Skip to main content

Convergence of linear processes generated by negatively dependent random variables under sub-linear expectations

Abstract

In this paper, we study the complete convergence and complete moment convergence of linear processes generated by negatively dependent random variables under sub-linear expectations. The obtained results complement the ones of Meng, Wang, and Wu (Commun. Stat., Theory Methods 52(9):2931–2945, 2023) in the case of negatively dependent random variables under sub-linear expectations.

1 Introduction

To investigate the uncertainty in probability, Peng [1113] introduced the important concepts of the sub-linear expectations space. Peng’s works [1113] motivated many scientists to extend the results of classic probability space to that of the sub-linear expectations space. Zhang [2729] obtained the exponential inequalities, Rosenthal’s inequalities, and Donsker’s invariance principle under sub-linear expectations. Wu [16] studied precise asymptotics for complete integral convergence under sub-linear expectations. Under sub-linear expectations, Xu and Cheng [24] investigated how small the increments of G-Brownian motion are. Xu and Zhang [18, 19] studied a three-series theorem of independent random variables and a law of logarithm for arrays of row-wise extended negatively dependent random variables under the sub-linear expectations. Zhong and Wu [33] obtained the complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectations. For more limit theorems under sub-linear expectations, interested readers could refer to Wu and Jiang [17], Huang and Wu [8], Zhang and Lin [31], Zhong and Wu [33], Hu and Yang [7], Chen [2], Zhang [30], Hu, Chen, and Zhang [6], Gao and Xu [3], Kuczmaszewska [9], Chen and Wu [1], Xu and Cheng [2024, 26], and the references therein.

Meng, Wang, and Wu [10] studied convergence of asymptotically almost negatively associated random variables with random coefficients. Hosseini and Nezakati [4] obtained complete moment convergence of the dependent linear processes with random coefficients. For more results about complete moment convergence of moving average processes, interested readers could refer to Zhang and Ding [32], Hosseini and Nezakati [5], and the refercences therein. The main conclusions of Meng, Wang, and Wu [10] are that under proper conditions, the complete convergence and complete moment convergence of almost negatively associated random variables with random coefficients hold. It is natural to ask whether or not the relevant results hold under sub-linear expectations. Here, we try to establish convergence of linear processes generated by negatively dependent random variables under sub-linear expectations, complementing the corresponding results obtained in Meng, Wang, and Wu [10]. In other words, we here investigate the complete convergence and complete moment convergence related to the infinitely weighted sums of negatively dependent random variables under sub-linear expectations. Our results differ from that of Xu et al. [25], Xu and Kong [26], who studied the complete convergence and complete moment convergence relevant to finitely weighted sums of negatively dependent random variables under sub-linear expectations.

We organize the rest of this paper as follows. We give some necessary basic notions, concepts, and corresponding properties, and cite necessary lemma under sub-linear expectations in Sect. 2. In Sect. 3, we give our main results, Theorems 3.1-3.3, their proofs will be presented in Sect. 4. Some of the lemmas and their proofs are also given in Sect. 4.

2 Preliminaries

As in Xu and Cheng [21], we use similar notations as in the work by Peng [12, 13], Chen [2], and Zhang [29]. Suppose that \((\Omega ,\mathcal {F})\) is a given measurable space. Assume that \(\mathcal {H}\) is a subset of all random variables on \((\Omega ,\mathcal {F})\) such that \(X_{1},\ldots ,X_{n}\in \mathcal {H}\) implies \(\varphi (X_{1},\ldots ,X_{n})\in \mathcal {H}\) for each \(\varphi \in \mathcal {C}_{l,Lip}(\mathbb{R}^{n})\), where \(\mathcal {C}_{l,Lip}(\mathbb{R}^{n})\) represents the linear space of (local Lipschitz) function φ fulfilling

$$ \bigl\vert \varphi (\mathbf{x})-\varphi (\mathbf{y}) \bigr\vert \le C \bigl(1+ \vert \mathbf{x} \vert ^{m}+ \vert \mathbf{y} \vert ^{m}\bigr) \bigl( \vert \mathbf{x}-\mathbf{y} \vert \bigr),\quad \forall \mathbf{x}, \mathbf{y}\in \mathbb{R}^{n} $$

for some \(C>0\), \(m\in \mathbb{N}\) depending on φ.

Definition 2.1

A sub-linear expectation \(\mathbb{E}\) on \(\mathcal {H}\) is a functional \(\mathbb{E}:\mathcal {H}\mapsto \bar{\mathbb{R}}:=[-\infty ,\infty ]\) fulfilling the following properties: for all \(X,Y\in \mathcal {H}\), we have

(a):

Monotonicity: If \(X\ge Y\), then \(\mathbb{E}[X]\ge \mathbb{E}[Y]\);

(b):

Constant preserving: \(\mathbb{E}[c]=c\), \(\forall c\in \mathbb{R}\);

(c):

Positive homogeneity: \(\mathbb{E}[\lambda X]=\lambda \mathbb{E}[X]\), \(\forall \lambda \ge 0\);

(d):

Sub-additivity: \(\mathbb{E}[X+Y]\le \mathbb{E}[X]+\mathbb{E}[Y]\) whenever \(\mathbb{E}[X]+\mathbb{E}[Y]\) is not of the form \(+\infty -\infty \) or \(-\infty +\infty \).

Remark 2.1

By Theorem 1.2.1 of Peng [13], the sub-linear expectation \(\mathbb{E}\) could be represented as a supremum of linear expectations. By Theorem 1.2.2 of Peng [13], if \(X_{i}(\omega )\downarrow 0\) as \(i\rightarrow \infty \) implies \(\lim_{i\rightarrow \infty}\mathbb{E}(X_{i})=0\), then the sub-linear expectation \(\mathbb{E}\) is the upper expectation, i.e., there exists a set of probability measures \(\mathscr{P}\) in \((\Omega ,\mathcal {F})\) such that \(\mathbb{E}(\xi )=\sup_{P\in \mathscr{P}}\mathbf{E}_{P}(\xi )\), \(\xi \in \mathcal {H}\), where \(\mathbf{E}_{P}\) denotes the linear expectation under probability P. Hence, the difference between the sub-linear expectation and the upper expectation is that the former extends the later in some sense.

A set function \(V:\mathcal {F}\mapsto [0,1]\) is named to be a capacity if

(a):

\(V(\emptyset )=0\), \(V(\Omega )=1\);

(b):

\(V(A)\le V(B)\), \(A\subset B\), \(A,B\in \mathcal {F}\).

A capacity V is called sub-additive if \(V(A\cup B)\le V(A)+V(B)\), \(A,B\in \mathcal {F}\).

In what follows, given a sub-linear expectation space \((\Omega , \mathcal {H}, \mathbb{E})\), set \(\mathbb{V}(A):=\inf \{\mathbb{E}[\xi ]:I_{A}\le \xi , \xi \in \mathcal {H}\}=\mathbb{E}[I_{A}]\), \(\forall A\in \mathcal {F}\) (see (2.3) and the definitions of \(\mathbb{V}\) above (2.3) in Zhang [28]). \(\mathbb{V}\) is a sub-additive capacity. Set

$$ C_{\mathbb{V}}(X):= \int _{0}^{\infty}\mathbb{V}(X>x)\,\mathrm{d}x + \int _{-\infty}^{0}\bigl(\mathbb{V}(X>x)-1\bigr) \,\mathrm{d}x. $$

As in 4.3 of Zhang [28], throughout this paper, define an extension of \(\mathbb{E}\) on the space of all random variables by

$$ \mathbb{E}^{*}(X)=\inf \bigl\{ \mathbb{E}[Y]:X\le Y,Y\in \mathcal {H} \bigr\} . $$

Then \(\mathbb{E}^{*}\) is a sub-linear expectation on the space of all random variables, \(\mathbb{E}[X]=\mathbb{E}^{*}[X]\), \(\forall X\in \mathcal {H}\), and \(\mathbb{V}(A)=\mathbb{E}^{*}(I_{A})\), \(\forall A\in \mathcal {F}\).

Suppose that \(\mathbf{X}=(X_{1},\ldots , X_{m})\), \(X_{i}\in \mathcal {H}\) and \(\mathbf{Y}=(Y_{1},\ldots ,Y_{n})\), \(Y_{i}\in \mathcal {H}\) are two random vectors on \((\Omega , \mathcal {H}, \mathbb{E})\). Y is said to be negatively dependent on X, if for each function \(\psi _{1}\in \mathcal {C}_{l,Lip}(\mathbb{R}^{m})\), \(\psi _{2}\in \mathcal {C}_{l,Lip}(\mathbb{R}^{n})\), we have \(\mathbb{E}[\psi _{1}(\mathbf{X})\psi _{2}(\mathbf{Y})]\le \mathbb{E}[ \psi _{1}(\mathbf{X})] \mathbb{E}[\psi _{2}(\mathbf{Y})]\) whenever \(\psi _{1}(\mathbf{X})\ge 0\), \(\mathbb{E}[\psi _{2}(\mathbf{Y})]\ge 0 \), \(\mathbb{E}[|\psi _{1}(\mathbf{X})\psi _{2}(\mathbf{Y})|]<\infty \), \(\mathbb{E}[|\psi _{1}(\mathbf{X})|]<\infty \), \(\mathbb{E}[|\psi _{2}(\mathbf{Y})|]<\infty \), and either \(\psi _{1}\) and \(\psi _{2}\) are coordinatewise nondecreasing, or \(\psi _{1}\) and \(\psi _{2}\) are coordinatewise nonincreasing (see Definition 2.3 of Zhang [28], Definition 1.5 of Zhang [29], Definition 2.5 in Chen [2]). \(\{X_{n}; -\infty < n<\infty \}\) is called to be negatively dependent, if \(X_{l+n}\) is negatively dependent on \((X_{l},\ldots ,X_{l+n-1})\) for each \(n\ge 1\), \(-\infty < l<+\infty \). The existence of negatively dependent random variables \(\{X_{n}; -\infty < n<\infty \}\) under sub-linear expectations could be yielded by Example 1.6 of Zhang [29] and Kolmogorov’s existence theorem in classic probability space. As in discussed in Zhang [28], if \(\{X_{n}\}_{n=-\infty}^{+\infty}\) is sequence of negatively dependent random variables, and \(f_{n}(x)\in \mathcal {C}_{l,Lip}(\mathbb{R})\), \(-\infty < n<+\infty \) are nondecreasing (resp. nonincreasing) functions, then \(\{f_{n}(X_{n}); -\infty < n<\infty \}\) is also a sequence of negatively dependent random variables.

Assume that \(\mathbf{X}_{1}\) and \(\mathbf{X}_{2}\) are two n-dimensional random vectors defined in sub-linear expectation spaces \((\Omega _{1},\mathcal {H}_{1},\mathbb{E}_{1})\) and \((\Omega _{2},\mathcal {H}_{2},\mathbb{E}_{2})\), respectively. They are called identically distributed if for every function \(\psi \in \mathcal {C}_{l,Lip}(\mathbb{R}^{n})\) such that \(\psi (\mathbf{X}_{1})\in \mathcal {H}_{1}\), \(\psi (\mathbf{X}_{2})\in \mathcal {H}_{2}\),

$$ \mathbb{E}_{1}\bigl[\psi (\mathbf{X}_{1})\bigr]= \mathbb{E}_{2}\bigl[\psi (\mathbf{X}_{2})\bigr], $$

whenever the sub-linear expectations are finite. \(\{X_{n}\}_{n=1}^{\infty}\) is named to be identically distributed if for each \(i\ge 1\), \(X_{i}\) and \(X_{1}\) are identically distributed.

In the paper we assume that \(\mathbb{E}\) is countably sub-additive, i.e., \(\mathbb{E}(X)\le \sum_{n=1}^{\infty}\mathbb{E}(X_{n})\), whenever \(X\le \sum_{n=1}^{\infty}X_{n}\), \(X,X_{n}\in \mathcal {H}\), and \(X\ge 0\), \(X_{n}\ge 0\), \(n=1,2,\ldots \) . Hence \(\mathbb{E}^{*}\) is also countably sub-additive. Let C stand for a positive constant, which may change from place to place. \(I(A)\) or \(I_{A}\) represent the indicator function of A. Write \(\log (x)=\ln \max \{\mathrm{e}, x\}\), \(x>0\).

We cite the following lemma.

Lemma 2.1

(See Lemma 2.4 of Xu et al. [25])

Let \(\{X_{n};n\ge 1\}\) be a sequence of negatively dependent random variables in sub-linear expectations space \((\Omega ,\mathcal {H},\mathbb{E})\). Then there exists a positive constant \(C=C_{p}\) depending on p such that for \(n\ge 1\), and \(1\le p\le 2\),

$$ \mathbb{E} \Biggl[\max_{1\le k\le n} \Biggl\vert \sum _{i=1}^{k}X_{i} \Biggr\vert ^{p} \Biggr]\le C_{p} (\log n)^{p} \Biggl[ \sum _{k=1}^{n} \mathbb{E}\bigl[ \vert X_{k} \vert ^{p}\bigr]+ \Biggl(\sum _{k=1}^{n}\bigl[ \bigl\vert \mathbb{E}(X_{k}) \bigr\vert + \bigl\vert \mathbb{E}(-X_{k}) \bigr\vert \bigr] \Biggr)^{p} \Biggr]. $$
(2.1)

We also present a useful lemma.

