- Research
- Open Access
- Published:
On Fejér’s inequality: generalizations and applications
Journal of Inequalities and Applications volume 2023, Article number: 42 (2023)
Abstract
This paper deals with generalizations and refinements of Fejér’s inequality with some new applications. We introduce a real mapping \(\mathcal{M}_{f}^{\omega}(t)\) and obtain some its functional properties. We present several inequalities in connection with fractional integrals and their refinements by monotone functions. We also give some inequalities related to Euler’s gamma and beta functions. Furthermore, we obtain some upper and lower bounds for generalized logarithmic mean and the expected value of random variables by using the arithmetic mean.
1 Introduction and preliminaries
Lipót Fejér (1880–1959) in 1906 [18], while studying trigonometric polynomials, discovered the following integral inequalities, which later became known as Fejér’s inequalities (in some references, they are called the left and right inequalities):
where \(\mathcal{F}\) is a convex function ([37]) in the interval \((a, b)\), and \(\mathcal{G}\) is a positive function in the same interval such that
i.e., \(y = \mathcal{G}(x)\) is a symmetric curve with respect to the straight line containing the point \((\frac{a+b}{2},0)\) and is normal to the x-axis.
For more results about the Fejér’s inequalities, see [7, 17, 24, 29, 38, 40, 41, 45, 50, 55] and references therein. In fact, Fejér’s inequality (1) is the weighted version of celebrated Hermite–Hadamard’s inequality for convex function \(f:[a, b]\to \mathbb{R}\):
Note that inequality (2) was published by Charles Hermite (1822–1901) in Mathesis (3) ([23], 1883, p. 82) but nowhere mentioned in the mathematical literature at that time. Ten years later, Jacques Hadamard in 1893 [21] proved (2) and apparently was not aware of Hermite’s result. In honor of these two mathematicians, inequality (2) is known as Hermite–Hadamard’s inequality. For more historical details, results, and applications about (2), see [9, 10, 14, 26, 30, 32, 34, 39, 43, 59] and references therein.
Definition 1.1
We say that a nonnegative function \(f : I\subseteq \mathbb{R} \to \mathbb{R}\) is h-convex or \(f\in SX(h,I)\) if for a nonnegative function \(h: (0,1)\subseteq J\subseteq \mathbb{R} \to \mathbb{R}\) (\(h\not \equiv 0\)) and for all \(x,y\in I\) and \(\alpha \in (0, 1)\), we have
A function f is said to be h-concave or \(f \in SV(h, I )\) if the above inequality is reversed.
The class of h-convex functions includes the classes of Godunova–Levin functions [19] known as \(Q(I)\) (see [15, 31]), s-convex functions in the second sense [5] known as \(K_{s}^{2}\), and p-convex functions [15] known as \(P(I)\) (see [13, 33]). Note that if \(h(\alpha ) = \alpha \), then all nonnegative convex functions belong to \(SX(h, I )\), and all nonnegative concave functions belong to \(SV(h, I )\). Also, if \(h(\alpha ) = \frac{1}{\alpha}\), \(h(\alpha ) = 1\), and \(h(\alpha ) = \alpha ^{s}\), where \(s \in (0, 1)\), then \(Q(I)=SX(h, I )\), \(P(I)\subseteq SX(h, I )\), and \(K_{s}^{2}\subseteq SX(h, I )\), respectively. Note in this paper, the function h is assumed to be integrable on \([0,1]\).
The mapping \(\mathcal{M}_{f}^{\omega}(t)\)
For two real numbers \(a< b\), consider integrable functions \(f:[a,b]\to \mathbb{R}\) and \(\omega :[a,b]\to \mathbb{R}^{+}\cup \{0\}\). Define the mapping \(\mathcal{M}_{f}^{\omega}(t):[0,1]\to \mathbb{R}\) as
where
where \(\mathcal{L}(t):[0,1]\to [a,b]\) and \(\mathcal{R}(t):[0,1]\to [a,b]\) are defined as
for \(t\in [0,1]\). Note that
where by 1 we mean \(\omega \equiv 1\).
We will frequently use the following lemma.
