide range of mathematical biology
problems, as well as chemical processes and engineering problems [7, 13]. By using the
derivative’s fundamental limit formulation, a newly well-behaved fundamental fractional
derivative known as the conformable derivative has proved in [23]. Several major require-
ments that cannot be applied by the Riemann—-Liouville and Caputo definitions are applied
by the conformable derivative. In [1] the author proved that the conformable approach in
[23] cannot yield good results when compared to the Caputo definition for the case of
specific functions. This flaw in the conformable definition was recovered by several ex-
tensions of the conformable approach [3, 8, 17, 26, 34].

This study takes the form of six sections, including the introduction. With the help of the
ongoing studies and the above-mentioned papers, we investigated Newton-type inequali-
ties involving conformable fractional operators. The fundamental definitions of fractional
calculus and other relevant research in this discipline are given in Sect. 2. We will prove
an integral equality in Sect. 3 that is critical in establishing the primary results of the pre-
sented paper. Moreover, sundry new Newton-type inequalities for conformable fractional
integrals will be proven. In Sect. 4, several results will be given by using special choices
of obtained inequalities. In Sect. 5, we will present some inequalities of conformable frac-
tional Newton-type for functions of bounded variation. Finally, in Sect. 6, we will give

several ideas for the further direction of research.

2 Preliminaries
Simpson-type inequalities are inequalities that are generated from Simpson’s following
rules:

i. Simpson’s quadrature formula (Simpson’s 1/3 rule):

)
/ Flx)dx~ (S_Ta[}"(o) ¥ 4;(%”) ¥ ]-'(6):|.

ii. Newton—Cotes quadrature formula or Simpson’s second formula (Simpson’s 3/8

rule):

)
/ Fx)dx~ ‘S‘T"[f(a) + 3f<2“3+ ‘S) + 3]-'(0 +325> + ]-'(8)].
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Definition 1 (See [30]) Let us consider that I is an interval of real numbers. Then, a func-

tion F : I — R is said to be convex, if

Fux+ 1= p)y) < uF@) +(1-w)F(y)
is valid Vx,y € I and V. € [0, 1].

Definition 2 (See [15, 24]) Let F € L[0,4], 0,8 € R with o < §. The Riemann-Liouville
fractional integrals ]f+.7-" and ]f,]-' of order B > 0 are defined by

B _ 1 * . \B-1

]g+]:(x)——r('8)/(; - Fu)du, x>0 (1)
and

B _ 1 ’ _a\B-1

]5—f(x)—r(ﬂ)/x (n—x)""Fuwdp, x<3, 2)

respectively. Here, I denotes the Gamma function defined by
oo
) = / e “uP 1 du.
0

Let us note that /2, F(x) = J F(x) = F(x).

The fractional conformable integral operators were considered in [22]. These authors
also derived sundry characteristics and relationships between these operators and some
other fractional operators in the literature. The fractional conformable integral operators

are defined as follows:

Definition 3 (See [22]) Let 8 > 0 and « € (0,1]. For F € Li[o,8], the fractional con-
formable integral operator the generalized fractional Riemann-Liouville integrals (FCIOs)
L J7eF and # J¢ F are defined by

porariy_ L "<(x—0)“—(M—a)">ﬂ_1 F(n)
*j“f(x)_r(ﬁ)/o « oy W ¥ ®
and
PIEF () = /6((5_x)a_(5_u)a>ﬂl TU i, <o @
TR ), « G-y TS0
respectively.

Let us consider & = 1 in equalities (3) and (4). Then, the fractional integral in (3) and (4)
coincides with the Riemann-Liouville fractional integral in (1) and (2), respectively. See

Refs. [2, 21] and the references therein for further information.
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3 Main results
Throughout the paper, we assume that « € (0,1], B € R*.