Lemma 2.2

If for a random variable X on \((\Omega ,\mathcal {F})\), \(C_{\mathbb{V}}\{|X|\}<\infty \), then

$$ \mathbb{E}^{*}\bigl[ \vert X \vert \bigr]\le C_{\mathbb{V}}\bigl\{ \vert X \vert \bigr\} . $$

Proof

The proof is similar to that of Lemma 4.5 of Zhang [28]. By \(C_{\mathbb{V}}\{|X|\}<\infty \), we see that \(\lim_{n\rightarrow \infty}n\mathbb{V}\{|X|>n\}=0\). Since

$$\begin{aligned} \vert X \vert =&\lim_{n\rightarrow \infty}\sum _{k=1}^{n} \vert X \vert I\bigl\{ k-1< \vert X \vert \le k\bigr\} \\ \le& \lim_{n\rightarrow \infty}\sum_{k=1}^{n}kI \bigl\{ k-1< \vert X \vert \le k \bigr\} =\lim_{n\rightarrow \infty}\sum _{k=1}^{n}k \bigl(I\bigl\{ \vert X \vert >k-1\bigr\} -I\bigl\{ \vert X \vert >k \bigr\} \bigr) \\ \le& \lim_{n\rightarrow \infty}1+\sum_{k=1}^{n-1}I \bigl\{ \vert X \vert >k\bigr\} -nI \bigl\{ \vert X \vert >n\bigr\} \le 1+ \sum_{k=1}^{\infty}I\bigl\{ \vert X \vert >k \bigr\} , \end{aligned}$$

by the countable sub-additivity of \(\mathbb{E}^{*}\), we obtain

$$ \mathbb{E}^{*}\bigl[ \vert X \vert \bigr]\le 1+\sum _{k=1}^{\infty}\mathbb{E}^{*}\bigl[I\bigl\{ \vert X \vert >k \bigr\} \bigr]=1+\sum_{k=1}^{\infty} \mathbb{V}\bigl\{ \vert X \vert >k\bigr\} \le 1+C_{\mathbb{V}}\bigl\{ \vert X \vert \bigr\} . $$

By considering \(|X|/\epsilon \) instead of \(|X|\), we have

$$ \mathbb{E}^{*}\bigl[ \vert X \vert /\epsilon \bigr]\le 1+C_{\mathbb{V}}\bigl\{ \vert X \vert /\epsilon \bigr\} ,\qquad \mathbb{E}^{*}\bigl[ \vert X \vert \bigr]\le \epsilon +C_{\mathbb{V}}\bigl\{ \vert X \vert \bigr\} , $$

which by taking \(\epsilon \rightarrow 0\) implies

$$ \mathbb{E}^{*}\bigl[ \vert X \vert \bigr]\le C_{\mathbb{V}}\bigl\{ \vert X \vert \bigr\} . $$

The proof is finished. □

3 Main results

Our main results, considered as an extension of Chen and Wu [1] in some way, are as follows.

Theorem 3.1

Suppose that \(\gamma >1\), \(1\le p<2\), \(1<\gamma p<q\le 2\), and \(X_{t}=\sum_{i=-\infty}^{\infty}a_{i}\epsilon _{t-i}\) is a linear process in sub-linear expectations space \((\Omega ,\mathcal {H},\mathbb{E})\). Let \(\{\epsilon _{n},n\in \mathbb{Z}\}\) be a sequence of negatively dependent random variables, identically distributed as ϵ with \(\mathbb{E}(\epsilon )=\mathbb{E}(-\epsilon )=0\) in sub-linear expectations space \((\Omega ,\mathcal {H},\mathbb{E})\). Suppose that \(\{a_{n};n\in \mathbb{Z}\}\) is a sequence of constants satisfying \(\sum_{i=-\infty}^{\infty}|a_{i}|<\infty \). If \(C_{\mathbb{V}}(|\epsilon |^{\gamma p}(\log |\epsilon |)^{q})<\infty \), then for all \(\varepsilon >0\),

$$ \sum_{n=1}^{\infty}n^{\gamma -2} \mathbb{V} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum _{t=1}^{m}X_{t} \Biggr\vert > \varepsilon n^{1/p} \Biggr)< \infty . $$
(3.1)

Theorem 3.2

Assume that \(\alpha >0\), \(1< p< q\le 2\), and \(X_{t}=\sum_{i=-\infty}^{\infty}a_{i}\epsilon _{t-i}\) is a linear process in sub-linear expectations space \((\Omega ,\mathcal {H},\mathbb{E})\). Let \(\{\epsilon _{n},n\in \mathbb{Z}\}\) be a sequence of negatively dependent random variables, identically distributed as ϵ with \(\mathbb{E}(\epsilon )=\mathbb{E}(-\epsilon )=0\) in sub-linear expectations space \((\Omega ,\mathcal {H},\mathbb{E})\). Suppose that \(\{a_{n};n\in \mathbb{Z}\}\) is a sequence of constants satisfying \(\sum_{i=-\infty}^{\infty}|a_{i}|<\infty \). If \(C_{\mathbb{V}} (|\epsilon |^{p}\log ^{q}(|\epsilon |) )< \infty \), then for all \(\varepsilon >0\),

$$ \sum_{n=1}^{\infty}n^{\alpha p-\alpha -2} \mathbb{E}^{*} \Biggl( \Biggl( \max_{1\le m\le n} \Biggl\vert \sum_{t=1}^{m}X_{t} \Biggr\vert -\varepsilon n^{ \alpha} \Biggr)^{+} \Biggr)< \infty . $$
(3.2)

Remark 3.1

Under the assumptions of Theorem 3.2, we see that

$$\begin{aligned} \infty >&\sum_{n=1}^{\infty}n^{\alpha p-\alpha -2} \mathbb{E}^{*} \Biggl( \Biggl(\max_{1\le m\le n} \Biggl\vert \sum_{t=1}^{m}X_{t} \Biggr\vert - \varepsilon n^{\alpha} \Biggr)^{+} \Biggr) \\ \ge &\sum_{n=1}^{\infty}n^{\alpha p-\alpha -2} \mathbb{E}^{*} \Biggl( \varepsilon n^{\alpha} I \Biggl(\max _{1\le m\le n} \Biggl\vert \sum_{t=1}^{m}X_{t} \Biggr\vert >2\varepsilon n^{\alpha} \Biggr) \Biggr) \\ =&C\sum_{n=1}^{\infty}n^{\alpha p-2} \mathbb{V} \Biggl(\max_{1\le m \le n} \Biggl\vert \sum _{t=1}^{m}X_{t} \Biggr\vert >2 \varepsilon n^{\alpha} \Biggr),\quad \text{for all }\varepsilon >0. \end{aligned}$$
(3.3)

Therefore, from (3.3), we conclude that the complete moment convergence implies the complete convergence. In particular, set \(\alpha p=1\), \(1< p< q\le 2\), we conclude that

$$ \sum_{n=1}^{\infty}n^{-1} \mathbb{V} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum _{t=1}^{m}X_{t} \Biggr\vert > \varepsilon n^{1/p} \Biggr)< \infty , \quad\text{for all }\varepsilon >0. $$
(3.4)

Theorem 3.3

Suppose that \(X_{t}=\sum_{i=-\infty}^{\infty}a_{i}\epsilon _{t-i}\) is a linear process in sub-linear expectations space \((\Omega ,\mathcal {H},\mathbb{E})\). Assume that \(\{\epsilon _{n},n\in \mathbb{Z}\}\) is a sequence of negatively dependent random variables, identically distributed as ϵ with \(\mathbb{E}(\epsilon )=\mathbb{E}(-\epsilon )=0\) in sub-linear expectations space \((\Omega ,\mathcal {H},\mathbb{E})\). Suppose that \(\{a_{n};n\in \mathbb{Z}\}\) is a sequence of constants satisfying \(\sum_{i=-\infty}^{\infty}|a_{i}|<\infty \). If \(C_{\mathbb{V}} (|\epsilon |\log ^{2}(1+|\epsilon |) )< \infty \), then for all \(\varepsilon >0\),

$$ \sum_{n=1}^{\infty}n^{-2} \mathbb{E}^{*} \Biggl( \Biggl(\max_{1\le m \le n} \Biggl\vert \sum_{t=1}^{m}X_{t} \Biggr\vert -\varepsilon n \Biggr)^{+} \Biggr)< \infty . $$
(3.5)

Remark 3.2

Under the assumptions of Theorem 3.3, we can conclude that

$$ \sum_{n=1}^{\infty}n^{-1} \mathbb{V} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum _{t=1}^{m}X_{t} \Biggr\vert > \varepsilon n \Biggr)< \infty \quad\text{for all }\varepsilon >0. $$
(3.6)

In fact, if the assumptions of Theorem 3.2 hold, then (3.4) yields (3.6). However, the assumptions of Theorem 3.3 are weaker than that of Theorem 3.2.

By (3.6), we obtain the following corollary.

Corollary 3.1

If the assumptions of Theorem 3.3hold, then

$$ \mathbb{V} \Biggl(\lim_{n\rightarrow \infty}n^{-1}\sum _{t=1}^{n}X_{t} \neq0 \Biggr)=0. $$

By similar proofs of Theorems 3.1, 3.2, 3.3, Remarks 3.1, 3.2, and Corollary 3.1, we could obtain the following.

Remark 3.3

Suppose that in Theorems 3.1, 3.2, 3.3, Remarks 3.1, 3.2, and Corollary 3.1, with the conditions that there exists a constant C satisfying \(\mathbb{E}(h(\epsilon _{n}))\le C\mathbb{E}(h(\epsilon ))\), for all \(n\in \mathbb{Z}\), \(0\le h\in \mathcal {C}_{l,Lip}(\mathbb{R})\), and \(\mathbb{E}(-\epsilon _{n})=\mathbb{E}(\epsilon _{n})=0\) in place of the assumption that for each \(n\in \mathbb{Z}\), \(\epsilon _{n}\) is identically distributed as ϵ, the other conditions remain the same. Then the conclusions also hold in Theorems 3.1, 3.2, 3.3, Remarks 3.1, 3.2, Corollary 3.1. Moreover, in what follows, the assumption that \(\mathbb{E}\) is countably sub-additive could be replaced by that \(\mathbb{E}^{*}\) is countably sub-additive, all conclusions also hold in Theorems 3.1, 3.2, 3.3, Remarks 3.1, 3.2, and Corollary 3.1.

4 Proofs

To prove our main results, we need the lemmas below.

Lemma 4.1

Suppose that \(1\le p\le 2\) and \(\{\epsilon _{n},n\in \mathbb{Z}\}\) is a sequence of negatively dependent random variables in sub-linear expectations space \((\Omega ,\mathcal {H},\mathbb{E})\). Assume that \(\{a_{n};n\in \mathbb{Z}\}\) is a sequence of constants satisfying \(\sum_{i=-\infty}^{\infty}|a_{i}|<\infty \). Then

$$ \begin{aligned}[b] &\mathbb{E}^{*} \Biggl(\max_{1< m\le n} \Biggl\vert \sum_{j=-\infty}^{\infty} \Biggl(\sum _{i=1-j}^{m-j}a_{i} \Biggr)\epsilon _{j} \Biggr\vert ^{p} \Biggr)\\ &\quad \le C(\log n)^{p} \sup_{i\in \mathbb{Z}} \Biggl\{ \sum_{j=1-i}^{n-i} \mathbb{E} \vert \epsilon _{j} \vert ^{p}+ \Biggl(\sum _{j=1-i}^{n-i}\bigl[ \vert \mathbb{E} \epsilon _{j} \vert + \bigl\vert \mathbb{E}(-\epsilon _{j}) \bigr\vert \bigr] \Biggr)^{p} \Biggr\} . \end{aligned} $$
(4.1)