Lemma 1.1
Consider two functions \(f:[a,b]\to \mathbb{R}\) and \(\omega :[a,b]\to \mathbb{R}^{+}\cup \{0\}\). Also, for any \(s\in [0,1]\), define the bifunction \(A_{s}:[a,b]\times [a,b]\to [a,b]\) as \(A_{s}(x,y)=sx+(1-s)y\) for \(x,y\in [a,b]\). Then for all \(t\in [0,1]\),
-
(i)
\(m_{t}(\mathcal{L},\mathcal{R})+M_{t}(\mathcal{L},\mathcal{R})=\mathcal{L}(t)+\mathcal{R}(t)=a+b\);
-
(ii)
\(M_{t}(\mathcal{L},\mathcal{R})-m_{t}(\mathcal{L},\mathcal{R})=|\mathcal{L}(t)- \mathcal{R}(t)|=|1-2t|(b-a)\);
-
(iii)
\(f(m_{t}(\mathcal{L},\mathcal{R}))+f(M_{t}(\mathcal{L},\mathcal{R}))=[f\circ \mathcal{L}](t)+[f \circ \mathcal{R}](t)\);
-
(iv)
\(A_{s}(m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R}))+A_{s}(M_{t} (\mathcal{L},\mathcal{R}),m_{t}(\mathcal{L},\mathcal{R}))=a+b\).
If ω is symmetric on \([a,b]\) with respect to \(\frac{a+b}{2}\), then:
-
(v)
It is symmetric on the interval \([m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R}) ]\) with respect to \(\frac{a+b}{2}\);
-
(vi)
We have the following identities:
$$\begin{aligned}{} [\omega \circ A_{s}]\bigl(m_{t}(\mathcal{L},\mathcal{R}),M_{t} (\mathcal{L},\mathcal{R})\bigr)&=[ \omega \circ A_{s}]\bigl(M_{t} (\mathcal{L},\mathcal{R}),m_{t}(\mathcal{L},\mathcal{R})\bigr) \\ &=[\omega \circ A_{s}]\bigl(\mathcal{L}(t),\mathcal{R}(t)\bigr)=[ \omega \circ A_{s}]\bigl( \mathcal{R}(t),\mathcal{L}(t)\bigr); \end{aligned}$$ -
(vii)
We have the following integral equalities:
$$\begin{aligned} \int _{a}^{m_{t}(\mathcal{L},\mathcal{R})}\omega (x)\,dx = \int _{M_{t} (\mathcal{L},\mathcal{R})}^{b}\omega (x)\,dx ,\qquad \int _{m_{t}(\mathcal{L},\mathcal{R})}^{ \frac{a+b}{2}}\omega (x)\,dx = \int _{\frac{a+b}{2}}^{M_{t} (\mathcal{L},\mathcal{R})}\omega (x)\,dx . \end{aligned}$$
Proof
The proof of (i), (iii), and (iv) is obvious, and for (ii), we can use the identities
and
For (v), suppose \(a\leq m_{t}(\mathcal{L},\mathcal{R})\leq \frac{a+b}{2}\leq M_{t} (\mathcal{L},\mathcal{R})\leq b\), and so for \(x\in [m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R})]\), from (i) we have
since ω is symmetric with respect to \(\frac{a+b}{2}\). For (vi), we just need to consider the following equalities:
Finally, for (vii), it suffices to use the change of variable \(u=a+b-x\) and (i). □
By Lemma 1.1 we obtain the following basic properties for the mapping \(\mathcal{M}_{f}^{\omega}(t)\).
Proposition 1
Consider two functions \(f:[a,b]\to \mathbb{R}\) and \(\omega :[a,b]\to \mathbb{R}^{+}\cup \{0\}\). Then:
-
(i)
For all \(t\in [0,1]\),
$$ \mathcal{M}_{f}^{\omega}(t)=\mathcal{M}_{f}^{\omega}(1-t), $$which shows that \(\mathcal{M}_{f}^{\omega}(t)\) is symmetric on \([a,b]\) with respect to \(\frac{1}{2}\).