Lemmal Let F :[o,8] — R beadifferentiable mapping on (o,8) with 8 > 0and « € (0, 1].
If F' € L[o, 8], then the following FCIOs identity holds:

3eB-1g8 p 20 +6 28
2 Y| ger( ) e ge FIIEE) w8 g, F )
(6 —o0)p . 3 3 3 3

- 1[F(a) +3f(2° +5> ¥ 3f<° +25) +f(5)]
8 3 3

~ 8-0)a?
=

(L +L+15], (5)

where I'(B) is an Euler Gamma function and

Liii-a-p\ 5\, 20 +8
n=[((5F) o) (o (25 )
C(Yr-a-w* 1\ L[ (2048 o +28
n= () - )7 (o557 (257 ) e
V- -w\ 3 \.[ (o+28
we () )7 (+(757) v an

Proof Using integration by parts and changing variables with x = uo + (1 - u)(z"gf‘s ), we
obtain
Liri-a-p*\ 5 20 +8
11=/ 1-a-p —— ) F o+ 1 - o du
0 o Saf 3

1

3 1-(1-p)*\* 5 20 +§6
() aa) Al aen(357)

1 a B-1
3 (1"“"“) (l—u)"‘lf(;w+(1—M)(263+8>)du

+
§—0 0 o

9 15 20 +6
- _|:80H3(5—0)}—(0)+ 805/3(8—0)]:( 3 )]
3\ [ O - k-0 \ F)
9 15 20 +6
- _|:8a/3(8—0)]:(6)+ 80513(8—0)]:< 3 )]

(x—o)l
3B+ 1)[P (20 +38
G-y Lj"f( 3 )]

o

Similar to the foregoing process, changing variables with x = u(%) +(1- u)(%z‘s) and
x= u(%z‘s) + (1 - )8, we have

Lrri—a-p\ 1 o (2045 o +28
1/0« a )_207‘>f<”( 3 )”““’( 3 ))d"“
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3 1-(1-p)* p 1 20 +6 o+2§ !
o) a )P ) e (75)
38 (/1-(1-wp*\? vl 20 +4
+(5—U)0< 2 > (= f(“( 3 )
+(1—m<";25))du
3 o+26 3 20 + 6
_[201/3(8—0);( 3 )+2aﬂ(6—o)f< 3 )]
N B Y (R G Vv )
+<m) ﬁ/@( o ) (x_@)l—adx
3 o+28 3 20 + 46
z_[zaﬁ(a—a)f< 3 )+2aﬁ(6—o)f< 3 )]

. 3B (B + 1) [ ngaF(U + 25)}

(5—0‘)1“’“9 3
and
Li1i-a-p*\ 28
b= [T —5ar) 7 (1(557) -
0 o 8af 3
3 1-1-p*\* 3 (0+23 !
= - -— —_— 1-w)s
8—0(( o ) 80[/3>]: M\ 73 - 0
38 [Y/1-(1-p)*\*! vl o +28
*3 Q- Flu +(1-u)d ) du
-0 Jo o 3
9 15 o +268
=—|—F(@
|:8a/3(8—o)]:( )+ 8af (8 —o) < ):|
3 1+ap Ky (5—_0) _( _ 0+28)a -1 ]_-(x)
(%) L (5 ) oz
= 3
9 15 o +28
=—|—F(@
|:8a5(5—0)}—( )+ Saﬁ(S—U)}—< 3 ):|
3T (B+1) g,y
+ W[ jmzs]'—((s)]
Finally, if we multiply I; + I + I3 by , then we have (5). This completes the proof of
Lemma 1. O

Theorem 1 Assume that all the assumptions of Lemma 1 hold. Moreover, let |F'| be a

convex function on [o,8]. Then, we have

30f-1g P 20 +68 o+28
B qa B T
’(8 v F(ﬁ+1)[ < 3 >++ J263+5f( 3 >++ \75325}(8)]

- 1[Jf(a) +3f(2” +5> " 3]—'(0 +25> +]—'(8)”
8 3 3

— B
- (6 -0)x
- 27

[(242(c, B) + A1(at, B) + Asla, B) + As(a, B) + As(at, B)) | F (o)
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(AZ(a: ﬂ) _Al(a’ ,3) + 2A4,(Ot, ;3) —A3(Ol, ,3)

I

(6)