Proof

By Hölder’s inequality, countable sub-additivity of \(\mathbb{E}^{*}\), and Lemma 2.1, we obtain for \(p>1\),

$$\begin{aligned} &\mathbb{E}^{*} \Biggl(\max_{1< m\le n} \Biggl\vert \sum_{j=-\infty}^{ \infty} \Biggl(\sum _{i=1-j}^{m-j}a_{i} \Biggr)\epsilon _{j} \Biggr\vert ^{p} \Biggr) \\ &\quad =\mathbb{E}^{*} \Biggl(\max_{1< m\le n} \Biggl\vert \sum_{i=-\infty}^{ \infty} \Biggl(\sum _{j=1-i}^{m-i}\epsilon _{j} \Biggr)a_{i} \Biggr\vert ^{p} \Biggr)\le \mathbb{E}^{*} \Biggl( \Biggl\vert \sum_{i=-\infty}^{\infty} \vert a_{i} \vert \max_{1< m\le n} \Biggr\vert \sum _{j=1-i}^{m-i}\epsilon _{j} \Bigg\vert \Bigg\vert ^{p} \Biggr) \\ &\quad =\mathbb{E}^{*} \Biggl( \Biggl\vert \sum _{i=-\infty}^{\infty}|a_{i} \vert ^{1-1/p} \vert a_{i} \vert ^{1/p} \max _{1< m\le n}\Bigg|\sum_{j=1-i}^{m-i} \epsilon _{j} \Bigg\vert \Bigg\vert ^{p} \Biggr) \\ &\quad \le \mathbb{E}^{*} \Biggl( \Biggl\vert \Biggl(\sum _{i=-\infty}^{ \infty} \vert a_{i} \vert \Biggr)^{1-1/p} \Biggl(\sum_{i=-\infty}^{\infty} \vert a_{i} \vert \max_{1< m\le n} \Biggl\vert \sum _{j=1-i}^{m-i}\epsilon _{j} \Biggr\vert ^{p} \Biggr)^{1/p} \Biggr\vert ^{p} \Biggr) \\ &\quad \le C\sum_{i=-\infty}^{\infty} \vert a_{i} \vert \mathbb{E}^{*} \Biggl( \max _{1< m\le n} \Biggl\vert \sum_{j=1-i}^{m-i} \epsilon _{j} \Biggr\vert ^{p} \Biggr)=C\sum _{i=-\infty}^{\infty} \vert a_{i} \vert \mathbb{E} \Biggl(\max_{1< m \le n} \Biggl\vert \sum _{j=1-i}^{m-i}\epsilon _{j} \Biggr\vert ^{p} \Biggr) \\ &\quad \le C\sum_{i=-\infty}^{\infty} \vert a_{i} \vert (\log n)^{p} \Biggl[\sum _{j=1-i}^{n-i} \mathbb{E} \vert \epsilon _{j} \vert ^{p}+ \Biggl(\sum_{j=1-i}^{n-i} \bigl[ \vert \mathbb{E} \epsilon _{j} \vert + \bigl\vert \mathbb{E}(-\epsilon _{j}) \bigr\vert \bigr] \Biggr)^{p} \Biggr] \\ &\quad \le C(\log n)^{p}\sum_{i=-\infty}^{\infty} \vert a_{i} \vert \sup_{i\in \mathbb{Z}} \Biggl[\sum _{j=1-i}^{n-i}\mathbb{E} \vert \epsilon _{j} \vert ^{p}+ \Biggl(\sum_{j=1-i}^{n-i} \bigl[ \vert \mathbb{E}\epsilon _{j} \vert + \bigl\vert \mathbb{E}(- \epsilon _{j}) \bigr\vert \bigr] \Biggr)^{p} \Biggr] \\ &\quad \le C(\log n)^{p}\sup_{i\in \mathbb{Z}} \Biggl[\sum _{j=1-i}^{n-i} \mathbb{E} \vert \epsilon _{j} \vert ^{p}+ \Biggl(\sum_{j=1-i}^{n-i} \bigl[ \vert \mathbb{E} \epsilon _{j} \vert + \bigl\vert \mathbb{E}(-\epsilon _{j}) \bigr\vert \bigr] \Biggr)^{p} \Biggr], \end{aligned}$$

while \(p=1\), by the countable sub-additivity of \(\mathbb{E}^{*}\) and Lemma 2.1, we obtain

$$\begin{aligned} &\mathbb{E}^{*} \Biggl(\max_{1< m\le n} \Biggl\vert \sum_{j=-\infty}^{ \infty} \Biggl(\sum _{i=1-j}^{m-j}a_{i} \Biggr)\epsilon _{j} \Biggr\vert \Biggr) \\ &\quad =\mathbb{E}^{*} \Biggl(\max_{1< m\le n} \Biggl\vert \sum_{i=-\infty}^{ \infty} \Biggl(\sum _{j=1-i}^{m-i}\epsilon _{j} \Biggr)a_{i} \Biggr\vert \Biggr) \\ &\quad \le \mathbb{E}^{*} \Biggl( \Biggl\vert \sum _{i=-\infty}^{\infty} \vert a_{i} \vert \max _{1< m\le n} \Biggr\vert \sum_{j=1-i}^{m-i} \epsilon _{j} \Bigg\vert \Bigg\vert \Biggr)\le \sum _{i=-\infty}^{\infty} \vert a_{i} \vert \mathbb{E}^{*} \Biggl(\max_{1< m\le n} \Biggl\vert \sum _{j=1-i}^{m-i}\epsilon _{j} \Biggr\vert \Biggr) \\ &\quad = \sum_{i=-\infty}^{\infty} \vert a_{i} \vert \mathbb{E} \Biggl(\max_{1< m \le n} \Biggl\vert \sum_{j=1-i}^{m-i}\epsilon _{j} \Biggr\vert \Biggr) \\ &\quad \le C(\log n)\sup_{i\in \mathbb{Z}} \Biggl[\sum _{j=1-i}^{n-i} \mathbb{E} \vert \epsilon _{j} \vert + \Biggl(\sum_{j=1-i}^{n-i} \bigl[ \vert \mathbb{E} \epsilon _{j} \vert + \bigl\vert \mathbb{E}(-\epsilon _{j}) \bigr\vert \bigr] \Biggr) \Biggr]. \end{aligned}$$

Hence the proof of this Lemma is finished. □

Lemma 4.2

Suppose that \(\{X_{n};n\ge 1\}\) and \(\{Y_{n};n\ge 1\}\) are two sequences of random variables on \((\Omega ,\mathcal {F})\). Then for any \(n\ge 1\), \(M>1\), \(\varepsilon >0\), and \(a>0\),

$$\begin{aligned} \mathbb{E}^{*} \Biggl(\max _{1\le j\le n} \Biggl\vert \sum_{t=1}^{j}(X_{t}+Y_{t}) \Biggr\vert -\varepsilon a \Biggr)^{+} \le & \biggl( \frac{1}{\varepsilon ^{M}}+\frac{1}{M-1} \biggr)\frac{1}{a^{M-1}} \mathbb{E}^{*} \Biggl(\max_{1\le j\le n} \Biggl\vert \sum _{t=1}^{j}X_{t} \Biggr\vert ^{M} \Biggr) \\ &{}+ \mathbb{E}^{*} \Biggl(\max_{1\le j\le n} \Biggl\vert \sum_{t=1}^{j}Y_{t} \Biggr\vert \Biggr). \end{aligned}$$
(4.2)

Proof

By Lemma 2.2 of Sung [15], we obtain

$$ \mathbb{E}^{*} \Biggl(\max_{1\le j\le n} \Biggl\vert \sum_{t=1}^{j}(X_{t}+Y_{t}) \Biggr\vert -\varepsilon a \Biggr)^{+}\le \mathbb{E}^{*} \Biggl(\max_{1 \le j\le n} \Biggl\vert \sum _{t=1}^{j}X_{t} \Biggr\vert - \varepsilon a \Biggr)^{+}+ \mathbb{E}^{*} \Biggl(\max _{1\le j\le n} \Biggl\vert \sum_{t=1}^{j}Y_{t} \Biggr\vert \Biggr). $$
(4.3)

On the other hand, by Markov’s inequality under sub-linear expectations and Lemma 2.2, we see that

$$\begin{aligned} &\mathbb{E}^{*} \Biggl(\max_{1\le j\le n} \Biggl\vert \sum_{t=1}^{j}X_{t} \Biggr\vert -\varepsilon a \Biggr)^{+} \\ &\quad \le C_{\mathbb{V}} \Biggl( \Biggl(\max_{1\le j\le n} \Biggl\vert \sum_{t=1}^{j}X_{t} \Biggr\vert -\varepsilon a \Biggr)^{+} \Biggr) = \int _{0}^{ \infty}\mathbb{V} \Biggl(\max _{1\le j\le n} \Biggl\vert \sum_{t=1}^{j}X_{t} \Biggr\vert -\varepsilon a>t \Biggr)\,\mathrm{d}t \\ &\quad = \int _{0}^{a}\mathbb{V} \Biggl(\max _{1\le j\le n} \Biggl\vert \sum_{t=1}^{j}X_{t} \Biggr\vert >\varepsilon a+t \Biggr)\,\mathrm{d}t+ \int _{a}^{ \infty}\mathbb{V} \Biggl(\max _{1\le j\le n} \Biggl\vert \sum_{t=1}^{j}X_{t} \Biggr\vert >\varepsilon a+t \Biggr)\,\mathrm{d}t \\ &\quad \le a\mathbb{V} \Biggl(\max_{1\le j\le n} \Biggl\vert \sum _{t=1}^{j}X_{t} \Biggr\vert > \varepsilon a \Biggr)+ \int _{a}^{\infty}\mathbb{V} \Biggl( \max _{1\le j\le n} \Biggl\vert \sum_{t=1}^{j}X_{t} \Biggr\vert >t \Biggr) \,\mathrm{d}t \\ &\quad \le \frac{\mathbb{E}^{*} (\max_{1\le j\le n} \vert \sum_{t=1}^{j}X_{t} \vert ^{M} )}{\varepsilon ^{M}a^{M-1}}+ \mathbb{E}^{*} \Biggl(\max _{1\le j\le n} \Biggl\vert \sum_{t=1}^{j}X_{t} \Biggr\vert ^{M} \Biggr) \int _{a}^{\infty}\frac{1}{t^{M}}\,\mathrm{d}t \\ &\quad = \biggl(\frac{1}{\varepsilon ^{M}}+\frac{1}{M-1} \biggr) \frac{1}{a^{M-1}}\mathbb{E}^{*} \Biggl(\max_{1\le j\le n} \Biggl\vert \sum_{t=1}^{j}X_{t} \Biggr\vert ^{M} \Biggr). \end{aligned}$$
(4.4)

Combining (4.3) and (4.4) results in (4.2) immediately. □

Proof of Theorem 3.1 Observe that \(\gamma p< q\le 2\). Notice that \(\mathbb{E}(\epsilon _{j})=\mathbb{E}(-\epsilon _{j})=0\), for all \(j\in \mathbb{Z}\) and for each \(n\ge 1\), write

$$\begin{aligned}& \epsilon _{nj}'=-n^{1/p}I\bigl(\epsilon _{j}< -n^{1/p}\bigr)+\epsilon _{j}I\bigl( \vert \epsilon _{j} \vert \le n^{1/p}\bigr)+n^{1/p}I \bigl(\epsilon _{j}>n^{1/p}\bigr);\\& \epsilon _{nj}''=\epsilon _{j}- \epsilon _{nj}'=\bigl(\epsilon _{j}-n^{1/p} \bigr)I\bigl( \epsilon _{j}>n^{1/p}\bigr)+\bigl(\epsilon _{j}+n^{1/p}\bigr)I\bigl(\epsilon _{j}< -n^{1/p} \bigr);\\& \epsilon _{j}=\epsilon _{nj}'-\mathbb{E} \epsilon _{nj}'+\epsilon _{nj}''- \mathbb{E}\epsilon _{nj}''+\mathbb{E} \epsilon _{nj}'+\mathbb{E} \epsilon _{nj}''. \end{aligned}$$

Define \(\epsilon _{n}'\), \(\epsilon _{n}''\) as \(\epsilon _{nj}'\), \(\epsilon _{nj}''\) only with ϵ in place of \(\epsilon _{j}\). We easily see that

$$\begin{aligned}& \bigl\vert \epsilon _{nj}' \bigr\vert = \vert \epsilon _{j} \vert I\bigl( \vert \epsilon _{j} \vert \le n^{1/p}\bigr)+n^{1/p}I\bigl( \vert \epsilon _{j} \vert >n^{1/p}\bigr); \\& \begin{aligned}[t] \bigl\vert \epsilon _{nj}'' \bigr\vert &=\bigl(\epsilon _{j}-n^{1/p}\bigr)I\bigl(\epsilon _{j}>n^{1/p}\bigr)-\bigl( \epsilon _{j}+n^{1/p} \bigr)I\bigl(\epsilon _{j}< -n^{1/p}\bigr) \\ &\le \vert \epsilon _{j} \vert I\bigl( \vert \epsilon _{j} \vert >n^{1/p}\bigr). \end{aligned} \end{aligned}$$
(4.5)

Thus, for each \(n\ge 1\), we see that

$$\begin{aligned} \sum_{t=1}^{m}X_{t} =& \sum_{t=1}^{m}\sum _{i=-\infty}^{\infty}a_{i} \epsilon _{t-i}= \sum_{j=-\infty}^{\infty}\sum _{i=1-j}^{m-j}a_{i} \epsilon _{j} \\ =&\sum_{j=-\infty}^{\infty}\sum _{i=1-j}^{m-j}a_{i}\bigl(\epsilon _{nj}'- \mathbb{E}\epsilon _{nj}' \bigr)+\sum_{j=-\infty}^{\infty}\sum _{i=1-j}^{m-j}a_{i}\bigl( \epsilon _{nj}''-\mathbb{E}\epsilon _{nj}''\bigr) \\ &{} +\sum_{j=-\infty}^{\infty}\sum _{i=1-j}^{m-j}a_{i}\bigl( \mathbb{E} \epsilon _{nj}'+\mathbb{E}\epsilon _{nj}'' \bigr). \end{aligned}$$
(4.6)