-
(ii)
For symmetric ω on \([a,b]\) with respect to \(\frac{a+b}{2}\) and \(p,q\geq 1\) with \(\frac{1}{p}+\frac{1}{q}=1\), we have
$$ \bigl\vert \mathcal{M}_{f}^{\omega}(t) \bigr\vert \leq \Vert f \Vert _{p} \Vert \omega \Vert _{q}. $$Also, if \(m_{t}(\mathcal{L},\mathcal{R})=\mathcal{L}(t)\), then
$$ \bigl\vert \mathcal{M}_{f}^{\omega}(t) \bigr\vert \leq \biggl(\frac{1}{2}\biggr)^{\frac{1}{q}}\bigl[t(b-a) \bigr]^{ \frac{1}{p}} \Vert \omega \Vert _{q} \Vert f \Vert _{\infty}, $$and if \(m_{t}(\mathcal{L},\mathcal{R})=\mathcal{R}(t)\), then
$$ \bigl\vert \mathcal{M}_{f}^{\omega}(t) \bigr\vert \leq \biggl(\frac{1}{2}\biggr)^{\frac{1}{q}}\bigl[(1-t) (b-a) \bigr]^{ \frac{1}{p}} \Vert \omega \Vert _{q} \Vert f \Vert _{\infty}. $$ -
(iii)
Suppose that the function \((f\omega )(x)=f(x)\omega (x)\) is convex on \([a,b]\). If \(m_{t}(\mathcal{L},\mathcal{R})=\mathcal{R}(t)\) for some \(t\in [0,1)\), then the function \(\frac{\mathcal{M}_{f}^{\omega}(t)}{1-t}\) is convex. Also, if \(m_{t}(\mathcal{L},\mathcal{R})=\mathcal{L}(t)\) for some \(t\in (0,1]\), then the function \(\frac{\mathcal{M}_{f}^{\omega}(t)}{t}\) is convex.
-
(iv)
Suppose that f and ω are two continuous functions on \([a,b]\). If f is nonnegative (nonpositive) on \([a,b]\), then the function \(\mathcal{M}_{f}^{\omega}(t)\) is increasing (decreasing) on \([0,\frac{1}{2})\) and is decreasing (increasing) on \((\frac{1}{2},1]\). Also, \(\mathcal{M}_{f}^{\omega}(t)\) has a relative extreme point at \(t=\frac{1}{2}\). If \(\omega \not \equiv 0\), then corresponding to any \(x\in [a,b]\setminus \{\frac{a+b}{2}\}\) satisfying
$$ f(x)+f(a+b-x)=0, $$there exists a critical point for \(\mathcal{M}_{f}^{\omega}(t)\).
Proof
(i) This is a consequence of the facts \(\mathcal{L}(1-t)=\mathcal{R}(t)\) and \(\mathcal{R}(1-t)=\mathcal{L}(t)\).
(ii) Since \(m_{t}(\mathcal{L},\mathcal{R})\leq \frac{a+b}{2}\leq M_{t}(\mathcal{L},\mathcal{R})\), using Hölder’s inequality [37] and statements (iii) and (vii) in Lemma 1.1, we obtain the following inequalities:
This proves (ii).
(iii) We just prove the first part. Considering the changes of variable \(x=ta+(1-t)u\) and \(x=tb+(1-t)u\) in two integrals of \(\mathcal{H}(t)=\frac{\mathcal{M}_{f}^{\omega}(t)}{1-t}\), we obtain that
Now for \(t_{1},t_{2}\in [0,1)\) and nonnegative α, β with \(\alpha +\beta =1\), we have
(iv) It suffices to apply the following result, which is obtained by using Leibniz integral rule [35] along with the fact that ω is symmetric on \([a,b]\) with respect to \(\frac{a+b}{2}\):
□
2 Generalization and refinement of Fejér’s inequality
The following result presents a new and generalized type of the celebrated Fejér’s inequality in connection with h-convex functions.
