- Research
- Open access
- Published:
On some investigations of alpha-conformable Ostrowski–Trapezoid–Grüss dynamic inequalities on time scales
Journal of Inequalities and Applications volume 2023, Article number: 83 (2023)
Abstract
We prove new Ostrowski-type α-conformable dynamic inequalities and its companion inequalities on time scales by using the integration-by-parts formula on time scales associated with two parameters for functions with bounded second delta derivatives. When \(\alpha =1\), we obtain some well-known time-scale inequalities due to Ostrowski. As particular cases, we obtain new continuous and discrete inequalities.
1 Introduction
The theory of time scales has become a trend and is now part of the mathematics subject classification: see 26E70 for “Real analysis on time scales”; 34K42 for “Functional-differential equations on time scales”; 34N05 for “Dynamic equations on time scales”; and 35R07 for “PDEs on time scales”. The subject has began with the PhD thesis of Hilger to get continuous and discrete results together [20, 21]. In books [8, 9], Bohner and Peterson introduce most basic concepts and definitions related with the theory of time scales. In [3, 10, 14, 22], several mathematicians investigate new forms of dynamic inequalities.
For instance, Bohner and Matthews [6] seem to be the first mathematicians to introduce the dynamic Ostrowski inequality on time scales as follows.
Theorem 1.1
Let ϱ, ς, ω, τ \(\in \mathbb{T}\), \(\varrho <\varsigma \), and let \(\Theta:[\varrho,\varsigma ]_{\mathbb{T}}\rightarrow \mathbb{R}\) be a delta differentiable function. Then for all \(\omega \in [\varrho,\varsigma ]_{\mathbb{T}}\), we have
where \(h_{2}(\omega,\tau )=\int _{\tau}^{\omega}(s-\tau )\Delta s\) and \(M= \sup_{\varrho <\tau <\varsigma}|\Theta ^{\Delta}(\tau )|< \infty \). Inequality (1.1) is sharp in the sense that the right-hand side cannot be replaced by a smaller one.
Also, Bohner and Matthews [5] are the first mathematicians to introduce the dynamic Grüss inequality on time scales as follows.
Theorem 1.2
Let Θ, \(\phi \in C_{rd} ([\varrho,\varsigma ]_{\mathbb{T}},\mathbb{R} )\) with
Then we have
Ostrowski’s inequality has a significant importance in many fields, particularly in numerical analysis. One of its applications is the estimation of the error in the approximation of integrals. Many generalizations and refinements of the Ostrowski inequality and its companion inequalities were done during the past several decades; we refer the reader to the papers [1, 3, 10, 12–14, 19, 22, 24, 25, 28, 29], the books [2, 26, 27], and the references cited therein.
Some various generalizations and extensions of the dynamic Ostrowski inequality and its companion inequalities can be found in [7, 11, 16–18, 23, 30].
Here we prove new dynamic Ostrowski-type dynamic inequalities via the α-conformable calculus on time scales or functions with bounded second delta derivatives. Then we prove new generalized dynamic trapezoid- and Grüss-type inequalities on time scales. Our inequalities have a completely new form. As particular cases, we obtain some new continuous and discrete inequalities of Ostrowski type generalizing those obtained in the literature. The paper is organized as follows. In Sect. 2, we briefly recall necessary results and notions. Then we give and prove the original results in Sect. 3. We end with Sect. 4 of conclusion.
2 Time scales preliminaries
This section is devoted to the presentation of some preliminaries about fractional conformable derivatives developed in [4].
Now, let us take a journey to the center of the time scales calculus. A time scale \(\mathbb{T}\) is an arbitrary nonempty closed subset of the set of real numbers \(\mathbb{R}\). Throughout the paper, we assume that \(\mathbb{T}\) has the topology inherited from the standard topology on \(\mathbb{R}\). We define the forward jump operator \(\sigma: \mathbb{T}\rightarrow \mathbb{T}\) for any \(\tau \in \mathbb{T}\) by
and the backward jump operator \(\rho: \mathbb{T}\rightarrow \mathbb{T}\) for any \(\tau \in \mathbb{T}\) by
In the preceding two definitions, we set \(\inf \emptyset =\sup \mathbb{T}\) (i.e., if τ is the maximum of \(\mathbb{T}\), then \(\sigma (\tau )=\tau \)) and \(\sup \emptyset =\inf \mathbb{T}\) (i.e., if τ is the minimum of \(\mathbb{T}\), then \(\rho (\tau )=\tau \)), where ∅ denotes the empty set.