+ 3A6(a) ﬂ) _AS(O[’,B)) |-F/

where

1 1_(1_M)o¢ B 5
Al(a,lg):‘/o M(i) _S(X—ﬂ dﬂ
C1[5(e 1), 1 2 (5\
“arls(e-3) o (82 (5))

() o) 2o

1 1-(1- a\ B 5
Ar(, B) = /0 (%) -
1[5 1 1 1 (5\F
:a—ﬁ[g(zcl—l)+a(%<ﬁ+l,a>—28(/34’1,&,(5) >)],
1 _ _ a\ B
As(a,ﬂ)=/0 M(#) —M%‘du
FHCRIRIC (REIOY
Twfl2\2 )" HP A
—28<ﬂ+1 ( > ) </3+1,E>+%(,B+1,1)>],
o o

Auler B) = fo (%) ‘du

[ a(lper)se2(3)

==

)l

As(a, B) = ( ) 8a? |

:a%[z( a2 6))

sl (3))x(erd) x(end))]
A(,(ot,ﬁ):/ol (#)ﬂ‘% A ;

1(3 1 1 1 /3
= (x_ﬂ|:§(2C3_1)+ a(%<ﬁ+1,&> —28(/34—1,;,(5) >)].
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1 1 1
Here, C =1—(1-(3)F)a, Cy=1—-(1-(})P)«, C3= 1= (1= (3)P)w, the functions B(-,)
and B(-,-,-) are the Beta function and the incomplete Beta function defined as

B(x,y) = [y w (1 - up ' du,
B(x,y,r) = fouw (1 —u) " du

forx,y>0andrel0,1].

Proof By Lemma 1, integrating by parts and the convexity of | F'|, we obtain

3eb-1yp 20 +38 o +28
— (ﬂ+1)[ ( 3 )+EJ;LT+J( 3 )+’3J§‘+T25F(6)]

(6 —0)F

- %[]—'(a) ; 3f<2"3+ 8) " 3]—"(0 ;2‘3) +]-"(5)]’
(-2 aen()o
L) 27 ((352) v (552))
A=) )

&

(757) -0 |
el (“%Y— 7 (355) e (557)2) e
+/0 < —@-p\ 1

(3 (5
) - (2
< [ (5 () -
L)

e [ () (=22 -
a5y e
oty L
o () () - o]

(8- o)ab

27
+ (As(a, B) — Av(e, B) + 2A4(at, B) — As(e, B) + 3As(ar, B) — As(at, B))| F'(8)].

20+ 48

w| |

n

™= ’

"

[(242(a, B) + A1(at, B) + Asler, B) + As(a, B) + As(at, B)) | F (o)

This is the desired result of Theorem 1. O
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Theorem 2 Suppose that all the assumptions of Lemma 1 hold. Suppose also that |F'|? is
a convex function on [0, 5], where % + é =1 with p,q > 1. Then, we have

3eB-1g,8 p 20 +6 28
’—“rwﬂ)[ J:f( “; )+fj;;3+5f(‘” )+f :;az,;f(w]

3

8—0o)b 3

- 1[]—'(0)+3]—'(2(7 +8> +3.7-"((7 +26> +.7-'(8):H
8 3 3

—)aPT L / / i
E(8 ;f)tx [Aé,(a’ﬁ’p)(filf(o)lq6+ IF(S)Iq)

+A§(a,ﬁ,p)< S (o)l + |F(a)|q> z

2
+A;l’(a,ﬂ,p)(|]:/(‘7)|qJ;SI}"((S)VI)%} i
where
A7(a’ﬂ’p)=/ol (%J)ﬁ-&%pdu,
As(a:ﬂ,p)=/01 (1‘(1()1—‘/”[)’3_20%1’
and
s = [ () -

Proof If we consider Lemma 1, then we can readily obtain
3eh-1gP P 20 +8 28
2L )| JeF( ) o g, F( TR ) 4 T8 FO)
(8—o)eb . 3 3 3 3
—1[]-"(0)+3]-'<26+8>+3]—"<G+25)+]-"(8)]’
8 3 3
_ B 1 (11— )@\? _
[t (5 (2
9 0 o Saf 3 3
U/i-1-p*\f 1 {1+ 21
AT a5 (55 )
H1-a-w\' 3 || (3-n
) sl G (57 )| ) @