Theorem 2.1
Consider two integrable functions \(f:[a,b]\to \mathbb{R}\) and \(w:[a,b]\to \mathbb{R}^{+}\cup \{0\}\) such that f is h-convex and ω is symmetric with respect to \(\frac{a+b}{2}\). For all \(t\in [0,1]\), we have the following inequality:
Proof
According Lemma 1.1, we know that for any \(t\in [0,1]\), the function ω is symmetric on the interval \([m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R}) ]\) with respect to
Since f is an h-convex function on \([a,b]\), this property is induced to \([m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R}) ]\) for any \(t\in [0,1]\). So if we consider Theorems 3 and 5 in [4] in the case that f is h-convex on \([m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R}) ]\) and ω is symmetric on interval \([m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R}) ]\) with respect to \(\frac{a+b}{2}\), then we have
Now statements (ii), (iii), and (v) in Lemma 1.1 imply that
By the definition of mapping \(\mathcal{M}_{f}^{\omega}\) it is not hard to see that the following identity holds:
for all \(t\in [0,1]\). On the other hand, apply the changes of variable \(u=A_{s}(\mathcal{L}(t),\mathcal{R}(t))\) or \(u=A_{s}(\mathcal{R}(t),\mathcal{L}(t))\) in two last integrals in (4) and consider that
Finally, by the above explanations and using (5) and (6) in (4), we get the desired result. □
Corollaries and remarks
Multiplying the inequalities (a consequence of the h-convexity of f and some statements in Lemma 1.1)
by \([\omega \circ A_{s}](m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R}))\) (\(s,t \in [0,1]\)) and then integrating with respect to variable \(s\in [0,1]\), we obtain the following presentation of generalized Fejér’s inequality:
where \(H(s)=h(s)+h(1-s)\), \(s\in [0,1]\). Since
we conclude that (3) and (7) are equivalent, and the difference is in presentation and consequences.
Inequalities (3) and (7) generalize many Fejér-type inequalities obtained for h-convex functions in the literature. In these inequalities, taking \(h(s)=s^{\alpha}\) (\(\alpha \in (0,1]\)), \(h(s)=\frac{1}{s}\) (\(s\in (0,1)\)), \(h(s)=1\), and \(h(s)=s\), we obtain generalized Fejér-type inequalities for s-convex functions in the second sense, Godunova–Levin functions, P-functions, and convex functions, respectively. However, setting \(h(s)=s\) in (3) and (7), we get the following inequalities, respectively:
and
Inequality (8) is a new generalized Fejér-type inequality, and inequality (9) is a straight generalization of the classic Fejér’s inequality related to the convex functions.
Inequalities (3) and (7) coincide for the case \(\omega \equiv 1\). However, this gives a new generalized form of the Hermite–Hadamard inequality related to the class of h-convex functions and its subclasses as well (see also [27, 33, 46, 47]):
If we set \(t=0,1\) in (3) (\(\mathcal{M}_{f}^{\omega}(0)= \mathcal{M}_{f}^{\omega}(1)=0\)), then we recapture the following Fejér-type inequality related to the h-convex functions obtained in [4]:
and also with this assumption in (7), we obtain a new h-convex version of Fejér’s inequality:
Taking \(\omega \equiv 1\) in (11) and (12), we recapture the following result obtained in [46]:
which is the Hermite–Hadamard inequality related to h-convex functions.
Now for \(n\in \mathbb{N}\), \(n\geq 3\), consider the following relations:
and
showing that ω is symmetric on \([\frac{b+(n-1)a}{n}+\frac{a+(n-1)b}{n}]\) with respect to \(\frac{a+b}{2}\). So if we set \(t=\frac{1}{n}\) in (3), then we have
and also in (7), we have
Inequalities (13) and (14) cover many Hermite–Hadamard-type and Fejér-type inequalities of this kind for all \(n\geq 3\). For example, consider \(n=3,4\) and \(h(s)=s\) in (13) and (14) to obtain the following Fejér-type inequalities:
and
Inequalities of this kind of can be found in [12, 53, 54] and references therein. For different types of \(h(s)\), ω, and \(n>4\), we may obtain many inequalities of Hermite–Hadamard and Fejér types.