Hence,

$$\begin{aligned} &\sum_{n=1}^{\infty}n^{\gamma -2} \mathbb{V} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum _{t=1}^{m}X_{t} \Biggr\vert > \varepsilon n^{1/p} \Biggr) \\ &\quad \le \sum_{n=1}^{\infty}n^{\gamma -2} \mathbb{V} \Biggl(\max_{1 \le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl( \epsilon _{nj}'-\mathbb{E}\epsilon _{nj}'\bigr) \Biggr\vert >\varepsilon n^{1/p}/3 \Biggr) \\ &\qquad{} +\sum_{n=1}^{\infty}n^{\gamma -2} \mathbb{V} \Biggl( \max_{1\le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl( \mathbb{E}\epsilon _{nj}'+\mathbb{E}\epsilon _{nj}''\bigr) \Biggr\vert > \varepsilon n^{1/p}/3 \Biggr) \\ &\qquad {}+\sum_{n=1}^{\infty}n^{\gamma -2} \mathbb{V} \Biggl( \max_{1\le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl( \epsilon _{nj}''-\mathbb{E}\epsilon _{nj}''\bigr) \Biggr\vert >\varepsilon n^{1/p}/3 \Biggr) \\ &\quad =:L_{1}+L_{2}+L_{3}. \end{aligned}$$
(4.7)

First, we establish \(L_{1}<\infty \). By Markov’s inequality under sub-linear expectations, Lemma 2.1, Lemma 4.1, \(\mathbb{E}(\epsilon _{1})=\mathbb{E}(-\epsilon _{1})=0\), and (4.5), we see that

$$\begin{aligned} L_{1} =&\sum_{n=1}^{\infty}n^{\gamma -2} \mathbb{V} \Biggl(\max_{1 \le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl( \epsilon _{nj}'-\mathbb{E}\epsilon _{nj}'\bigr) \Biggr\vert >\varepsilon n^{1/p}/3 \Biggr) \\ \le & C\sum_{n=1}^{\infty}n^{\gamma -2-q/p} \mathbb{E}^{*} \Biggl( \max_{1\le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl( \epsilon _{nj}'-\mathbb{E}\epsilon _{nj}'\bigr) \Biggr\vert ^{q} \Biggr) \\ \le & C\sum_{n=1}^{\infty}n^{\gamma -2-q/p}( \log n)^{q}\sup_{i\in \mathbb{Z}} \Biggl[\sum _{j=1-i}^{n-i}\mathbb{E} \bigl\vert \epsilon _{nj}' \bigr\vert ^{q}+ \Biggl(\sum _{j=1-i}^{n-i}\bigl[ \bigl\vert \mathbb{E}\bigl( \epsilon _{nj}'\bigr) \bigr\vert + \bigl\vert \mathbb{E}\bigl(- \epsilon _{nj}'\bigr) \bigr\vert \bigr] \Biggr)^{q} \Biggr] \\ =& C\sum_{n=1}^{\infty}n^{\gamma -2-q/p}( \log n)^{q}\sup_{i\in \mathbb{Z}} \Biggl[\sum _{j=1-i}^{n-i}\mathbb{E} \bigl\vert \epsilon _{n}' \bigr\vert ^{q}+ \Biggl(\sum _{j=1-i}^{n-i}\bigl[ \bigl\vert \mathbb{E}\bigl( \epsilon _{n}'\bigr) \bigr\vert + \bigl\vert \mathbb{E} \bigl(- \epsilon _{n}'\bigr) \bigr\vert \bigr] \Biggr)^{q} \Biggr] \\ =& C\sum_{n=1}^{\infty}n^{\gamma -2-q/p}( \log n)^{q}\sup_{i\in \mathbb{Z}} \Biggl[\sum _{j=1-i}^{n-i}\mathbb{E}^{*} \bigl\vert \epsilon _{n}' \bigr\vert ^{q}+ \Biggl(\sum _{j=1-i}^{n-i}\bigl[ \bigl\vert \mathbb{E} \bigl(\epsilon _{n}'\bigr) \bigr\vert + \bigl\vert \mathbb{E}\bigl(- \epsilon _{n}'\bigr) \bigr\vert \bigr] \Biggr)^{q} \Biggr] \\ \le & C\sum_{n=1}^{\infty}n^{\gamma -2-q/p}( \log n)^{q}\sup_{i\in \mathbb{Z}}\sum _{j=1-i}^{n-i}\mathbb{E}^{*}\bigl( \vert \epsilon \vert ^{q}I\bigl( \vert \epsilon \vert \le n^{1/p}\bigr)\bigr) \\ &{} +C\sum_{n=1}^{\infty}n^{\gamma -2}( \log n)^{q}\sup_{i\in \mathbb{Z}}\sum _{j=1-i}^{n-i}\mathbb{V}\bigl( \vert \epsilon \vert >n^{1/p}\bigr) \\ &{}+C\sum_{n=1}^{\infty}n^{\gamma -2-q/p}( \log n)^{q} \bigl(n \mathbb{E}\bigl( \bigl\vert \epsilon _{n}'-\epsilon \bigr\vert \bigr) \bigr)^{q} \\ \le &C\sum_{n=1}^{\infty}n^{\gamma -1-q/p}( \log n)^{q}\mathbb{E}^{*}\bigl( \vert \epsilon \vert ^{q}I\bigl( \vert \epsilon \vert \le n^{1/p}\bigr)\bigr) \\ &{}+C\sum_{n=1}^{\infty}n^{\gamma -2-1/p}( \log n)^{q}\sup_{i \in \mathbb{Z}}\sum _{j=1-i}^{n-i}\mathbb{E}^{*}\bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert > n^{1/p}\bigr)\bigr) \\ &{}+C\sum_{n=1}^{\infty}n^{\gamma -2-q/p+q}( \log n)^{q} \bigl(\mathbb{E}^{*} \vert \epsilon \vert I \bigl( \vert \epsilon \vert > n^{1/p}\bigr) \bigr)^{q} \\ \le &C\sum_{n=1}^{\infty}n^{\gamma -1-q/p}( \log n)^{q}\mathbb{E}^{*}\bigl( \vert \epsilon \vert ^{q}I\bigl( \vert \epsilon \vert \le n^{1/p}\bigr)\bigr) \\ &{}+C\sum_{n=1}^{\infty}n^{ \gamma -1-1/p}(\log n)^{q}\mathbb{E}^{*}\bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert > n^{1/p}\bigr)\bigr) \\ &{}+C\sum_{n=1}^{\infty}n^{\gamma -2-q/p+q}( \log n)^{q} \bigl( \mathbb{E}^{*} \vert \epsilon \vert I \bigl( \vert \epsilon \vert > n^{1/p}\bigr) \bigr)^{q} \\ =:&L_{11}+L_{12}+L_{13}. \end{aligned}$$
(4.8)

Note that \(\gamma p< q\), by Lemma 2.2, we see that

$$\begin{aligned} L_{11} =&C\sum_{n=1}^{\infty}n^{\gamma -1-q/p}( \log n)^{q}\mathbb{E}^{*}\bigl( \vert \epsilon \vert ^{q}I\bigl( \vert \epsilon \vert \le n^{1/p}\bigr)\bigr) \\ \le & C\sum_{n=1}^{\infty}n^{\gamma -1-q/p}(\log n)^{q}C_{ \mathbb{V}} \bigl( \vert \epsilon \vert ^{q}I\bigl( \vert \epsilon \vert \le n^{1/p}\bigr) \bigr) \\ \le & C\sum_{n=1}^{\infty}n^{\gamma -1-q/p}( \log n)^{q} \int _{0}^{n^{q/p}} \mathbb{V} \bigl( \vert \epsilon \vert ^{q}>x \bigr)\,\mathrm{d}x \\ \le & C \int _{1}^{\infty}y^{\gamma -1-q/p}(\log y)^{q} \,\mathrm{d}y \int _{0}^{y^{q/p}}\mathbb{V} \bigl( \vert \epsilon \vert ^{q}>x \bigr) \,\mathrm{d}x \\ \le & C \int _{1}^{\infty}y^{\gamma -1-q/p}(\log y)^{q} \,\mathrm{d}y \int _{0}^{y}\mathbb{V} \bigl( \vert \epsilon \vert ^{p}>x \bigr)x^{q/p-1} \,\mathrm{d}x \\ \le &C \int _{0}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert ^{p}>x \bigr)x^{q/p-1} \,\mathrm{d}x \int _{1\vee x}^{\infty}y^{\gamma -1-q/p}(\log y)^{q} \,\mathrm{d}y \\ \le &C \int _{0}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert ^{p}>x \bigr)x^{q/p-1}(1 \vee x)^{\gamma -q/p}\bigl(\log (1\vee x)\bigr)^{q}\,\mathrm{d}x \\ \le &C \int _{0}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert ^{p}>x \bigr)x^{ \gamma -1}(\log x)^{q}\,\mathrm{d}x \\ \le &CC_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{\gamma p}\log ^{q}\bigl( \vert \epsilon \vert \bigr) \bigr)< \infty . \end{aligned}$$
(4.9)

Since \(\gamma p>1\), we also obtain

$$\begin{aligned} L_{12} =&C\sum_{n=1}^{\infty}n^{\gamma -1-1/p}( \log n)^{q}\mathbb{E}^{*}\bigl( \vert \epsilon \vert I \bigl( \vert \epsilon \vert > n^{1/p}\bigr)\bigr) \\ \le &C\sum_{n=1}^{\infty}n^{\gamma -1-1/p}( \log n)^{q}C_{\mathbb{V}} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert > n^{1/p}\bigr) \bigr) \\ \le & C \int _{1}^{\infty}x^{\gamma -1-1/p}(\log x)^{q} \,\mathrm{d}x \int _{0}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert > x^{1/p}\bigr)>y \bigr) \,\mathrm{d}y \\ =& C \int _{1}^{\infty}x^{\gamma -1-1/p}(\log x)^{q} \,\mathrm{d}x \biggl[ \int _{0}^{x^{1/p}}\mathbb{V} \bigl( \vert \epsilon \vert >x^{1/p} \bigr) \,\mathrm{d}y+ \int _{x^{1/p}}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert >y \bigr)\,\mathrm{d}y \biggr] \\ \le & C \int _{1}^{\infty}x^{\gamma -1}(\log x)^{q} \mathbb{V} \bigl( \vert \epsilon \vert >x^{1/p} \bigr)\,\mathrm{d}x\\ &{}+C \int _{1}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert ^{p}>y \bigr)y^{1/p-1}\,\mathrm{d}y \int _{1}^{y}x^{ \gamma -1-1/p}(\log x)^{q}\,\mathrm{d}x \\ \le &CC_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{\gamma p}\log ^{q}\bigl( \vert \epsilon \vert \bigr) \bigr)+C \int _{1}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert ^{p}>y \bigr)y^{\gamma -1}(\log y)^{q}\,\mathrm{d}y \\ \le& C C_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{\gamma p}\log ^{q}\bigl( \vert \epsilon \vert \bigr) \bigr)< \infty . \end{aligned}$$
(4.10)

Since \(\gamma >1\), \(q>1\), by monotonicity of \(\mathbb{E}^{*}\) and Lemma 2.2, we have

$$\begin{aligned} L_{13} \le &C\sum _{n=1}^{\infty}n^{\gamma -2-q/p+q}(\log n)^{q} \bigl(\mathbb{E}^{*} \vert \epsilon \vert ^{\gamma p}I\bigl( \vert \epsilon \vert > n^{1/p}\bigr)/n^{( \gamma p-1)/p} \bigr)^{q} \\ \le &C\sum_{n=1}^{\infty}n^{\gamma -2-\gamma q+q}( \log n)^{q} \bigl( \mathbb{E}^{*} \vert \epsilon \vert ^{\gamma p} \bigr)^{q} \\ \le &C\sum_{n=1}^{\infty}n^{(\gamma -1)(1-q)-1}(\log n)^{q} \bigl(C_{ \mathbb{V}}\bigl\{ \vert \epsilon \vert ^{\gamma p}\bigr\} \bigr)^{q}< \infty . \end{aligned}$$
(4.11)

By (4.8)-(4.11), we conclude that \(L_{1}<\infty \).

Next, we prove \(L_{2}<\infty \).