Now, we consider the integrals on the right side of (8). Using the convexity of |F’|? and

the well-known Holder inequality, we have
Hi-a-w*\ 5 2 1-
/ 1=A=wW™\"_ 5 F' MLl PN s dup
0 o Saf 3 3
1 1-— (1 _ M)O{ B 5 » }g
< — ) -—| d
. (-/0 ( @ ) 8 | >

Page 8 of 19
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LB () o)

1 1 _ 1
sAé’(a,ﬁ,p)(/o (2;M|J-"’(a)|q+ITM|J-"’(8)|”>dM>

)

51F/(0)]7 + |f’<a)|q]é

:A;(%ﬁ’P)[ 6

In a similar manner, we readily obtain
Ni-a-we\ 1 1 2-
) -l ((55) (50 )
0 o 2aP 3 3
1 1_(1_M)a B 1 p }7
— ) -—| d
(L) -zl )
! 1 2- 1 \a
(L) (55 )o) )
0 3 3

1 1 2_ %
<A} (%ﬁp)(/o (1 ;M | ()] + TM\}"(S)V) du)

(10)

| (o)) + |f’(6)|qr

:Ag(a,ﬁ,P)[ 5

and
1-1-p*\* 3 m 3-u
(F525) a7 (5o (552)0)
1 1_(1_M)a B 3 r 1% 1 a 3_/‘L
f(/o (—a ) " 8P "“) (fo f(§“+(7)5>
1 1 _ 7
<Al (a,ﬂ,p)( fo (%|f/<o)|q + 3T“|f’(6)yq> du)

(o)) + SW((S)'T
a .

_

7 1
d,u>

(11)

=AJ (a,ﬁ,p)[

If we insert from (9)—(11) into (8), then we have

(8 —0o)b 3
- 1[Jf(a) + 3]—'(26 i 5) " 3]—'(0 i 25) +]—'(8)”
8 3 3

3 (5_o)aﬂ[ , (5|f/(a)|q+ |f/(8)|q)5

3eB-1g,8 B 20 +6 26
’—“rwu)[ Jé"f< o )+€ Jz,s%f(‘” )+€J;*+325f(5>]
+

== A7 (a,B,p) c

| (o) + |f’(6)lq)5 Al (a,ﬂ,P)<|]-'/(a)|q + 5|F(5)|LI)5]'

+A§(a,/3,p)( 5 c

This completes the proof of Theorem 2. d
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Theorem 3 Let us consider that all the assumptions of Lemma 1 hold. If | F'|1 is convex

on [o,8], where q > 1, then we have the following Newton-type inequality

3e8-1,8 P 20 +6 28
S Y rgen)| ger( ) o8 ge, FITEE) w8 ge L, F )
(8—o)eb . 3 3 3 3

- %[]—"(a) ; 3f(2"3+ 8) " 3?(" ;2‘3) +]-"(8)]’

< (8 —;T)Olﬂ [A;_zlz(a,ﬁ)(<2A2(a’ﬁ);Al(a!ﬁ)) |]:/(O')|q

. (AZ(Ol, ,3) ;Al(ax ,3)) |f/(8)|7> 9

. Ai%(a’ﬂ)(<A4(a, ﬂ) +As(a, ﬂ)) ’]_-/(0,)|‘1

3

(et e f/(5)|q)5

.,_Ai_;(a,ﬁ)(w o)+ (3A6(Oé,,3)3—A5(0t,/3)> |]:/(8)iq) 5], (12)

where Ai(a, B), Az(a, B), As(a, B), Au(a, B), As(a, B), and Ac(a, B) are defined in Theo-

rem 1.