In a more particular case, if we consider \(\omega \equiv 1\) and \(h(s)=s\) simultaneously in (3) and (7), then we have the following result:
for \(t\in [0,1]\setminus \frac{1}{2}\), which is a new presentation for Hermite–Hadamard’s inequality dependent on variable t. In particular, for \(t=0,1\), we recapture the classical Hermite–Hadamard inequality. Also, for any \(n\in \mathbb{N}\setminus \{1,2\}\), we obtain that
which gives a Hermite–Hadamard-type inequality depending on n.
We continue that for fixed \(t\in [0,1]\) and \(x\in [a,b]\), the function
is symmetric on \([m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R})]\) with respect to \(\frac{a+b}{2}\). Also by Lemma 1.1, we obtain that (the details are omitted)
and
So if f is an h-convex function on \([a,b]\), then according to Theorem 2.1, we have the following Hermite–Hadamard-type inequality for h-convex functions:
In the particular case of \(h(s)=s\) and \(t=0,1\), we have
which was obtained in [11] for convex function f defined on \([a,b]\).
Finally, for a convex function \(f:[a,b]\to \mathbb{R}\), by the definition of \(\mathcal{M}_{f}^{1}(t)\), applying some suitable changes of variable in integrals and using Lemma (1.1), we obtain the following inequality:
which gives another refinement for the classical Hermite–Hadamard inequality. We encourage the interested reader to work on other particular cases of inequalities obtained in this section and compare the results with previous ones in the literature.
3 Fractional integrals
In this section, we introduce a new class of fractional integrals. Investigating its properties is the subject of our next works. Here we just consider some particular cases, which are known types of fractional integrals in the literature (see [20, 25, 28, 42, 44]) and find some Hermite–Hadamard-type inequalities for them by using generalized Fejér inequality obtained in the previous section.
For \(t\in [0,1]\setminus \{\frac{1}{2}\}\), consider a bifunction \(G:[m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R})]\times [m_{t} (\mathcal{L},\mathcal{R}), M_{t}(\mathcal{L},\mathcal{R})]\to \mathbb{R}^{+}\cup \{0\}\) and define the following class of fractional integrals:
and
if the above integrals exist.
Now we discuss three special cases of \(\mathcal{F}_{m_{t}(\mathcal{L},\mathcal{R})^{+}} [f](x)\) and \(\mathcal{F}_{M_{t}(\mathcal{L},\mathcal{R})^{-}} [f](x)\) and obtain some results in connection with Theorem 2.1.
(1) For \(\alpha >0\), considering
in \(\mathcal{F}_{m_{t}(\mathcal{L},\mathcal{R})^{+}} [f](x)\) and \(\mathcal{F}_{M_{t}(\mathcal{L},\mathcal{R})^{-}} [f](x)\), we obtain the following class of fractional integrals:
and
which generalize \(\mathcal{I}_{{a}^{+}}^{\alpha} [f](x)\) and \(\mathcal{I}_{{b}^{-}}^{\alpha} [f](x)\), presented and discussed in [2] (consider \(t=0,1\) and \(\alpha \in (0,1)\) in the above integrals).
To obtain Hermite–Hadamard’s inequality related to the classes \(\mathcal{I}_{m_{t}(\mathcal{L},\mathcal{R})^{+}}^{\alpha} [f](x)\) and \(\mathcal{I}_{M_{t}(\mathcal{L},\mathcal{R})^{-}}^{\alpha} [f](x)\), in Theorem 2.1, consider
for \(x\in [m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R})]\) and also
Obviously, ω is a nonnegative function, and using Lemma 1.1, it is not hard to see that \(M_{t}(\mathcal{L},\mathcal{R})-x=a+b-x-m_{t}(\mathcal{L},\mathcal{R})\) and \(x-m_{t}(\mathcal{L},\mathcal{R})=M_{t}(\mathcal{L},\mathcal{R})-(a+b-x)\). So
which implies that ω is symmetric on \([m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R})]\) with respect to \(\frac{a+b}{2}\). It follows that
Also,
and again by Lemma 1.1
Finally, from (16)–(18) we have
for \(t\in [0,1]\setminus \{\frac{1}{2}\}\), which is the h-convex type of Hermite–Hadamard’s inequality in connection with this class of fractional integrals. In particular, if we set \(h(s)=s\) in (19), then from the fact that
we obtain
for \(t\in [0,1]\setminus \{\frac{1}{2}\}\), which gives a convex type of Hermite–Hadamard’s inequality in connection with \(\mathcal{I}_{m_{t}(\mathcal{L},\mathcal{R})^{+}}^{\alpha} [f](M_{t} (\mathcal{L},\mathcal{R}))\) and \(\mathcal{I}_{M_{t}(\mathcal{L},\mathcal{R})^{-}}^{\alpha} [f](m_{t} (\mathcal{L},\mathcal{R}))\). In a more particular case for \(t=0,1\) in (20), we obtain
which was obtained in [2] (Theorem 1). Finally, letting \(\alpha \to 1^{-}\) in (20), we recapture (15), since
for all \(t\in [0,1]\setminus \{\frac{1}{2}\}\).
