# Correction to: On statistical convergence and strong Cesàro convergence by moduli for double sequences

The Original Article was published on 23 May 2022

## Abstract

We correct a logic mistake in our paper “On statistical convergence and strong Cesàro convergence by moduli for double sequences” (León-Saavedra et al. in J. Inequal. Appl. 2022:62, 2022).

## 1 Introduction

It has come to our attention that there is a logic mistake with the converse of some results in our paper . These converse of these results are not central in the papers, but they could be interested in its own right.

Let us denote $$\lfloor x\rfloor$$ the integer part of $$x\in \mathbb{R}$$. The following result correct Theorem 3.5 in .

### Proposition 1.1

a):

If all statistical convergent double sequences $$(x_{i,j})$$ are f statistical convergent then f must be compatible.

b):

If all strong Cesàro convergent double sequences $$(x_{i,j})$$ are f-strong Cesàro convergent then f is compatible.

### Proof

If f is not compatible, then there exists $$c>0$$ such that $$\limsup_{n}\frac{f(n\varepsilon )}{f(n)}>c$$. Assume that $$\varepsilon _{k}$$ is a decreasing sequence converging to 0, for each k we can construct inductively an increasing sequence $$m_{k}$$ satisfying $$f(m_{k}\varepsilon _{k})>cf(m_{k})$$ and

$$\varepsilon _{k+1}-\frac{m_{k}\varepsilon _{k}-1}{m_{k+1}}< \biggl(1- \sqrt{ \frac{m_{k}}{m_{k+1}}}-\frac{2}{\sqrt{m_{k+1}}} \biggr)^{2}.$$
(1.1)

Let us define by $$n_{k}=\lfloor m_{k}\varepsilon _{k}\rfloor +1$$, and we set $$\ell _{k}=\lfloor \sqrt{m_{k}}\rfloor$$. An easy check using (1.1) yields $$(\ell _{k+1}-\ell _{k})^{2}>n_{k+1}-n_{k}$$.

Let us fix $$A_{k+1} \subset [\ell _{k+1}-\lfloor \sqrt{n_{k+1}-n_{k}}\rfloor -1] \times [\ell _{k+1}-\lfloor \sqrt{n_{k+1}-n_{k}}\rfloor -1]$$ a subset of $$\mathbb{N}\times \mathbb{N}$$ such that $$\#(A_{k+1})=n_{k+1}-n_{k}$$. Let us denote $$A=\bigcup_{k}A_{k}$$ and set $$x_{i,j}=\chi _{A}(i,j)$$. Let us see that $$x_{i,j}$$ is statistically convergent to 0, but not f-statistically convergent. Indeed, for any $$m, n\in \mathbb{N}$$, there exist p and q, such that $$\ell _{p}< m\leq \ell _{p+1}$$ and $$\ell _{q}< n\leq \ell _{q+1}$$. Set $$k=\min \{p,q\}$$. We can suppose without loss that $$k\geq \ell _{k+1}-\lfloor \sqrt{n_{k+1}-n_{k}}\rfloor -1$$. Hence, since $$(\sqrt{m_{k+1}}-1)^{2}\leq \ell _{k+1}^{2}\leq m_{k}$$, for any $$\varepsilon >0$$:

\begin{aligned} \frac{\#\{(i,j) : i\leq m, j\leq n \text{ and } \vert x_{i,j} \vert >\varepsilon \}}{mn} \leq & \frac{n_{k}}{\ell _{k}^{2}}+ \frac{n_{k+1}-n_{k}}{[\ell _{k+1}-\lfloor \sqrt{n_{k+1}-n_{k}}\rfloor -1 ]^{2}} \\ \leq & \frac{n_{k}}{m_{k}}+ \frac{n_{k+1}-n_{k}}{(\sqrt{m_{k+1}}-\sqrt{n_{k+1}-n_{k}}-2)^{2}} \\ \leq & \frac{n_{k}}{m_{k}}+ \frac{\frac{n_{k+1}-n_{k}}{m_{k+1}}}{(1-\sqrt{\frac{n_{k+1}-n_{k}}{m_{k+1}}}-\frac{2}{\sqrt{m_{k+1}}})^{2}} \end{aligned}

which goes to zero as $$r\to \infty$$ as desired. On the other hand, if we set

$$A_{\varepsilon}(p,q,m,n)= \bigl\{ (i,j) \in \mathbb{N} \times \mathbb{N} : p\leq i\leq m , q\leq j\leq n , \vert x_{ij} \vert > \varepsilon \bigr\} ,$$

we shall show that there exists ε such that the limit

$$\lim_{p,q}\lim_{m,n} \frac{f(\#A_{\varepsilon}(p,q,m,n))}{f(mn)}$$

is not zero. Indeed,

$$\frac{f(\#\{(i,j) :i\leq \ell _{k}, j\leq \ell _{k}, \vert x_{i,j} \vert >1/2\})}{f(\ell _{k}^{2}) } \geq \frac{f(n_{k})}{f(m_{k})}\geq \frac{f(m_{k}\varepsilon _{k})}{f(m_{k})}\geq c,$$