Proof If we consider the convexity of |F’|7 and power-mean inequality, then we obtain

Uii-@-w\N 5 || ((2+n 1-u
JICEE) - (G50 (502

1 1_(1_M)a B 5 1*%
<([1(=25) - s )

Hr1i-1-p*\f 5 A2+ 1-p
(L) -l ((5) - (50))
I Dr1-a-p\* 5
4, (a,ﬁ)(/o (—a )—Sa—ﬁ
#((555) e (55 )o) )
<A1_% H/1-(1-p) p 5
<o wo ([ -

|F(o)|* + 1%‘ |f/(8)\q] du)

:A;_;(a,ﬂ)((ZAZ(ayﬂ);Al(a)ﬂ))|]_—/(O,)|q

. (Az(Ol,,B);Al(a;ﬂ)>|}-/(5)|q>a' (13)

N
du)

X

1

q

Page 10 of 19
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In a similar manner, we have

=2 =gl (52 (555

([ )
(L= - (5 (52

e ([ L

I G
x [1+“|f’( )| ;M|}"(5)|q]du)%

:Al_q(a,ﬁ)(<A4(a ,B) ;Aa o, .3)>|]_—/( )|q

. <2A4(o[,ﬂ)3—A3(Ol,ﬁ)>{]__/(6)|q>q (14')

qdu>g
(5 (57))

7 \i
d,u)

and

[

-(1- M)a> 3
8af

]—"/(
- (1—-p) 3
( ) " 8af|”

1-(1-p)e 3
() -

S (550
“(f
: (

7 \q
du)

(5+(55))

1

el ) sl (e (5 )
mﬁ)(ol( -(a- uw> ézi[%pra”q+§%ﬁ4fqﬁv]du>;
ZA:%((X ; (AS(a ﬁ)‘ﬁ q <3A6(a’ﬁ)3_AS(a’ﬁ)>|f’(8)|q);- (15)
If we insert (13)—(15) into (8), then the proof of Theorem 3 is finished. 0

4 Special cases

Remark 1 If we choose @ = 1 in (5), then the equality reduces to
31 rgnlp #2018 o +28 6
(8—0’)‘6 (13+ ) ]a‘r 3 ](2(7+5 3 ](7+25 )

- %[]—"(a) " 3f<2"3+ 8) ¥ 3F<" ;2‘3) +f(5)]

Page 11 0of 19
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- (S_Ta[l;‘ v+ 1),

where

1
If:/ (Mﬂ_Z)F/<MU+(1_M)<263+8))W'
0
1 1 20 +48 o +26
* _ B_ / —
12_/0(M 2)f<ﬂ( 3 >+(1 M)( 3 ))du’
1 s
I;f:/o (M—g)ﬁ(;t(a ;2 >+(1—M)5) du.

This coincides with [32, Lemma 1].

Remark 2 1f we select @ = 1 in (6), then we obtain

3t s (20+8\ 4 o+28\ 4
’mr(ﬂ+1)[](,+]:< 3 >+](2L,3+5)+.7-'<T>+](M325)+,F(8):|

- 1[Jf(a) +3JT(2‘7 +5> " 3;(" +28) +f(a)”
8 3 3

§—
= 2—70[(2143(/3) +Aj(B) + A;(B) + A5(B) + AL(B)) | F (o)

+ (45(8) - AT(B) + 245(B) - A3(B) + 3A5(B) — A3(B)) | F'(8)|]-

1 1 B [(1\F 1 1
£(B) = N z _Z
A?’(ﬁ)_/o “‘”“ 2’d“_,3+2<2) TBr2 @

1 1 28 (1\ F 1 1
(Y = B_ 2| gy = - _Z
A4(/3)—/0 W ’du— 1(2> te Ty

2
1
AL(B) - fo u

AP = fo 1

which is established by Sitthiwirattham et al. [32, Theorem 4].

g 3l o P (3", L 3
Y A B+2 16

3 28 (3\ F 1 3
B_Zldu= Z _Z
W ‘ 122 (8) + 178

8

Remark 3 Consider « = 8 =1 in (6). Then, (6) becomes

1 8 1 20 + 4 28
ﬁ/a ]:(u)du—g[]-"(o)+3]-'( "; >+3f<‘”3 )+]—"(3)”
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< 25(8 — o)

76 (|7 ()] + |F'(®)

which is given in [32, Remark 3].