(2) In \(\mathcal{F}_{m_{t}(\mathcal{L},\mathcal{R})^{+}} [f](x)\) and \(\mathcal{F}_{M_{t}(\mathcal{L},\mathcal{R})^{-}} [f](x)\) for \(\alpha >0\), consider
So we obtain the following generalized Riemann–Liouville fractional integrals:
and
The fractional integrals \(\mathcal{J}_{{m_{t}(\mathcal{L},\mathcal{R})}^{+}}^{\alpha} f(x)\) and \(\mathcal{J}_{M_{t}(\mathcal{L},\mathcal{R})^{-}}^{\alpha} f(x)\) in the particular cases \(t=0,1\) reduce to \(J_{{a}^{+}}^{\alpha} f(x)\) and \(J_{{b}^{-}}^{\alpha} f(x)\), respectively, which are known as the Riemann–Liouville fractional integrals in the literature. Now in Theorem 2.1 consider
By using Lemma 1.1 it is not hard to see that w is symmetric on \([m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R})]\) with respect to \(\frac{a+b}{2}\) and also is nonnegative. Also, the following results hold:
and
The above results altogether imply that
for \(t\in [0,1]\setminus \{\frac{1}{2}\}\). In the case \(h(s)=s\), from (21) we get the following inequality, which is a generalization of inequality (2.1) obtained in [48]:
Also, for \(\alpha =1\), we obtain a generalization of inequality (2.1) presented in [46]:
Furthermore, for \(t=0,1\) in (21), we have the following Hermite–Hadamard-type inequality via Riemann–Liouville fractional integrals, which is comparable with inequality (6) in [56]:
Also, for
in \(\mathcal{F}_{m_{t}(\mathcal{L},\mathcal{R})^{+}}^{\alpha} [f](x)\) and \(\mathcal{F}_{M_{t}(\mathcal{L},\mathcal{R})^{-}}^{\alpha} [f](x)\), by Theorem 2.1 we have another inequality related to the classical Riemann–Liouville fractional integrals with respect to the midpoint of the interval \([a,b]\):
Now for the particular case \(h(s)=s\), we get
which is equivalent to inequality (2.1) (obtained for positive functions) in [49].
(3) If we consider
in \(\mathcal{F}_{m_{t}(\mathcal{L},\mathcal{R})^{+}} [f](x)\) and \(\mathcal{F}_{M_{t}(\mathcal{L},\mathcal{R})^{-}} [f](x)\) for \(\alpha >0\), \(\gamma >M_{t}(\mathcal{L},\mathcal{R})-m_{t}\mathcal{(L,R),}\) and \(\beta \geq 0\), then we obtain the following class of fractional integrals, which in the particular case \(t=0,1\) have been presented and discussed in [44] as operators with power-logarithmic kernels:
and
Here we obtain a Hermite–Hadamard-type inequality for fractional integrals \(\mathcal{K}_{a^{+}}^{\alpha ,1}[f](x)\) and \(\mathcal{K}_{a^{+}}^{\alpha ,1}[f](x)\) as a particular case of the above fractional integrals. For any \(x\in [m_{t}(\mathcal{L},\mathcal{R}), M_{t}(\mathcal{L},\mathcal{R})]\), define
The function w is nonnegative on \([m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R})]\) and symmetric with respect to \(\frac{a+b}{2}\). Also, we have the following results:
and
So from Theorem 2.1 we have
for \(t\in [0,1]\setminus \{\frac{1}{2}\}\). Now if we set \(h(s)=s\) in the above inequality, then we get
where \(\mathcal{R}=\ln (\frac{\gamma}{(b-a)|1-2t|} )+ \frac{1}{\alpha}\). In the particular case of \(t=0,1\),
Finally, we recommend the interested readers to study [20, 25, 28, 44] and references therein to get more inequalities and results.