Definition 2.1
Let \(\xi: \mathbb{T} \rightarrow \mathbb{R}\), \(\tau \in {\mathbb{T}}^{k}\), and \(\alpha \in (0,1]\). For \(\tau >0\), we define \(T^{\Delta}_{\alpha}(\xi )(\tau )\) to be the number (provided that it exists) such that, given any \(\epsilon > 0\), there is a δ-neighborhood \(U_{\tau }\subset \mathbb{T}\) of τ, \(\delta >0\), such that
for all \(s \in U_{\tau}\). We call \(T^{\Delta}_{\alpha}(\xi )(\tau )\) the conformable derivative of ξ of order α at τ, and we define the conformable derivative on \(\mathbb{T}\) at 0 as \(T^{\Delta}_{\alpha}(\xi )(0)=\lim_{\tau \longrightarrow 0+} T^{ \Delta}_{\alpha}(\xi )(\tau )\).
Remark 2.2
If \(\alpha =1\), then from Definition 2.1 we obtain the delta derivative of time scales. The conformable derivative of order zero is defined as the identity operator, \(T^{\Delta}_{0}(\xi )=\xi \).
Remark 2.3
Along the work, we also use the notation \((\xi )^{\Delta _{\alpha}}(\tau )=T^{\Delta}_{\alpha}(\xi )(\tau )\).
Theorem 2.4
Let \(\alpha \in (0,1]\), and let \(\mathbb{T}\) be a time scale. Let \(\xi: \mathbb{T} \rightarrow \mathbb{R}\) and \(\tau \in{ \mathbb{T}}^{k}\). Then:
-
(i)
If ξ is conformal differentiable of order α at \(\tau >0\), then ξ is continuous at τ;
-
(ii)
If ξ is continuous at τ and τ is right-scattered, then ξ is conformable differentiable of order α at τ with
$$\begin{aligned} T^{\Delta}_{\alpha}(\xi ) (\tau )= \frac{\xi (\sigma (\tau ))-\xi (\tau )}{\mu (\tau )} \tau ^{1-\alpha}; \end{aligned}$$ -
(iii)
If τ is right-dense, then ξ is conformable differentiable of order α at τ if and only if there exists the finite limit \(T^{\Delta}_{\alpha}(\xi )(\tau ):=\lim_{s\longrightarrow \tau} \frac{\xi (\tau )- \xi (s)}{\tau -s} \tau ^{1-\alpha}\);
-
(iv)
If ξ is differentiable of order α at τ, then
$$\begin{aligned} \xi \bigl(\sigma (\tau ) \bigr)=\xi (\tau )+\mu (\tau )\tau ^{\alpha -1} T^{ \Delta}_{\alpha}(\xi ) (\tau ). \end{aligned}$$
Theorem 2.5
Let \(\xi,\varpi:\mathbb{T}\longrightarrow \mathbb{R}\) be conformable differentiable of order \(\alpha \in (0,1]\). Then:
-
(i)
The sum \(\xi +\varpi:\mathbb{T}\longrightarrow \mathbb{R}\) is conformable differentiable with
$$\begin{aligned} T^{\Delta}_{\alpha}(\xi +\varpi )= T^{\Delta}_{\alpha}(\xi )+ T^{ \Delta}_{\alpha}(\varpi ); \end{aligned}$$ -
(ii)
For any \(k \in \mathbb{R}\), \(k\xi:\mathbb{T}\longrightarrow \mathbb{R}\) is conformable differentiable with
$$\begin{aligned} T^{\Delta}_{\alpha}(k\xi )= kT^{\Delta}_{\alpha}(\xi ); \end{aligned}$$ -
(iii)
If ξ and ϖ are continuous, then the product \(\xi \varpi:\mathbb{T}\longrightarrow \mathbb{R}\) is conformable differentiable with
$$\begin{aligned} T^{\Delta}_{\alpha}(\xi \varpi )= T^{\Delta}_{\alpha}(\xi )\varpi + \xi ^{\sigma} T^{\Delta}_{\alpha} (\varpi )=T^{\Delta}_{\alpha}(\xi ) \varpi ^{\sigma} +\xi T^{\Delta}_{\alpha} (\varpi ); \end{aligned}$$ -