By similar proofs of Lemma 2.1 here and Theorem 2.1 (a) of Zhang [29], and \(\mathbb{E}(\epsilon _{nj}')=\mathbb{E}(-\epsilon _{nj}'')\) (cf. Proposition 1.3.7 of Peng [13]), we could see that

$$\begin{aligned} & \mathbb{E}^{*} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum_{j=-\infty}^{ \infty}\sum _{i=1-j}^{m-j}a_{i} \bigl(\mathbb{E}\bigl( \epsilon _{nj}'\bigr)+ \mathbb{E}\bigl(\epsilon _{nj}''\bigr) \bigr) \Biggr\vert ^{q} \Biggr) \\ &\quad \le C(\log n)^{q}\sup_{i\in \mathbb{Z}}\sum _{j=1-i}^{n-i} \bigl\vert \mathbb{E}\bigl(\epsilon _{nj}'\bigr)+\mathbb{E}\bigl(\epsilon _{nj}''\bigr) \bigr\vert ^{q}. \end{aligned}$$
(4.12)

Hence, by Markov’s inequality under sub-linear expectations, (4.12), (4.5), and the proof of \(L_{1}<\infty \), we obtain

$$ \begin{aligned} L_{2}&=\sum_{n=1}^{\infty}n^{\gamma -2} \mathbb{V} \Biggl(\max_{1\le m \le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl( \mathbb{E}\bigl(\epsilon _{nj}'\bigr)+\mathbb{E} \bigl(\epsilon _{nj}''\bigr) \bigr) \Biggr\vert >\varepsilon n^{1/p}/3 \Biggr) \\ &\le C\sum_{n=1}^{\infty}n^{\gamma -2-q/p} \mathbb{E}^{*} \Biggl(\max_{1 \le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\mathbb{E}\bigl(\epsilon _{nj}'\bigr)+\mathbb{E} \bigl(\epsilon _{nj}''\bigr) \bigr) \Biggr\vert ^{q} \Biggr) \\ &\le C\sum_{n=1}^{\infty}n^{\gamma -2-q/p}(\log n)^{q}\sup_{i\in \mathbb{Z}}\sum_{j=1-i}^{n-i} \mathbb{E} \bigl\vert \epsilon _{nj}' \bigr\vert ^{q}< \infty . \end{aligned} $$

Now, we establish \(L_{3}<\infty \). By Markov’s inequality under sub-linear expectations, Lemma 2.1, Lemma 4.1, \(C_{\mathbb{V}}\{|\epsilon |^{p}\}< CC_{\mathbb{V}}\{|\epsilon |^{ \gamma p}(\log |\epsilon |)^{p}\}<\infty \), and (4.5), we see that

$$\begin{aligned} L_{3}&=\sum_{n=1}^{\infty}n^{\gamma -2} \mathbb{V} \Biggl(\max_{1\le m \le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl( \epsilon _{nj}''-\mathbb{E}\bigl( \epsilon _{nj}''\bigr) \bigr) \Biggr\vert > \varepsilon n^{1/p}/3 \Biggr) \\ &\le C\sum_{n=1}^{\infty}n^{\gamma -3} \mathbb{E}^{*} \Biggl(\max_{1 \le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\epsilon _{nj}''-\mathbb{E}\bigl( \epsilon _{nj}''\bigr) \bigr) \Biggr\vert ^{p} \Biggr) \\ &\le C\sum_{n=1}^{\infty}n^{\gamma -3}(\log n)^{p}\sup_{i\in \mathbb{Z}} \Biggl[\sum _{j=1-i}^{n-i}\mathbb{E} \bigl\vert \epsilon _{nj}''- \mathbb{E}\epsilon _{nj}'' \bigr\vert ^{p}+ \Biggl( \sum_{j=1-i}^{n-i}\bigl[ \bigl\vert \mathbb{E}\bigl(\epsilon _{nj}''\bigr) \bigr\vert + \bigl\vert \mathbb{E}\bigl(-\epsilon _{nj}'' \bigr) \bigr\vert \bigr] \Biggr)^{p} \Biggr] \\ &= C\sum_{n=1}^{\infty}n^{\gamma -3}(\log n)^{p}\sup_{i\in \mathbb{Z}} \Biggl[\sum _{j=1-i}^{n-i}\mathbb{E} \bigl\vert \epsilon _{n}''- \mathbb{E}\epsilon _{n}'' \bigr\vert ^{p}+ \Biggl( \sum_{j=1-i}^{n-i}\bigl[ \bigl\vert \mathbb{E}\bigl( \epsilon _{n}''\bigr) \bigr\vert + \bigl\vert \mathbb{E}\bigl(-\epsilon _{n}'' \bigr) \bigr\vert \bigr] \Biggr)^{p} \Biggr] \\ &= C\sum_{n=1}^{\infty}n^{\gamma -3}(\log n)^{p}\sup_{i\in \mathbb{Z}} \Biggl[\sum _{j=1-i}^{n-i}\mathbb{E}^{*} \bigl\vert \epsilon _{n}''- \mathbb{E}\epsilon _{n}'' \bigr\vert ^{p}+ \Biggl( \sum_{j=1-i}^{n-i}\bigl[ \bigl\vert \mathbb{E}^{*}\bigl( \epsilon _{n}'' \bigr) \bigr\vert + \bigl\vert \mathbb{E}^{*}\bigl(-\epsilon _{n}''\bigr) \bigr\vert \bigr] \Biggr)^{p} \Biggr] \\ &\le C\sum_{n=1}^{\infty}n^{\gamma -3}(\log n)^{p}\sup_{i\in \mathbb{Z}} \Biggl[\sum _{j=1-i}^{n-i}\mathbb{E}^{*} \bigl( \vert \epsilon \vert ^{p}I\bigl( \vert \epsilon \vert >n^{1/p} \bigr) \bigr)+ \Biggl(\sum_{j=1-i}^{n-i} \mathbb{E}^{*}\bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n^{1/p}\bigr)\bigr) \Biggr)^{p} \Biggr] \\ &\le C\sum_{n=1}^{\infty}n^{\gamma -2}(\log n)^{p}\mathbb{E}^{*} \bigl( \vert \epsilon \vert ^{p}I\bigl( \vert \epsilon \vert >n^{1/p}\bigr) \bigr)\\ &\quad {}+C \sum_{n=1}^{ \infty}n^{\gamma -3+p}(\log n)^{p} \bigl(\mathbb{E}^{*} \bigl( \vert \epsilon \vert ^{p}I\bigl( \vert \epsilon \vert >n^{1/p} \bigr)/n^{(p-1)/p} \bigr) \bigr)^{p} \\ & \le C\sum_{n=1}^{\infty}n^{\gamma -2}( \log n)^{p}C_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{p}I\bigl( \vert \epsilon \vert >n^{1/p}\bigr) \bigr)\\ &\quad {}+C \sum_{n=1}^{ \infty}n^{\gamma -2}(\log n)^{p}C_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{p}I \bigl( \vert \epsilon \vert >n^{1/p}\bigr) \bigr) \bigl(C_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{p} \bigr) \bigr)^{p-1} \\ & \le C\sum_{n=1}^{\infty}n^{\gamma -2}(\log n)^{p}C_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{p}I \bigl( \vert \epsilon \vert >n^{1/p}\bigr) \bigr) \\ &\le C \int _{1}^{\infty}x^{\gamma -2}(\log x)^{p} \,\mathrm{d}x \int _{0}^{ \infty}\mathbb{V} \bigl( \vert \epsilon \vert ^{p}I\bigl( \vert \epsilon \vert >x^{1/p}\bigr)>y \bigr)\,\mathrm{d}y \\ &= C \int _{1}^{\infty}x^{\gamma -2}(\log x)^{p} \,\mathrm{d}x \biggl[ \int _{0}^{x}\mathbb{V} \bigl( \vert \epsilon \vert >x^{1/p} \bigr)\,\mathrm{d}y+ \int _{x}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert >y^{1/p} \bigr) \,\mathrm{d}y \biggr] \\ &= C \int _{1}^{\infty}x^{\gamma -1}(\log x)^{p} \mathbb{V} \bigl( \vert \epsilon \vert >x^{1/p} \bigr)\,\mathrm{d}x+C \int _{1}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert >y^{1/p} \bigr)\,\mathrm{d}y \int _{1}^{y}x^{\gamma -2}( \log x)^{p}\,\mathrm{d}x \\ &\le CC_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{\gamma p}\bigl(\log \vert \epsilon \vert \bigr)^{p} \bigr)+C \int _{1}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert ^{p}>y \bigr)y^{ \gamma -1}(\log y)^{p}\,\mathrm{d}y \\ &\le CC_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{ \gamma p}\bigl(\log \vert \epsilon \vert \bigr)^{p} \bigr)< \infty . \end{aligned}$$

The proof of Theorem 3.1 is finished.

Proof of Theorem 3.2

Let \(p< q\le 2\). Notice that \(\mathbb{E}\epsilon _{j}=\mathbb{E}(-\epsilon _{j})=0\), for all \(j\in \mathbb{Z}\) and for each \(n\ge 1\), write

$$ \begin{aligned} &\tilde{\epsilon}_{nj}'=-n^{\alpha}I \bigl(\epsilon _{j}< -n^{\alpha}\bigr)+ \epsilon _{j}I \bigl( \vert \epsilon _{j} \vert \le n^{\alpha} \bigr)+n^{\alpha}I\bigl(\epsilon _{j}>n^{ \alpha}\bigr); \\ &\tilde{\epsilon}_{nj}''=\epsilon _{j}-\tilde{\epsilon}_{nj}'=\bigl( \epsilon _{j}-n^{\alpha}\bigr)I\bigl(\epsilon _{j}>n^{\alpha} \bigr)+\bigl(\epsilon _{j}+n^{ \alpha}\bigr)I\bigl(\epsilon _{j}< -n^{\alpha}\bigr); \\ &\epsilon _{j}=\tilde{\epsilon}_{nj}'- \mathbb{E}\tilde{\epsilon}_{nj}'+ \tilde{ \epsilon}_{nj}''-\mathbb{E}\tilde{ \epsilon}_{nj}''+\mathbb{E} \tilde{ \epsilon}_{nj}'+\mathbb{E}\tilde{\epsilon}_{nj}''. \end{aligned} $$

And define \(\tilde{\epsilon}_{n}'\), \(\tilde{\epsilon}_{n}''\) as \(\tilde{\epsilon}_{nj}'\), \(\tilde{\epsilon}_{nj}''\) only with ϵ in place of \(\epsilon _{j}\). We can see that

$$\begin{aligned}& \bigl\vert \tilde{\epsilon}_{nj}' \bigr\vert = \vert \epsilon _{j} \vert I\bigl( \vert \epsilon _{j} \vert \le n^{\alpha}\bigr)+n^{\alpha}I\bigl( \vert \epsilon _{j} \vert >n^{\alpha}\bigr); \end{aligned}$$
(4.13)
$$\begin{aligned}& \begin{aligned}[b] \bigl\vert \tilde{\epsilon}_{nj}'' \bigr\vert &=\bigl(\epsilon _{j}-n^{\alpha}\bigr)I\bigl( \epsilon _{j}>n^{\alpha}\bigr)-\bigl(\epsilon _{j}+n^{\alpha}\bigr)I\bigl(\epsilon _{j}< -n^{ \alpha} \bigr); \\ &\le \vert \epsilon _{j} \vert I\bigl( \vert \epsilon _{j} \vert >n^{\alpha}\bigr). \end{aligned} \end{aligned}$$
(4.14)

Therefore, for each \(n\ge 1\), we get

$$\begin{aligned} \sum_{t=1}^{m}X_{t} =& \sum_{j=-\infty}^{\infty}\sum _{i=1-j}^{m-j}a_{i} \bigl(\tilde{ \epsilon}_{nj}'-\mathbb{E}\tilde{\epsilon}_{nj}' \bigr)+ \sum_{j=-\infty}^{\infty}\sum _{i=1-j}^{m-j}a_{i} \bigl( \tilde{ \epsilon}_{nj}''-\mathbb{E}\tilde{ \epsilon}_{nj}'' \bigr) \\ &{} + \sum_{j=-\infty}^{\infty}\sum _{i=1-j}^{m-j}a_{i} \bigl( \mathbb{E}\tilde{ \epsilon}_{nj}'+\mathbb{E}\tilde{\epsilon}_{nj}'' \bigr). \end{aligned}$$
(4.15)