4 Refinements for Hermite–Hadamard’s inequality by monotone functions
In this section, we obtain some refinements of Hermite–Hadamard’s inequality by using fractional integrals discussed in the previous section, provided that the considered functions are nonnegative and monotone. We focus on the Riemann–Liouville fractional integrals, but results can be extended to many classes of fractional integrals. We need the following result, which is a consequence of Theorem 1 in [1] (see also [6, 22]).
Theorem 4.1
If \(f_{1}\) and \(f_{2}\) are nonnegative increasing functions on \([0,1]\), then
Here we give some refinements for Hermite–Hadamard’s inequality by using fractional integrals for h-convex functions.
Theorem 4.2
Suppose that \(f:[a,b]\to \mathbb{R}\) is an integrable h-convex function and \(t\in [0,1]\setminus \{\frac{1}{2}\}\). Then:
-
(i)
For \(\alpha \geq 1\), we have the following inequality for nonnegative and increasing f:
$$\begin{aligned} &\frac{1}{2h(\frac{1}{2})}f \biggl(\frac{a+b}{2} \biggr) \\ &\quad \leq \frac{1}{ \vert 1-2t \vert (b-a)} \int _{m_{t}(\mathcal{L},\mathcal{R})}^{M_{t} (\mathcal{L},\mathcal{R})}f(u)\,du \\ &\quad \leq \frac{\Gamma (\alpha +1)}{2 \vert 1-2t \vert ^{\alpha}(b-a)^{\alpha}} \bigl[ \mathcal{J}_{m_{t}(\mathcal{L},\mathcal{R})^{+}}^{\alpha} [f]\bigl(M_{t} (\mathcal{L},\mathcal{R})\bigr)+\mathcal{J}_{M_{t}(\mathcal{L},\mathcal{R})^{-}}^{\alpha} [f]\bigl(m_{t} (\mathcal{L},\mathcal{R})\bigr) \bigr] \\ &\quad \leq \alpha \biggl[ \frac{f\circ \mathcal{L}(t)+f\circ \mathcal{R}(t)}{2} \biggr] \int _{0}^{1} H(s) s^{\alpha -1}\,ds . \end{aligned}$$(22) -
(ii)
For any \(\alpha >0\), we have
$$\begin{aligned} &\frac{1}{2h(\frac{1}{2})}f \biggl(\frac{a+b}{2} \biggr) \\ &\quad \leq \frac{\Gamma (\alpha +1)}{2 \vert 1-2t \vert ^{\alpha}(b-a)^{\alpha}} \bigl[ \mathcal{J}_{m_{t}(\mathcal{L},\mathcal{R})^{+}}^{\alpha} [f]\bigl(M_{t} (\mathcal{L},\mathcal{R})\bigr)+\mathcal{J}_{M_{t}(\mathcal{L},\mathcal{R})^{-}}^{\alpha} [f]\bigl(m_{t} (\mathcal{L},\mathcal{R})\bigr) \bigr] \\ &\quad \leq \frac{\alpha}{ \vert 1-2t \vert (b-a)} \int _{m_{t}(\mathcal{L},\mathcal{R})}^{M_{t} (\mathcal{L},\mathcal{R})}f(u)\,du . \end{aligned}$$(23)
Proof
It is clear that \(a\leq m_{t}(\mathcal{L},\mathcal{R}) \leq M_{t}(\mathcal{L},\mathcal{R})\leq b\) for all \(t\in [0,1]\). So
and
From these inequalities we have
Multiplying both sides of (24) by \(s^{\alpha -1}\), integrating the resulting inequality with respect to variable s over \([0,1]\), and using Theorem 4.1, imply the following result:
Using the changes of variable \(u=sm_{t}(\mathcal{L},\mathcal{R})+(1-s)M_{t}(\mathcal{L},\mathcal{R})\) and \(u=sM_{t}(\mathcal{L},\mathcal{R}) +(1-s)m_{t}\mathcal{(L,R),}\) respectively, in the above integrals, we obtain that