which gives that

$$\lim_{m,n}\frac{f(\#A_{1/2}(0,0,m,n))}{f(mn)}\geq c.$$

On the other hand, for each p, q there exists $$p'$$, $$q'$$ such that $$\ell _{p}'\leq p\leq \ell _{p'+1}$$ and $$\ell _{q}'\leq q\leq \ell _{q'+1}$$. Set $$s=\max \{p',q'\}$$. Since $$A_{1/2}(0,0,m,n)\subset A_{1/2}(p,q,m,n)\cup A_{1/2}(s,s,m,n)$$, we get that for any $$\delta >0$$

$$\lim_{m,n}\frac{A(p,q,m,n)}{f(mn)} \geq \lim_{m,n} \frac{f(A_{1/2}(0,0,m,n))}{f(mn)}-\frac{f(n_{s})}{f(m,n)}\geq c- \delta$$

which yields part a). Again the part b) is the same proof. □

The next result fixed the converse of Theorem 3.7 in .

### Proposition 1.2

If all f-strong Cesàro convergent double sequences are f-statistically and bounded then f must be compatible.

### Proof

If f is not compatible then there exist two sequences $$(\varepsilon _{k})$$, $$(m_{k})$$ satisfying $$f(m_{k}\varepsilon _{k})\geq cf(m_{k})$$ for some $$c>0$$. We set $$\ell _{k}=\lfloor \sqrt{m_{k}}\rfloor$$, we can select $$m_{k}$$ inductively, such that the sequence

$$r_{k+1}= \frac{m_{k+1}\varepsilon _{k+1}-m_{k}\varepsilon _{k}}{(\ell _{k+1}-\ell _{k})^{2}}$$

is decreasing and converges to zero. Again it is direct to show that $$x_{i,j}=\sum_{i,j}r_{k+1}\chi _{(\ell _{k},\ell _{k+1}]}(i,j)$$ is f-statistically convergent to zero, but not f-strong Cesàro convergent. □

Let us recall that f is a compatible modulus function provided $$\lim_{\varepsilon \to 0}\limsup_{n}\frac{f(n\varepsilon )}{f(n)}=0$$. We will say that a modulus function f is compatible of second order or 2-compatible, provided $$\lim_{\varepsilon \to 0}\limsup_{n} \frac{f(n\varepsilon )}{f(n^{2})}=0$$. Clearly, if f is compatible, then f is 2-compatible. The next result correct Theorem 2.6 in .

### Proposition 1.3

Assume that for any f-statistical convergent double sequence $$(x_{i,j})$$ we have that for any $$\varepsilon >0$$

$$\lim_{m,n}\frac{f(\#A_{\varepsilon}(0,0,m,n))}{f(mn)}=0$$

then f must be 2-compatible.

### Proof

Indeed, assume that f is not compatible. Let $$\varepsilon _{n}$$ be a decreasing sequence converging to 0. Since f is not compatible, there exists $$c>0$$ such that, for each k, there exists $$m_{k}$$ such that $$f(m_{k}\varepsilon _{k})>cf(m_{k})$$. Moreover, we can select $$m_{k}$$ inductively satisfying

$$1-\varepsilon _{k+1}-\frac{1}{m_{k+1}}> \frac{(1-\varepsilon _{k})m_{k}}{m_{k+1}}.$$
(1.2)

Now we use an standard argument used to construct subsets with prescribed densities. Set $$n_{k}=\lfloor m_{k}\varepsilon _{k}\rfloor +1$$. And extracting a subsequence if it is necessary, we can assume that $$n_{1}< n_{2}<\cdots$$ , $$m_{1}< m_{2}<\cdots$$ . Thus, set $$A_{k}=[m_{k+1}-(n_{k+1}-n_{k})]\cap \mathbb{N}$$. Condition (1.2) guarantee that $$A_{k}\subset [m_{k},m_{k+1}]$$.

Let us denote $$A=\bigcup_{k}A_{k}$$, and $$x_{n}=\chi _{A}(n)$$.

An easy check show that the sequence $$x_{1,n}=x_{n}$$ is f-statistical convergent to zero, but $$\frac{f(\#A_{\varepsilon}(0,0,m_{k},m_{k}))}{f(m_{k}^{2})}\geq c$$ which yields the desired result. □

It is worthy to find a 2-compatible function that is not compatible, and to improve Proposition 1.3 replacing 2-compatibility by compatibility.

The corrections have been indicated in this article and the original article  has been corrected.

## References

1. León-Saavedra, F., Listán-García, M.C., Romero de la Rosa, M.P.: On statistical convergence and strong Cesàro convergence by moduli for double sequences. J. Inequal. Appl. 2022, Paper No. 62 (2022). 14, MR4426807

## Author information

Authors

### Contributions

All authors read and approved the final manuscript.

### Corresponding author

Correspondence to María del Carmen Listán-García.

## Ethics declarations

### Competing interests

The authors declare no competing interests. 