Hence, by Lemma 4.2, we obtain

$$\begin{aligned} &\sum_{n=1}^{\infty}n^{\alpha p-2-\alpha} \mathbb{E}^{*} \Biggl(\max_{1 \le m\le n} \Biggl\vert \sum _{t=1}^{m}X_{t} \Biggr\vert - \varepsilon n^{\alpha} \Biggr)^{+} \\ &\quad \le \biggl(\frac{1}{\varepsilon ^{q}}+\frac{1}{q-1} \biggr) \sum _{n=1}^{\infty}n^{\alpha p-2-\alpha}\frac{1}{n^{\alpha (q-1)}} \mathbb{E}^{*} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum _{j=-\infty}^{ \infty}\sum _{i=1-j}^{m-j}a_{i} \bigl(\tilde{ \epsilon}_{nj}'- \mathbb{E}\tilde{\epsilon}_{nj}' \bigr) \Biggr\vert ^{q} \Biggr) \\ &\qquad{} +\sum_{n=1}^{\infty}n^{\alpha p-2-\alpha} \mathbb{E}^{*} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\tilde{\epsilon}_{nj}''-\mathbb{E} \tilde{\epsilon}_{nj}'' \bigr) \Biggr\vert \Biggr) \\ &\qquad{} +\sum_{n=1}^{\infty}n^{\alpha p-2-\alpha} \mathbb{E}^{*} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\mathbb{E}\tilde{\epsilon}_{nj}'+\mathbb{E}\tilde{ \epsilon}_{nj}'' \bigr) \Biggr\vert \Biggr) \\ &\quad \le C\sum_{n=1}^{\infty}n^{\alpha p-\alpha q-2} \mathbb{E}^{*} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\tilde{\epsilon}_{nj}'-\mathbb{E}\tilde{ \epsilon}_{nj}' \bigr) \Biggr\vert ^{q} \Biggr) \\ &\qquad{} +\sum_{n=1}^{\infty}n^{\alpha p-2-\alpha} \mathbb{E}^{*} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\tilde{\epsilon}_{nj}''-\mathbb{E} \tilde{\epsilon}_{nj}'' \bigr) \Biggr\vert \Biggr) \\ &\qquad{} +\sum_{n=1}^{\infty}n^{\alpha p-2-\alpha} \mathbb{E}^{*} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\mathbb{E}\tilde{\epsilon}_{nj}'+\mathbb{E}\tilde{ \epsilon}_{nj}'' \bigr) \Biggr\vert \Biggr) \\ &\quad =:K_{1}+K_{2}+K_{3}. \end{aligned}$$
(4.16)

First, we establish \(K_{1}<\infty \). By Markov’s inequality under sub-linear expectations, Lemma 4.1, and (4.13), we see that

$$\begin{aligned} K_{1} =&C\sum_{n=1}^{\infty}n^{\alpha p-\alpha q-2} \mathbb{E}^{*} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\tilde{\epsilon}_{nj}'-\mathbb{E}\tilde{ \epsilon}_{nj}' \bigr) \Biggr\vert ^{q} \Biggr) \\ \le &C\sum_{n=1}^{\infty}n^{\alpha p-\alpha q-2}( \log n)^{q}\sup_{i \in \mathbb{Z}} \Biggl[\sum _{j=1-i}^{n-i}\mathbb{E} \bigl\vert \tilde{ \epsilon}_{nj}'-\mathbb{E}\tilde{\epsilon}_{nj}' \bigr\vert ^{q}+ \Biggl(\sum_{j=1-i}^{n-i} \bigl[ \bigl\vert \mathbb{E}\bigl(\tilde{\epsilon}_{nj}' \bigr) \bigr\vert + \bigl\vert \mathbb{E}\bigl(-\tilde{\epsilon}_{nj}' \bigr) \bigr\vert \bigr] \Biggr)^{q} \Biggr] \\ =&C\sum_{n=1}^{\infty}n^{\alpha p-\alpha q-2}( \log n)^{q}\sup_{i \in \mathbb{Z}} \Biggl[\sum _{j=1-i}^{n-i}\mathbb{E} \bigl\vert \tilde{ \epsilon}_{n}'-\mathbb{E}\tilde{\epsilon}_{n}' \bigr\vert ^{q}+ \Biggl(\sum_{j=1-i}^{n-i} \bigl[ \bigl\vert \mathbb{E}\bigl(\tilde{\epsilon}_{n}' \bigr) \bigr\vert + \bigl\vert \mathbb{E}\bigl(-\tilde{\epsilon}_{n}' \bigr) \bigr\vert \bigr] \Biggr)^{q} \Biggr] \\ =&C\sum_{n=1}^{\infty}n^{\alpha p-\alpha q-2}( \log n)^{q}\sup_{i \in \mathbb{Z}} \Biggl[\sum _{j=1-i}^{n-i}\mathbb{E}^{*} \bigl\vert \tilde{\epsilon}_{n}'-\mathbb{E}\tilde{ \epsilon}_{n}' \bigr\vert ^{q}+ \Biggl(\sum _{j=1-i}^{n-i}\bigl[ \bigl\vert \mathbb{E} \bigl(\tilde{\epsilon}_{n}'\bigr) \bigr\vert + \bigl\vert \mathbb{E}\bigl(-\tilde{\epsilon}_{n}'\bigr) \bigr\vert \bigr] \Biggr)^{q} \Biggr] \\ \le &C\sum_{n=1}^{\infty}n^{\alpha p-\alpha q-2}( \log n)^{q}\sup_{i \in \mathbb{Z}}\sum _{j=1-i}^{n-i}\mathbb{E}^{*} \bigl\vert \tilde{\epsilon}_{n}' \bigr\vert ^{q} \\ & {}+C\sum _{n=1}^{\infty}n^{\alpha p- \alpha q-2}(\log n)^{q}\sup_{i\in \mathbb{Z}} \Biggl(\sum _{j=1-i}^{n-i} \mathbb{E} \bigl\vert \tilde{ \epsilon}_{n}'-\epsilon \bigr\vert \Biggr)^{q} \\ \le &C\sum_{n=1}^{\infty}n^{\alpha p-\alpha q-2}(\log n)^{q}\sup_{i \in \mathbb{Z}}\sum_{j=1-i}^{n-i} \mathbb{E}^{*} \bigl( \vert \epsilon \vert ^{q}I\bigl( \vert \epsilon \vert \le n^{\alpha}\bigr) \bigr) \\ &{} +C\sum_{n=1}^{\infty}n^{\alpha p-2}( \log n)^{q}\sup_{i\in \mathbb{Z}}\sum _{j=1-i}^{n-i}\mathbb{V} \bigl( \vert \epsilon \vert >n^{\alpha} \bigr) \\ &{} +C\sum_{n=1}^{\infty}n^{\alpha p-\alpha q-2}( \log n)^{q} \sup_{i\in \mathbb{Z}} \Biggl(\sum _{j=1-i}^{n-i}\mathbb{E}^{*} \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n^{\alpha}\bigr) \Biggr)^{q}\\ \le &C\sum_{n=1}^{\infty}n^{\alpha p-\alpha q-1}( \log n)^{q} \mathbb{E}^{*} \bigl( \vert \epsilon \vert ^{q}I\bigl( \vert \epsilon \vert \le n^{\alpha}\bigr) \bigr) \\ &{}+C\sum_{n=1}^{\infty}n^{\alpha p-\alpha -1}(\log n)^{q} \mathbb{E}^{*} \bigl( \vert \epsilon \vert I \bigl( \vert \epsilon \vert >n^{\alpha}\bigr) \bigr) \\ &{} +C\sum_{n=1}^{\infty}n^{\alpha p-\alpha q-2}(\log n)^{q} \sup_{i\in \mathbb{Z}} \Biggl(\sum _{j=1-i}^{n-i}\mathbb{E}^{*} \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n^{\alpha}\bigr) \Biggr)^{q} \\ =:&K_{11}+K_{12}+K_{13}. \end{aligned}$$
(4.17)

Notice that \(p< q\), by Lemma 2.2, we obtain

$$\begin{aligned} K_{11} \le &C\sum _{n=1}^{\infty}n^{\alpha p-\alpha q-1}(\log n)^{q}C_{ \mathbb{V}} \bigl( \vert \epsilon \vert ^{q} I\bigl( \vert \epsilon \vert \le n^{\alpha}\bigr) \bigr) \\ \le &C \int _{1}^{\infty}x^{\alpha p-\alpha q-1}(\log x)^{q} \,\mathrm{d}x \int _{0}^{x^{\alpha q}}\mathbb{V} \bigl( \vert \epsilon \vert ^{q}>y \bigr)\,\mathrm{d}y \\ =&C \int _{0}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert >y^{\alpha} \bigr)y^{ \alpha q-1}\,\mathrm{d}y \int _{1\vee y}^{\infty}x^{\alpha p-\alpha q-1}( \log x)^{q}\,\mathrm{d}x \\ \le &C \int _{0}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert >y^{\alpha} \bigr)y^{\alpha q-1+\alpha p-\alpha q}(\log y)^{q}\,\mathrm{d}y \\ \le &CC_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{p} \bigl(\log \vert \epsilon \vert \bigr)^{q} \bigr)< \infty . \end{aligned}$$
(4.18)

Since \(p>1\), we also see that

$$\begin{aligned} K_{12} =&C\sum_{n=1}^{\infty}n^{\alpha p-\alpha -1}( \log n)^{q} \mathbb{E}^{*} \bigl( \vert \epsilon \vert I \bigl( \vert \epsilon \vert >n^{\alpha}\bigr) \bigr) \\ \le &C\sum_{n=1}^{\infty}n^{\alpha p-\alpha -1}( \log n)^{q}C_{ \mathbb{V}} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n^{\alpha}\bigr) \bigr) \\ \le &C \int _{1}^{\infty}x^{\alpha p-\alpha -1}(\log x)^{q} \,\mathrm{d}x \int _{0}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >x^{\alpha}\bigr)>y \bigr) \,\mathrm{d}y \\ =&C \int _{1}^{\infty}x^{\alpha p-\alpha -1}(\log x)^{q} \,\mathrm{d}x \biggl[ \int _{0}^{x^{\alpha}}\mathbb{V} \bigl( \vert \epsilon \vert >x^{\alpha} \bigr)\,\mathrm{d}y+ \int _{x^{\alpha}}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert >y \bigr)\,\mathrm{d}y \biggr] \\ \le &C \int _{1}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert >x^{\alpha} \bigr)x^{\alpha p-1}(\log x)^{q} \,\mathrm{d}x\\ &{}+C \int _{1}^{\infty} \mathbb{V} \bigl( \vert \epsilon \vert >y^{\alpha} \bigr)y^{\alpha -1} \,\mathrm{d}y \int _{1}^{y}x^{\alpha p-\alpha -1}(\log x)^{q}\,\mathrm{d}x \\ \le & CC_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{p}\bigl(\log \vert \epsilon \vert \bigr)^{q} \bigr)+C \int _{1}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert >y^{\alpha} \bigr)y^{\alpha p-1}(\log y)^{q}\,\mathrm{d}y \\ \le & CC_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{p}\bigl(\log \vert \epsilon \vert \bigr)^{q} \bigr)< \infty . \end{aligned}$$
(4.19)

Obviously, while \(\alpha p>1\), by Lemma 2.2,we see that

$$\begin{aligned} K_{13} \le& C\sum _{n=1}^{\infty}n^{\alpha p-\alpha q-2}(\log n)^{q} \sup _{i\in \mathbb{Z}} \Biggl(\sum_{j=1-i}^{n-i} \mathbb{E}^{*} \vert \epsilon \vert ^{p}I\bigl( \vert \epsilon \vert >n^{\alpha}\bigr)/n^{\alpha (p-1)} \Biggr)^{q} \\ \le& C\sum_{n=1}^{\infty}n^{-(q-1)(\alpha p-1)-1}( \log n)^{q}\bigl( \mathbb{E}^{*} \vert \epsilon \vert ^{p}\bigr)^{q} \\ \le &C\sum_{n=1}^{\infty}n^{-(q-1)(\alpha p-1)-1}(\log n)^{q}\bigl(C_{ \mathbb{V}}\bigl( \vert \epsilon \vert ^{p}\bigr)\bigr)^{q}< \infty . \end{aligned}$$
(4.20)

While \(0<\alpha \le 1/p\), by \(C_{\mathbb{V}} (|\epsilon |^{p}(\log |\epsilon |)^{q} )< \infty \), we obtain \(\lim_{x\rightarrow \infty}x^{p}(\log x )^{q}\mathbb{V}\{|\epsilon |>x \}=0\), which in combination with Lebesgue’s dominated convergence theorem of Rudin [14] implies

$$\begin{aligned} &\lim_{n\rightarrow \infty}n^{1-\alpha}C_{\mathbb{V}}\bigl\{ \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n^{\alpha}\bigr)\bigr\} \\ &\quad = \lim_{x\rightarrow \infty}x^{1-\alpha} \biggl(x^{\alpha}\mathbb{V} \bigl\{ \vert \epsilon \vert >x^{\alpha}\bigr\} + \int _{x^{ \alpha}}^{\infty}\mathbb{V}\bigl\{ \vert \epsilon \vert >y\bigr\} \,\mathrm{d}y \biggr) \\ &\quad\le \lim_{x\rightarrow \infty} C\frac{\int _{x^{\alpha}}^{\infty}\mathbb{V}\{ \vert \epsilon \vert >y\}\,\mathrm{d}y}{x^{\alpha -1}}= \lim _{x\rightarrow \infty} \frac{\sum_{k=0}^{\infty}\int _{(2^{k}x)^{\alpha}}^{(2^{k+1}x)^{\alpha}}\mathbb{V}\{ \vert \epsilon \vert >y\}\,\mathrm{d}y}{x^{\alpha -1}} \\ &\quad \le \lim_{x\rightarrow \infty}C\sum_{k=0}^{\infty} \mathbb{V}\bigl\{ \vert \epsilon \vert >\bigl(2^{k}x \bigr)^{\alpha}\bigr\} \bigl(2^{k}x\bigr)^{p\alpha}x^{\alpha -p\alpha} \bigl(2^{k}\bigr)^{ \alpha -p\alpha}\bigl(2^{\alpha}-1\bigr) \\ &\quad = C\sum _{k=0}^{\infty}\bigl(2^{k} \bigr)^{\alpha -p\alpha} \times 0=0, \end{aligned}$$

and \(\sup_{n}n^{1-\alpha}C_{\mathbb{V}}\{|\epsilon |I(|\epsilon |>n^{ \alpha})\}<\infty \). Hence, while \(0<\alpha p\le 1\), by \(K_{12}<\infty \), we have

$$\begin{aligned} K_{13} \le& C\sum _{n=1}^{\infty}n^{\alpha p-\alpha q-2}(\log n)^{q} \bigl(n\mathbb{E}^{*} \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n^{\alpha}\bigr) \bigr)^{q} \\ \le& C\sum_{n=1}^{\infty}n^{\alpha p-\alpha -1}(\log n)^{q}\bigl( \mathbb{E}^{*} \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n^{\alpha}\bigr)\bigr) \bigl(n^{1-\alpha} \mathbb{E}^{*} \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n^{\alpha}\bigr) \bigr)^{q-1} \\ \le& C\sum_{n=1}^{\infty}n^{\alpha p-\alpha -1}( \log n)^{q}\bigl( \mathbb{E}^{*} \vert \epsilon \vert I \bigl( \vert \epsilon \vert >n^{\alpha}\bigr)\bigr) \bigl(n^{1-\alpha}C_{ \mathbb{V}} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n^{\alpha}\bigr) \bigr) \bigr)^{q-1}< \infty . \end{aligned}$$
(4.21)

By (4.17)-(4.21), we conclude that \(K_{1}<\infty \).