Remark 4 Note that the inequality (7) for « = 1 reduces to

30! 20 +8 26
‘(5 —y B 1)[15&( 03+ ) +](%{,3+5)+;r(%> +]fogza)+f(5)}
- %[]—'(a) " 3]—‘(26; 5) " 37(" ;2‘3) +]-‘(5)]‘

5— L (51F () + | F(8)]4\ 4
=257 gy (AL

L F )|+ | FS)e\ 7 L (| F ()| + 5|1 F(8)4\ 7
where

1 51’
A?(ﬁ,p)=/0 M5—§ du,

1 117
A= [ | -5 dn,

1 3[7
A3(B.p) = fo W]

This is proved by Sitthiwirattham et al. [32].
Remark 5 Consider « = 8 =1 in (7). Then, (7) coincides with

b
ﬁ/a Flw) dyu - %[}'(o) +3f<2“3+5) +3.7—'<G *328> +.7—'(5)]‘

1

5_o [(am ; 3p+1>p (IJ-'/(G)I‘I " 5|;,(5)|q>;

<
= 9 |\8ip+1) 6

1 \? [(IF ()9 +|F @)\
(apr) (TP

5p+1 4 3041\ 5 (5| F (o)) + | F/(8)]7) 4
+(fip*l(zm)) ( 6 ) ]

which is given in [32, Remark 5].

Remark 6 For o = 1, the inequality (12) becomes
31 6 2048\ o+28\ 4
‘7(5_6)/3F(ﬁ+1)|:]6+]:( 3 )+](2(,3+5)+]-'( >+]((,+325)+f(8)}

- %[]—"(a) " 3f<2"3+ 8) ¥ 3F<" ;2‘3) +]-"(3)]’
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1

< [( A5 <(2A’5(ﬂ);A’{(ﬁ))| Flof+ (KD )’

1 (AN A*(B) — A* i

Here, A7(B), A5(B), A5(B), A3(B), AL(B), A{(B) are defined in Remark 2. For the proof, we
refer to [32, Theorem 5].

Remark7 Consider @ = 8 =1 in (12). Then, (12) becomes

8
fo/a Fwdp - %[}'(o) +3f<2"3+8) +3f(" ;28> +]—'(3)]‘

_-o[(17 -4 (251|F (0))|9 + 973|F (8|9
36 |\ 16 1152

\F )+ |F@)NI\T (17\"7 [973|F (o)1 + 251 F(8)|
+< 2 > +<16> ( 1152 )]

which is given in [32, Remark 4].

5 Fractional Newton-type inequality for functions of bounded variation
In this section, we establish a fractional Newton-type inequality for function of bounded

variation.

Theorem 4 Let us consider that F : [o,8] — Risa function of bounded variation on [0, 5].
Then, we obtain the following Newton-type inequality for FCIOs

2 ) 28
F(ﬁ+1)[ ("; )+€J;t,3+5f(‘”3 >+'3J$‘+325f(8)]

39h-1gp
(6—0)F

8

1 20 +48 o +28 5
—g[}"(o)+3]-'( 3 >+3}"< 3 ) (a)” ﬁ\/(]-").

o

Here, \/f(]:) is the total variation of F on [c,d].

Proof Consider

((552)% = (x - 0)%)P — 2(552)%%, 0<x<@,
LW = 1 ()~ = 220 - B 2 xR,
A R

Then, this yields

2(r+5

§—o\* N B 5/5-0\%
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(r+25

o (5 (2500 ) -3057) oo
(57 - (=52) ) 3(57)

By using integration by parts, we obtain

20+8

3 §—0\* O 58—\
[(((557) -wor) 5(557) )erw
_ o B _ op 2048
(5 -oor) )
203+5 8—0‘ o B-1
+af5/ ((T) —(x—a)"‘) (x—0) 1 F(x)dx
af of
Y i) )
8 3 8 3 3
B
f’l“(ﬁ+1)[ Jo‘_’]-'(%;a)].