(iv)
If ξ is continuous, then \(1/\xi \) is conformable differentiable with
$$\begin{aligned} T^{\Delta}_{\alpha} \biggl(\frac{1}{\xi} \biggr)= \frac{-T^{\Delta}_{\alpha}(\xi )}{\xi (\xi \circ \sigma )} \end{aligned}$$at all points \(\tau \in {\mathbb{T}}^{k}\) for which \(\xi (\xi \circ \sigma ) \neq 0\);
-
(iv)
If ξ and ϖ are continuous, then \(\xi /\varpi \) is conformable differentiable with
$$\begin{aligned} T^{\Delta}_{\alpha} \biggl( \frac{\xi}{\varpi} \biggr)= \frac{T^{\Delta}_{\alpha}(\xi )\varpi -\xi T^{\Delta}_{\alpha}(\varpi )}{\varpi \varpi ^{\sigma}} \end{aligned}$$for all \(\tau \in \mathbb{T}^{k}\) for which \(\varpi \varpi ^{\sigma} \neq 0\).
Definition 2.6
Let \(\xi:\mathbb{T}\rightarrow \mathbb{R}\) be a regulated function. Then for \(0< \alpha \leqslant 1\), the α-conformable integral of ξ is defined by
Definition 2.7
Let \(\xi:\mathbb{T}\rightarrow \mathbb{R}\) be a regulated function. The indefinite α-conformable integral of ξ of order \(\alpha \in (0,1]\) is defined as \(F_{\alpha}(\tau )= \int \xi (\tau ) \Delta _{\alpha }\tau \). Then, for all \(a, b \in \mathbb{T}\), we define the Cauchy α-conformable integral by
Theorem 2.8
Let \(\alpha \in (0,1]\). Then for any rd-continuous function \(\xi:\mathbb{T}\rightarrow \mathbb{R}\), there exists a function \(F_{\alpha}: \mathbb{T}\rightarrow \mathbb{R}\) such that \(T_{\alpha}^{\Delta}(F_{\alpha})(\tau )=\xi (\tau ) \) for all \(\tau \in \mathbb{T}^{k}\). The function \(F_{\alpha}\) is said to be an α-antiderivative of ξ.
The conformable integral satisfies the following properties.
Theorem 2.9
Let \(\alpha \in (0,1]\), a, b, \(c \in \mathbb{T}\), and \(\omega \in \mathbb{R}\), and let ξ, ϖ be two rd-continuous functions. Then:
-
(i)
\(\int _{a}^{b} [ \xi (\tau )+ \varpi (\tau )] \Delta _{\alpha}\tau = \int _{a}^{b} \xi (\tau ) \Delta _{\alpha}\tau +\int _{a}^{b} \varpi ( \tau ) \Delta _{\alpha}\tau \);
-
(ii)
\(\int _{a}^{b} \omega \xi (\tau ) \Delta _{\alpha}\tau = \omega \int _{a}^{b} \xi (\tau ) \Delta _{\alpha}\tau \);
-
(iii)
\(\int _{a}^{b} \xi (\tau ) \Delta _{\alpha}\tau =-\int _{b}^{a} \xi ( \tau ) \Delta _{\alpha}\tau \);
-
(iv)
\(\int _{a}^{b} \xi (\tau ) \Delta _{\alpha}\tau =\int _{a}^{c} \xi ( \tau ) \Delta _{\alpha}\tau + \int _{c}^{b} \xi (\tau ) \Delta _{ \alpha}\tau \);
-
(v)
\(\int _{a}^{a} \xi (\tau ) \Delta _{\alpha}\tau =0\);
-
(vi)
if there exists \(\xi: \mathbb{T}\rightarrow \mathbb{R}\) with \(|\zeta (\tau )|\leq \xi (\tau \) for all \(\tau \in [a,b]\), then \(|\int _{a}^{b}\zeta (\tau )\Delta _{\alpha}\tau |\leq \int _{a}^{b} \xi (\tau )\Delta _{\alpha}\tau \);
-
(vii)
if \(\xi >0\) for all \(\tau \in [a,b]\), then \(\int _{a}^{b}\xi (\tau )\Delta _{\alpha}\tau \geq 0\).