Next, we establish \(K_{2}<\infty \). By Lemma 4.1, (4.14), and the proof of (4.19), we see that

$$\begin{aligned} K_{2} =&\sum_{n=1}^{\infty}n^{\alpha p-2-\alpha} \mathbb{E}^{*} \Biggl( \max_{1\le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\tilde{\epsilon}_{nj}''-\mathbb{E} \tilde{\epsilon}_{nj}'' \bigr) \Biggr\vert \Biggr) \\ \le &C\sum_{n=1}^{\infty}n^{\alpha p-2-\alpha}( \log n)\sup_{i\in \mathbb{Z}} \Biggl[\sum_{j=1-i}^{n-i} \mathbb{E} \bigl\vert \tilde{\epsilon}_{nj}''- \mathbb{E}\tilde{\epsilon}_{nj}'' \bigr\vert + \sum_{j=1-i}^{n-i}\bigl[ \bigl\vert \mathbb{E}\bigl(\tilde{\epsilon}_{nj}'' \bigr) \bigr\vert + \bigl\vert \mathbb{E}\bigl(- \tilde{\epsilon}_{nj}'' \bigr) \bigr\vert \bigr] \Biggr] \\ =&C\sum_{n=1}^{\infty}n^{\alpha p-2-\alpha}( \log n)\sup_{i\in \mathbb{Z}} \Biggl[\sum_{j=1-i}^{n-i} \mathbb{E} \bigl\vert \tilde{\epsilon}_{n}''- \mathbb{E}\tilde{\epsilon}_{n}'' \bigr\vert +\sum_{j=1-i}^{n-i}\bigl[ \bigl\vert \mathbb{E}\bigl(\tilde{\epsilon}_{n}''\bigr) \bigr\vert + \bigl\vert \mathbb{E}\bigl(-\tilde{\epsilon}_{n}'' \bigr) \bigr\vert \bigr] \Biggr] \\ =&C\sum_{n=1}^{\infty}n^{\alpha p-2-\alpha}( \log n)\sup_{i\in \mathbb{Z}} \Biggl[\sum_{j=1-i}^{n-i} \mathbb{E}^{*} \bigl\vert \tilde{\epsilon}_{n}''- \mathbb{E}\tilde{\epsilon}_{n}'' \bigr\vert +\sum_{j=1-i}^{n-i}\bigl[ \bigl\vert \mathbb{E}^{*}\bigl(\tilde{\epsilon}_{n}'' \bigr) \bigr\vert + \bigl\vert \mathbb{E}^{*}\bigl(- \tilde{ \epsilon}_{n}''\bigr) \bigr\vert \bigr] \Biggr] \\ \le &C\sum_{n=1}^{\infty}n^{\alpha p-2-\alpha}( \log n)\sup_{i\in \mathbb{Z}}\sum_{j=1-i}^{n-i} \mathbb{E}^{*} \bigl\vert \tilde{\epsilon}_{n}'' \bigr\vert \\ \le &C\sum_{n=1}^{\infty}n^{\alpha p-1-\alpha}( \log n)\mathbb{E}^{*} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n^{\alpha}\bigr) \bigr) \\ \le &C\sum_{n=1}^{\infty}n^{\alpha p-1-\alpha}(\log n)C_{\mathbb{V}} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n^{\alpha}\bigr) \bigr) \\ \le &CC_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{p} \bigl(\log \vert \epsilon \vert \bigr) \bigr)< \infty . \end{aligned}$$
(4.22)

Now, we prove \(K_{3}<\infty \). By similar proofs of Lemma 4.1 here and Theorem 2.1 (a) of Zhang [29], and \(\mathbb{E}(\tilde{\epsilon}_{nj}')=\mathbb{E}(-\tilde{\epsilon}_{nj}'')\) (cf. Proposition 1.3.7 of Peng [13]), we see that

$$\begin{aligned} & \mathbb{E}^{*} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum_{j=-\infty}^{ \infty}\sum _{i=1-j}^{m-j}a_{i} \bigl(\mathbb{E}\bigl( \tilde{\epsilon}_{nj}'\bigr)+ \mathbb{E}\bigl(\tilde{ \epsilon}_{nj}''\bigr) \bigr) \Biggr\vert \Biggr) \\ &\quad \le C(\log n)\sup_{i\in \mathbb{Z}}\sum _{j=1-i}^{n-i} \bigl\vert \mathbb{E}\bigl(\tilde{ \epsilon}_{nj}'\bigr)+\mathbb{E}\bigl(\tilde{ \epsilon}_{nj}''\bigr) \bigr\vert . \end{aligned}$$
(4.23)

Hence, by Markov’s inequality under sub-linear expectations, (4.23), (4.14), and the proof of \(K_{2}<\infty \), we obtain

$$\begin{aligned} K_{3} \le &C\sum_{n=1}^{\infty}n^{\alpha p-2-\alpha}( \log n)\sup_{i \in \mathbb{Z}}\sum_{j=1-i}^{n-i} \bigl\vert \mathbb{E}\bigl(\tilde{\epsilon}_{nj}' \bigr)+ \mathbb{E}\bigl(\tilde{\epsilon}_{nj}'' \bigr) \bigr\vert \\ =&C\sum_{n=1}^{\infty}n^{\alpha p-2-\alpha}(\log n) \sup_{i\in \mathbb{Z}}\sum_{j=1-i}^{n-i} \bigl\vert \mathbb{E}\bigl(\tilde{\epsilon}_{n}'\bigr)+ \mathbb{E}\bigl(\tilde{\epsilon}_{n}''\bigr) \bigr\vert \\ \le &C\sum_{n=1}^{\infty}n^{\alpha p-2-\alpha}(\log n)\sup_{i\in \mathbb{Z}}\sum_{j=1-i}^{n-i} \mathbb{E} \bigl\vert \tilde{\epsilon}_{n}'' \bigr\vert \\ \le &CC_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{p}\bigl(\log \vert \epsilon \vert \bigr) \bigr)< \infty . \end{aligned}$$

The proof of Theorem 3.2 is finished. □

Proof of Theorem 3.3

For for all \(j\in \mathbb{Z}\) and for each \(n\ge 1\), write

$$ \begin{aligned} &\tilde{\epsilon}_{nj}'=-nI( \epsilon _{j}< -n)+\epsilon _{j}I\bigl( \vert \epsilon _{j} \vert \le n\bigr)+nI(\epsilon _{j}>n); \\ &\tilde{\epsilon}_{nj}''=\epsilon _{j}-\tilde{\epsilon}_{nj}'=( \epsilon _{j}-n)I(\epsilon _{j}>n)+(\epsilon _{j}+n)I( \epsilon _{j}< -n); \\ &\epsilon _{j}=\tilde{\epsilon}_{nj}'- \mathbb{E}\tilde{\epsilon}_{nj}'+ \tilde{ \epsilon}_{nj}''-\mathbb{E}\tilde{ \epsilon}_{nj}''+\mathbb{E} \tilde{ \epsilon}_{nj}'+\mathbb{E}\tilde{\epsilon}_{nj}''. \end{aligned} $$

And define \(\tilde{\epsilon}_{n}'\), \(\tilde{\epsilon}_{n}''\) as \(\tilde{\epsilon}_{nj}'\), \(\tilde{\epsilon}_{nj}''\) only with ϵ in place of \(\epsilon _{j}\). First, by \(C_{\mathbb{V}}\{|\epsilon |\log ^{2}(1+|\epsilon |)\}<\infty \), we obtain \(\lim_{x\rightarrow \infty}x(\log x)^{2}\mathbb{V}\{|\epsilon |>x\}=0\), which in combination with Lebesgue’s dominated convergence theorem of Rudin [14] implies

$$\begin{aligned} &\lim_{n\rightarrow \infty}(\log n)C_{\mathbb{V}} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n\bigr) \bigr)\\ &\quad =\lim_{x\rightarrow \infty}( \log x) \biggl(x \mathbb{V}\bigl\{ \vert \epsilon \vert >x\bigr\} + \int _{x}^{\infty}\mathbb{V}\bigl\{ \vert \epsilon \vert >y \bigr\} \,\mathrm{d}y \biggr) \\ &\quad =\lim_{x\rightarrow \infty}\sum_{k=1}^{\infty} \frac{\int _{x^{k}}^{x^{k+1}}\mathbb{V}\{ \vert \epsilon \vert >y\}\,\mathrm{d}y}{(\log x)^{-1}} \le C\lim_{x\rightarrow \infty}\sum _{k=1}^{\infty}\mathbb{V}\bigl\{ \vert \epsilon \vert >x^{k}\bigr\} x^{k}\bigl(\log x^{k} \bigr)^{2}\frac{1}{k^{2}(\log x)}=0, \end{aligned}$$

and \(\sup_{n\ge 1}(\log n)C_{\mathbb{V}} (|\epsilon |I(|\epsilon |>n) )<\infty \). As in the proof of Theorem 3.2, by the proof of Lemma 2.2 of Zhong and Wu [33] and the discussion above, we could see that