In a similar manner, we obtain

og+28

L ((C57) - (-557) ) -5(557) e
YA A
ﬁT(ﬁ“)[iJ&’%g}‘(G *32 )]

1
2
8

and

([ TR S
) )]

+afr(g+ 1) T F(8)]-

By inserting the equalities (17)—(19) into (16), we have

S
/ () dF (x)

_aﬂr(ﬁ+1)[ (2 3+8) +f j;;J(“ ;25> 4 j;ﬁzs}'(a)]

of
——<8 ”) |:]-"(a)+3]-'(20+8>+3]—"<6+25)+]-"(8)]
s\ 3 3 3

(16)

(17)

(18)

(19)
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Thus, it follows that

30f-1gP 20 + 48 o+28
B qa B Ta
= )aﬁ —TI(B+ 1)|: ( 3 >+Jr «72«73”35 ( 3 >+Jr j{r+325‘; (5)]

- —[f(a)+3f( ? +5> +3f<” +25> +]-'(8)}
8 3 3

af-1 8
= (53_0)04‘ / O (x) dF (x). (20)

If we take modules of equality (20), then we readily obtain

3eb-1yp 20 +34 28
“ r(,3+1)[ <"3+ )+fjg;3+5f(‘” >+fj,‘}+325]-'(8)]

8 —o)b 3
- 1[Jf(a) +3]—'( i +5> " 3]—'(0 +25> +]—'(8)”
8 3 3
30:5—1 8 P
< m v/a Cba(x)d]:(x) . (21)

It is well known that if 7, g : [0,8] — R are such that g is continuous on [o, 8] and F is of

bounded variation on [o, 8], then f(f g(u) dF () exists and

P
/ W dF ()

By using the inequality (22), we obtain

< sup |gw]\/(F). (22)

nelo,s]

8
/dbg(x)d]:(x)
2(7+5 B _ apf
f[, (((57) o) =5(57) Jesen
a+28 a\ B af
(557) -(557) ) =5(57) e
20+5 3 2 3
ap
Lall(57) - (=52) ) 3057 )ars
0+25 3 3 8 3
§—o D 5/85-0\* )
= s, (( 3 ) G- "’) §<T> V&
s§—o\” 20 +8\*\’ 1/8-0\* KA
o ((57) -(=757) ) -3(557) |V
§-o\* 26\*\* 3/8-0\"|\
o J(57) - (-557) ) (57) v

xe[“—*sﬁ,él o+28
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5(86-0\"\°
<—|\— F).
< 8( 3 ) \/(F)
Then, similar to the foregoing process, we readily have

8 ap @
/ W, (x) dF (x) <§<5_—") \/ (). (23)

— 8 3

o

If we substitute the inequality (23) in (21), then the following inequality holds:

3eB-1yB B 20 + 6 28
‘—“ <ﬂ+1)[ J:f( he )+€J§2T+af(“ )+£‘J3+Tmf(a>]

r
6 —o)p 3

)
- é[}'(o) ) 3f<2"3+ 8) ) 3]—'(0 *32‘3) . f(a)” <2 \/(;f),

which is the desired result of Theorem 4. O

Remark 8 If we assign « = 1 in Theorem 4, then we obtain the following inequality

§
oo (352) 3 (52) ] f

5 8
Sﬂ\‘/(‘;))

which is established by Alomari in [5].

6 Summary and concluding remarks

Several new versions of Newton-type inequalities are considered for the case of differ-
entiable convex functions by using conformable fractional integrals. To be more precise,
several Newton-type inequalities for differentiable convex functions are constructed by
using the Holder and power-mean inequalities. Furthermore, more results are presented
by using special choices of the obtained inequalities. Finally, we establish some inequalities
of conformable fractional Newton type for functions of bounded variation.

In the future work, the ideas and strategies for our results related to Newton-type in-
equalities by conformable fractional integrals may open up new ways for mathematicians
in this area. Moreover, one can try to generalize our results by utilizing a different version
of convex function classes or another type of fractional integral operators. Finally, one can
obtain these type of inequalities by conformable fractional integrals for convex functions
by using quantum calculus.
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