The α-conformable integration-by-parts formula on time scales is given in the following lemma.
Lemma 2.10
([31, Theorem 4.3(v)])
Let a, \(b \in \mathbb{T}\) with \(b>a\). If ξ, ϖ are conformable α-fractional differentiable and \(\alpha \in (0,1]\), then
We use the following crucial relations between calculus on time scales \(\mathbb{T}\), differential calculus on \(\mathbb{R}\), and difference calculus on \(\mathbb{Z}\). Note that:
-
(i)
For any time scales \(\mathbb{T}\), we have
$$\begin{aligned} (\xi )^{\Delta _{\alpha}}(\tau )=(\xi )^{\Delta}(\tau )\tau ^{1- \alpha},\qquad \int _{a}^{b}\xi (\tau )\Delta _{\alpha}\tau = \int _{a}^{b} \xi (\tau )\tau ^{\alpha -1}\Delta \tau; \end{aligned}$$ -
(ii)
If \(\mathbb{T}=\mathbb{R}\), then
$$\begin{aligned} \sigma (\tau )=\tau, \qquad\mu (\tau )=0, \qquad f^{\Delta}(\tau )=f'( \tau ),\qquad \int _{a}^{b}f(\tau )\Delta \tau = \int _{a}^{b}f(\tau )\,d \tau ; \end{aligned}$$(2.2) -
(iii)
If \(\mathbb{T}=\mathbb{Z}\), then
$$\begin{aligned} \begin{aligned} &\sigma (\tau )=\tau +1, \qquad\mu (\tau )=1,\\ & f^{\Delta}(\tau )= \Delta f(\tau ),\qquad \int _{a}^{b}f(\tau )\Delta \tau =\sum _{\tau =a}^{b-1}f( \tau ). \end{aligned} \end{aligned}$$(2.3)
3 Main results
3.1 An Ostrowski-type inequality on time scales
Theorem 3.1
Let \(\mathbb{T}\) be a time scale with ϱ, ς, ω, \(\tau \in \mathbb{T}\) and \(\varrho <\varsigma \). Further, assume that \(\Theta:[\varrho,\varsigma ]_{\mathbb{T}}\rightarrow \mathbb{T}\) is a twice delta-alpha differentiable function. Then, for all \(\omega \in [\varrho,\varsigma ]_{\mathbb{T}}\) and \(\theta,\vartheta \in \mathbb{R}\), we have
where
and
Proof
Using the integration-by-parts formula on time scales (2.1), we have
and
Adding (3.2) and (3.3), we get
Similarly, we have
Substituting (3.5) into (3.4) leads to
Inequality (3.1) follows directly from (3.6) and the properties of modulus. This completes the proof. □
Remark 3.2
Taking \(\alpha =1\) in Theorem 3.1, we get Theorem 3.1 in [15].
Corollary 3.3
If we take \(\mathbb{T}=\mathbb{R}\) in Theorem 3.1, then by relation (2.2) inequality (3.1) becomes
where
and
Corollary 3.4
If we take \(\mathbb{T}=\mathbb{Z}\) in Theorem 3.1, then by relation (2.3) inequality (3.1) becomes
where
and
3.2 A trapezoid-type inequality on time scales
Theorem 3.5
Under the assumptions of Theorem 3.1, we have
where
and
Proof
From (3.4) we have
and, similarly,
Now adding (3.8) and (3.9) produces
Multiplying the last identity by \(\Theta ^{\Delta _{\alpha}}(\omega )\), using (2.3), and integrating the resulting identity with respect to ω from ϱ to ς yield
Equivalently,
Taking the absolute values on both sides, we get
This shows (3.7). □
Remark 3.6
Taking \(\alpha =1\) in Theorem 3.5, we get Theorem 3.4 in [15].