$$\begin{aligned} &\sum_{n=1}^{\infty}n^{-2} \mathbb{E}^{*} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum _{t=1}^{m}X_{t} \Biggr\vert - \varepsilon n \Biggr)^{+} \\ &\quad \le \biggl(\frac{1}{\varepsilon ^{2}}+1 \biggr)\sum_{n=1}^{ \infty}n^{-3} \mathbb{E}^{*} \Biggl(\max_{1\le m\le n} \Biggl\vert \sum _{j=- \infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\tilde{\epsilon}_{nj}'- \mathbb{E}\tilde{ \epsilon}_{nj}' \bigr) \Biggr\vert ^{2} \Biggr) \\ &\qquad {}+\sum_{n=1}^{\infty}n^{-2} \mathbb{E}^{*} \Biggl(\max_{1 \le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\tilde{\epsilon}_{nj}''-\mathbb{E} \tilde{\epsilon}_{nj}'' \bigr) \Biggr\vert \Biggr) \\ &\qquad {}+\sum_{n=1}^{\infty}n^{-2} \mathbb{E}^{*} \Biggl(\max_{1 \le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\mathbb{E}\tilde{\epsilon}_{nj}'+\mathbb{E}\tilde{ \epsilon}_{nj}'' \bigr) \Biggr\vert \Biggr) \\ &\quad \le C\sum_{n=1}^{\infty}n^{-3} \mathbb{E}^{*} \Biggl(\max_{1 \le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\tilde{\epsilon}_{nj}'-\mathbb{E}\tilde{ \epsilon}_{nj}' \bigr) \Biggr\vert ^{2} \Biggr) \\ &\qquad{} +\sum_{n=1}^{\infty}n^{-2} \mathbb{E}^{*} \Biggl(\max_{1 \le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\tilde{\epsilon}_{nj}''-\mathbb{E} \tilde{\epsilon}_{nj}'' \bigr) \Biggr\vert \Biggr) \\ &\qquad {}+\sum_{n=1}^{\infty}n^{-2} \mathbb{E}^{*} \Biggl(\max_{1 \le m\le n} \Biggl\vert \sum _{j=-\infty}^{\infty}\sum_{i=1-j}^{m-j}a_{i} \bigl(\mathbb{E}\tilde{\epsilon}_{nj}'+\mathbb{E}\tilde{ \epsilon}_{nj}'' \bigr) \Biggr\vert \Biggr) \\ &\quad \le C\sum_{n=1}^{\infty}n^{-3}( \log n)^{2}\sup_{i\in \mathbb{Z}} \Biggl\{ \sum _{j=1-i}^{n-i}\mathbb{E} \bigl\vert \tilde{ \epsilon}_{nj}' \bigr\vert ^{2}+ \Biggl(\sum _{j=1-i}^{n-i}\bigl[ \bigl\vert \mathbb{E} \tilde{\epsilon}_{nj}' \bigr\vert + \bigl\vert \mathbb{E}\bigl(-\tilde{\epsilon}_{nj}'\bigr) \bigr\vert \bigr] \Biggr)^{2} \Biggr\} \\ &\qquad{} +C\sum_{n=1}^{\infty}n^{-1} \log n\mathbb{E}^{*} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n\bigr) \bigr)+ C\sum_{n=1}^{\infty}n^{-1} \log n \mathbb{E}^{*} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n\bigr) \bigr) \\ &\quad = C\sum_{n=1}^{\infty}n^{-3}( \log n)^{2}\sup_{i\in \mathbb{Z}} \Biggl\{ \sum _{j=1-i}^{n-i}\mathbb{E} \bigl\vert \tilde{ \epsilon}_{n}' \bigr\vert ^{2}+ \Biggl(\sum _{j=1-i}^{n-i}\bigl[ \bigl\vert \mathbb{E} \tilde{\epsilon}_{n}' \bigr\vert + \bigl\vert \mathbb{E}\bigl(-\tilde{\epsilon}_{n}'\bigr) \bigr\vert \bigr] \Biggr)^{2} \Biggr\} \\ &\qquad{} +C\sum_{n=1}^{\infty}n^{-1} \log n\mathbb{E}^{*} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n\bigr) \bigr) \\ &\quad = C\sum_{n=1}^{\infty}n^{-3}( \log n)^{2}\sup_{i\in \mathbb{Z}} \Biggl\{ \sum _{j=1-i}^{n-i}\mathbb{E}^{*} \bigl\vert \tilde{\epsilon}_{n}' \bigr\vert ^{2}+ \Biggl( \sum_{j=1-i}^{n-i}\bigl[\mathbb{E}^{*} \bigl\vert \tilde{\epsilon}_{n}'- \epsilon \bigr\vert \bigr] \Biggr)^{2} \Biggr\} \\ &\qquad{} +C\sum_{n=1}^{\infty}n^{-1} \log n\mathbb{E}^{*} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n\bigr) \bigr) \\ &\quad \le C\sum_{n=1}^{\infty}n^{-2}( \log n)^{2}\mathbb{E}^{*} \bigl( \vert \epsilon \vert ^{2}I\bigl( \vert \epsilon \vert \le n\bigr) \bigr)+C\sum _{n=1}^{ \infty}(\log n)^{2} \mathbb{E}^{*} \bigl(I\bigl( \vert \epsilon \vert > n\bigr) \bigr) \\ &\qquad {}+C\sum_{n=1}^{\infty}n^{-1}( \log n)^{2} \bigl( \mathbb{E}^{*}\bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n\bigr)\bigr) \bigr)^{2}+C \sum_{n=1}^{ \infty}n^{-1}\log n \mathbb{E}^{*} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n\bigr) \bigr) \\ &\quad \le C\sum_{n=1}^{\infty}n^{-2}( \log n)^{2}C_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{2}I\bigl( \vert \epsilon \vert \le n\bigr) \bigr)+C\sum _{n=1}^{ \infty}(\log n)^{2}\mathbb{V} \bigl( \vert \epsilon \vert > n \bigr) \\ &\qquad {}+C\sum_{n=1}^{\infty}n^{-1}( \log n)^{2} \bigl(C_{ \mathbb{V}} \bigl( \vert \epsilon \vert I \bigl( \vert \epsilon \vert >n\bigr) \bigr) \bigr)^{2}+C \sum _{n=1}^{\infty}n^{-1}(\log n)C_{\mathbb{V}} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n\bigr) \bigr) \\ &\quad \le C\sum_{n=1}^{\infty}n^{-2}( \log n)^{2}C_{\mathbb{V}} \bigl( \vert \epsilon \vert ^{2}I\bigl( \vert \epsilon \vert \le n\bigr) \bigr)+CC_{\mathbb{V}} \bigl( \vert \epsilon \vert \log ^{2}\bigl(1+ \vert \epsilon \vert \bigr) \bigr) \\ &\qquad{} +C\sum_{n=1}^{\infty}n^{-1}( \log n)C_{\mathbb{V}} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >n\bigr) \bigr) \\ &\quad \le C \int _{1}^{\infty}x^{-2}(\log x)^{2} \,\mathrm{d}x \int _{0}^{x^{2}} \mathbb{V} \bigl( \vert \epsilon \vert ^{2}>y \bigr)\,\mathrm{d}y\\ &\qquad {}+C \int _{1}^{ \infty}x^{-1}(\log x)\,\mathrm{d}x \int _{0}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert I\bigl( \vert \epsilon \vert >x\bigr)>y \bigr)\,\mathrm{d}y+C \\ &\quad =C \int _{0}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert >y \bigr)y \,\mathrm{d}y \int _{1\vee y}^{\infty}x^{-2}(\log x)^{2}\,\mathrm{d}x \\ &\qquad {}+C \int _{1}^{\infty}x^{-1}(\log x)\,\mathrm{d}x \biggl[ \int _{0}^{x}\mathbb{V} \bigl( \vert \epsilon \vert >x \bigr)\,\mathrm{d}y+ \int _{x}^{ \infty}\mathbb{V} \bigl( \vert \epsilon \vert >y \bigr)\,\mathrm{d}y \biggr]+C \\ &\quad \le C \int _{0}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert >y \bigr) ( \log y)^{2}\,\mathrm{d}y+C \int _{1}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert >x \bigr) (\log x)\,\mathrm{d}x\\ &\qquad {}+C \int _{1}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert >y \bigr)\,\mathrm{d}y \int _{1}^{y}x^{-1}(\log x)\,\mathrm{d}x+C \\ &\quad \le CC_{\mathbb{V}}\bigl( \vert \epsilon \vert \log ^{2} \bigl(1+ \vert \epsilon \vert \bigr)\bigr)+C \int _{0}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert \log \bigl(1+ \vert \epsilon \vert \bigr)>z \bigr)\,\mathrm{d}z\\ &\qquad {}+C \int _{1}^{\infty}\mathbb{V} \bigl( \vert \epsilon \vert >y \bigr) (\log y)^{2}\,\mathrm{d}y+C \\ &\quad \le CC_{\mathbb{V}} \bigl( \vert \epsilon \vert \log ^{2}\bigl(1+ \vert \epsilon \vert \bigr) \bigr)+C< \infty . \end{aligned}$$

The proof is complete. □

Availability of data and materials

No data were used to support this study.

References

  1. Chen, X.C., Wu, Q.Y.: Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations. AIMS Math. 7, 9694–9715 (2022)

    Article  MathSciNet  Google Scholar 

  2. Chen, Z.J.: Strong laws of large numbers for sub-linear expectations. Sci. China Math. 59(5), 945–954 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gao, F.Q., Xu, M.Z.: Large deviations and moderate deviations for independent random variables under sublinear expectations. Sci. China Math. 41(4), 337–352 (2011). (in Chinese)

    MATH  Google Scholar 

  4. Hossenni, S.M., Nezakati, A.: Complete monent convergence for the dependent linear processes with random coefficients. Acta Math. Sin. Engl. Ser. 35(8), 113–132 (2019)

    Google Scholar 

  5. Hossenni, S.M., Nezakati, A.: Convergence rates in the law of large numbers for END linear processes with random coefficients. Commun. Stat., Theory Methods 49(1), 88–98 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu, F., Chen, Z.J., Zhang, D.F.: How big are the increments of G-Brownian motion. Sci. China Math. 57(8), 1686–1700 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu, Z.C., Yang, Y.Z.: Some inequalities and limit theorems under sublinear expectations. Acta Math. Appl. Sin. Engl. Ser. 33(2), 451–462 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, W.H., Wu, P.Y.: Strong laws of large numbers for general random variables in sublinear expectation spaces. J. Inequal. Appl. 2019, 143 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kuczmaszewska, A.: Complete convergence for widely acceptable random variables under the sublinear expecations. J. Math. Anal. Appl. 484(1), 123662 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Meng, B., Wang, D.C., Wu, Q.Y.: Convergence of asymptotically almost negatively associated random variables with random coefficients. Commun. Stat., Theory Methods 52(9), 2931–2945 (2023). https://doi.org/10.1080/03610926.2021.1963457

    Article  MathSciNet  Google Scholar 

  11. Peng, S.G.: G-Expectation, G-Brownian motion and related stochastic calculus of Itô type. Stoch. Anal. Appl. 2(4), 541–567 (2007)

    MATH  Google Scholar 

  12. Peng, S.G.: Nonlinear expectations and stochastic calculus under uncertainty (2010). arXiv:1002.4546v1

  13. Peng, S.G.: Nonlinear Expectations and Stochastic Calculus Under Uncertainty. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  14. Rudin, W.: Real and Complex Analysis. China Machine Press, Beijing (2004)

    MATH  Google Scholar 

  15. Sung, S.H.: Moment inequalities and complete moment convergence. J. Inequal. Appl. 2009, 271265 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, Q.Y.: Precise asymptotics for complete integral convergence under sublinear expectations. Math. Probl. Eng. 2020, Article ID 3145935 (2020)

    MathSciNet  Google Scholar 

  17. Wu, Q.Y., Jiang, Y.Y.: Strong law of large numbers and Chover’s law of the iterated logarithm under sub-linear expectations. J. Math. Anal. Appl. 460(1), 252–270 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, J.P., Zhang, L.X.: Three series theorem for independent random variables under sub-linear expectations with applications. Acta Math. Sin. Engl. Ser. 35(2), 172–184 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, J.P., Zhang, L.X.: The law of logarithm for arrays of random variables under sub-linear expectations. Acta Math. Appl. Sin. Engl. Ser. 36(3), 670–688 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu, M.Z., Cheng, K.: Precise asymptotics in the law of the iterated logarithm under sublinear expectations. Math. Probl. Eng. 2021, Article ID 6691857 (2021a)

    MathSciNet  Google Scholar 

  21. Xu, M.Z., Cheng, K.: Convergence for sums of independent, identically distributed random variables under sublinear expectations. J. Inequal. Appl. 2021, Article ID 157 (2021b)

    Article  MATH  Google Scholar 

  22. Xu, M.Z., Cheng, K.: Equivalent conditions of complete pth moment convergence for weighted sums of i. i. d. random variables under sublinear expectations. Discrete Dyn. Nat. Soc. 2021, Article ID 7471550 (2021c)

    Article  MATH  Google Scholar 

  23. Xu, M.Z., Cheng, K.: Equivalent conditions of complete convergence for weighted sums of sequences of i. i. d. random variables under sublinear expectations (2021d). arXiv:2108.12085v1

  24. Xu, M.Z., Cheng, K.: How small are the increments of G-Brownian motion. Stat. Probab. Lett. 186, 1–9 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xu, M.Z., Cheng, K., Yu, W.K.: Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Math. 7, 19998–20019 (2022)

    Article  MathSciNet  Google Scholar 

  26. Xu, M.Z., Kong, X.H.: Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations. AIMS Math. 8, 8504–8521 (2023)

    Article  MathSciNet  Google Scholar 

  27. Zhang, L.X.: Donsker’s invariance principle under the sub-linear expectation with an application to Chung’s law of the iterated logarithm. Commun. Math. Stat. 3(2), 187–214 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, L.X.: Exponential inequalities under sub-linear expectations with applications. Sci. China Math. 59(12), 2503–2526 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, L.X.: Rosenthal’s inequalities for independent and negatively dependent random variables under sub-linear expectations with applications. Sci. China Math. 59(4), 759–768 (2016)

    Article  MathSciNet  Google Scholar 

  30. Zhang, L.X.: Strong limit theorems for extended independent random variables and extended negatively dependent random variables under sub-linear expectations. Acta Math. Sci. 42(2), 467–490 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, L.X., Lin, J.H.: Marcinkiewicz’s strong law of large numbers for nonlinear expectations. Stat. Probab. Lett. 137, 269–276 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, Y., Ding, X.: Further research on complete moment convergence for moving average process of a class of random variables. J. Inequal. Appl. 2017, 46 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhong, H.Y., Wu, Q.Y.: Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation. J. Inequal. Appl. 2017, 261 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was supported by Science and Technology Research Project of Jiangxi Provincial Department of Education of China (No. GJJ2201041), Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University (No. 102/01003002031), Re-accompanying Funding Project of Academic Achievements of Jingdezhen Ceramic University (No. 215/20506277), and Jiangxi Province Key S&T Cooperation Project (No. 20212BDH80021).

Author information

Authors and Affiliations

Authors

Contributions

MZX was a major contributor in writing the manuscript; KC and WKY provided some helpful discussions in writing the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Mingzhou Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Cheng, K. & Yu, W. Convergence of linear processes generated by negatively dependent random variables under sub-linear expectations. J Inequal Appl 2023, 77 (2023). https://doi.org/10.1186/s13660-023-02990-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-02990-6

MSC

Keywords