Corollary 3.7
If we take \(\mathbb{T}=\mathbb{R}\) in Theorem 3.5, then by relation (2.2) inequality (3.7) becomes
where
and
Corollary 3.8
If we take \(\mathbb{T}=\mathbb{Z}\) in Theorem 3.5, then by relation (2.3) inequality (3.7) becomes
where
and
3.3 A Grüss-type inequality on time scales
Theorem 3.9
Let \(\mathbb{T}\) be a time scale with ϱ, ς, ω, \(\tau \in \mathbb{T}\) and \(\varrho < \varsigma \). Moreover, let Θ, \(\phi: [\varrho,\varsigma ]_{\mathbb{T}}\rightarrow \mathbb{R}\) be delta-alpha differentiable functions. Then for all \(\omega \in [\varrho,\varsigma ]_{\mathbb{T}}\) and \(\theta,\vartheta \in \mathbb{R}\), we have
where
and
Proof
From (3.4) we have
and, similarly,
Multiplying (3.11) by \(\phi (\omega )\) and (3.12) by \(\Theta (\omega )\), adding them, and integrating the resulting identity with respect to ω from ϱ to ς yield
By using the properties of modulus we obtain
This concludes the proof. □
Remark 3.10
Taking \(\alpha =1\) in Theorem 3.9, we get Theorem 3.7 in [15].
Corollary 3.11
If we take \(\mathbb{T}=\mathbb{R}\) in Theorem 3.9, then by relation (2.2) inequality (3.10) becomes
where
and
Corollary 3.12
If we take \(\mathbb{T}=\mathbb{Z}\) in Theorem 3.9, then by relation (2.3) inequality (3.10) becomes
where
and
4 Conclusions
The Ostrowski inequality and its companion inequalities have many applications and are subject to strong research: see the books [2, 26, 27] and recent publications [1, 12, 13, 25]. In this paper, by employing the α-conformable fractional calculus on time scales of Benkhettou et al. [4], we prove several new Ostrowski-type inequalities by using two parameters. These inequalities have certain conditions that have not been studied before. The results extend several dynamic inequalities known in the literature, which are new even in the discrete and continuous settings.
Availability of data and materials
Not applicable.
References
Agarwal, R., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4(4), 535–557 (2001)
Agarwal, R., O’Regan, D., Saker, S.: Dynamic Inequalities on Time Scales. Springer, Cham (2014)
Ahmad, F., Cerone, P., Dragomir, S.S., Mir, N.A.: On some bounds of Ostrowski and Čebyšev type. J. Math. Inequal. 4(1), 53–65 (2010)
Benkhettou, N., Hassani, S., Torres, D.F.: A conformable fractional calculus on arbitrary time scales. J. King Saud Univ., Sci. 28(1), 93–98 (2016)
Bohner, M., Matthews, T.: The Grüss inequality on time scales. Commun. Math. Anal. 3(1), 1–8 (2007)
Bohner, M., Matthews, T.: Ostrowski inequalities on time scales. JIPAM. J. Inequal. Pure Appl. Math. 9(1), Article ID 6 (2008)
Bohner, M., Matthews, T., Tuna, A.: Diamond-alpha Grüss type inequalities on time scales. Int. J. Dyn. Syst. Differ. Equ. 3(1–2), 234–247 (2011)
Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser Boston, Inc., Boston (2001)
Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser Boston, Inc., Boston (2003)
Cerone, P., Dragomir, S.S., Roumeliotis, J.: An inequality of Ostrowski–Grüss type for twice differentiable mappings and applications in numerical integration. Kyungpook Math. J. 39(2), 333–341 (1999)
Dinu, C.: Ostrowski type inequalities on time scales. An. Univ. Craiova, Ser. Mat. Inform. 34, 43–58 (2007)
Dragomir, S.S.: A generalization of Ostrowski integral inequality for mappings whose derivatives belong to \({L}_{1}\) \([a,b]\) and applications in numerical integration. J. Comput. Anal. Appl. 3(4), 343–360 (2001)
Dragomir, S.S.: A generalization of the Ostrowski integral inequality for mappings whose derivatives belong to \(L_{p}[a,b]\) and applications in numerical integration. J. Math. Anal. Appl. 255(2), 605–626 (2001)
Dragomir, S.S., Cerone, P., Roumeliotis, J.: A new generalization of Ostrowski’s integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means. Appl. Math. Lett. 13(1), 19–25 (2000)
El-Deeb, A.A.: On some dynamic inequalities of Ostrowski, trapezoid, and Grüss type on time scales. J. Inequal. Appl. 2022(1), 100 (2022)
El-Deeb, A.A., Elsennary, H.A., Nwaeze, E.R.: Generalized weighted Ostrowski, trapezoid and Grüss type inequalities on time scales. Fasc. Math. 60, 123–144 (2018)
Feng, Q., Meng, F.: Generalized Ostrowski type inequalities for multiple points on time scales involving functions of two independent variables. J. Inequal. Appl.
Ghareeb, A.-T.A., Saker, S.H., Ahmed, A.M.: Weighted Čebyšev–Ostrqwski type integral inequalities with power means. J. Math. Comput. Sci. 22(3), 189–203 (2021)
Grüss, G.: Über das Maximum des absoluten Betrages von \(\frac{1}{{b - a}}\int _{a}^{b} {f ( x )} g ( x )\,dx - \frac{1}{{ ( {b - a} )^{2} }}\int _{a}^{b} {f ( x )\,dx} \int _{a}^{b} g ( x )\,dx\). Math. Z. 39(1), 215–226 (1935)
Hilger, S.: Ein Makettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis (1988)
Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math. 18(1–2), 18–56 (1990)
Liu, W.: Several error inequalities for a quadrature formula with a parameter and applications. Comput. Math. Appl. 56(7), 1766–1772 (2008)
Liu, W., Tuna, A., Jiang, Y.: On weighted Ostrowski type, trapezoid type, Grüss type and Ostrowski–Grüss like inequalities on time scales. Appl. Anal. 93(3), 551–571 (2014)
Liu, W.-J., Huang, Y., Pan, X.-X.: New weighted Ostrowski–Grüss–Čebyšev type inequalities. Bull. Korean Math. Soc. 45(3), 477–483 (2008)
Liu, W.-J., Xue, Q.-L., Wang, S.-F.: Several new perturbed Ostrowski-like type inequalities. JIPAM. J. Inequal. Pure Appl. Math. 8(4), Article ID 110 (2007)
Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Mathematics and Its Applications (East European Series), vol. 53. Kluwer Academic, Dordrecht (1991)
Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Mathematics and Its Applications (East European Series), vol. 61. Kluwer Academic, Dordrecht (1993)
Ostrowski, A.: Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 10(1), 226–227 (1937)
Pachpatte, B.G.: On trapezoid and Grüss-like integral inequalities. Tamkang J. Math. 34(4), 365–369 (2003)
Sarikaya, M.Z.: New weighted Ostrowski and Čebyšev type inequalities on time scales. Comput. Math. Appl. 60(5), 1510–1514 (2010)
Zhao, D., Li, T.: On conformable delta fractional calculus on time scales. J. Math. Comput. Sci. 16, 324–335 (2016)
Acknowledgements
Not applicable.
Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).
Author information
Authors and Affiliations
Contributions
Resources, methodology and investigations, A.A.E.-D.; writing original draft preparation, A.A.E.-D.; conceptualization, writing review and editing, and A.A.E.-D.; All authors read and approved the final manuscript
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
El-Deeb, A.A. On some investigations of alpha-conformable Ostrowski–Trapezoid–Grüss dynamic inequalities on time scales. J Inequal Appl 2023, 83 (2023). https://doi.org/10.1186/s13660-023-02994-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-023-02994-2