Now since f is h-convex on \([m_{t}(\mathcal{L},\mathcal{R}), M_{t}(\mathcal{L},\mathcal{R})]\), by the left part of (10), Lemma 1.1, and the definition of \(\mathcal{J}_{m_{t}(\mathcal{L},\mathcal{R})^{+}}^{\alpha} [f](M_{t} (\mathcal{L},\mathcal{R}))\) and \(\mathcal{J}_{M_{t}(\mathcal{L},\mathcal{R})^{-}}^{\alpha} [f](m_{t} (\mathcal{L},\mathcal{R}))\) we have
which is equivalent to inequality (22). It follows that
Multiplying the above inequalities by \(s^{\alpha -1}\) and then integrating with respect to variable s over \([0,1]\) lead to
This implies that
which is equivalent to inequality (23). □
From Theorem 4.2 we have the following refinement for h-convex version of Hermite–Hadamard’s inequality.
Corollary 4.1
Suppose that \(f:[a,b]\to \mathbb{R}\) is a nonnegative increasing h-convex function and integrable on \([a,b]\). Consider \(t\in [0,1]\setminus \{\frac{1}{2}\}\) and \(\alpha \geq 1\). Then
Remark 1
(i) If \(h_{1}\) and \(h_{2}\) are two nonnegative decreasing functions defined on \([0,1]\) with upper bounds \(B_{1}\) and \(B_{2}\), respectively, then the functions \(B_{1}-h_{1}\) and \(B_{2}-h_{2}\) are nonnegative increasing functions defined on \([0,1]\). So we have that
which with some calculations gives
This implies that inequality (25) can be obtained if \(f: [a,b]\to \mathbb{R}\) is a nonnegative upper bounded decreasing h-convex function, \(0<\alpha \leq 1\), and \(t\in [0,1]\setminus \{\frac{1}{2}\}\).
(ii) Multiplying both sides of (24) by the nonnegative increasing function
for fixed \(t\in [0,1]\setminus \{\frac{1}{2}\}\), integrating the resulting inequality with respect to variable s over \([0, 1]\), and using Theorem 4.1, we obtain the following refinement of (19):
In the case \(h(s)=s\), we have the following refinement of Hermite–Hadamard’s inequality by using another kind of fractional integrals:
If we let \(\alpha \to 1^{-}\), then we recapture (15).
5 Gamma and beta functions
In this section, we present some inequalities and results related to gamma and beta functions. Especially, considering appropriate functions in Theorem 2.1 along with some calculations, we give a simple proof of the well-known Stirling formula as well.
The Euler integral of the second kind, i.e., gamma function [8], is defined as
Consider the function \(f(x)=\ln \Gamma (x)\), \(x\in (0,+\infty )\), which is convex (\(\Gamma (x)\) is log-convex). To see this (see also [3]), we have
which follows by using the Cauchy–Schwarz inequality [52] for
and the fact that
Now in Theorem 2.1, consider \(h(s)=s\), \(t=0,1\), \(b=a+1\) for \(a\in (0,+\infty )\), and a symmetric function \(\omega :[a,a+1]\to (0,+\infty )\) with respect to \(a+\frac{1}{2}\). Then we obtain the following inequality:
where \(\mathcal{K}=\int _{a}^{a+1}\omega (x)\,dx \). In the particular case \(\omega \equiv 1\), by the Raabe formula [36]
and inequality (26) we have
for all \(a\in (0,+\infty )\). By applying Wendel’s inequality ([58])
in (27) for \(s=\frac{1}{2}\), we get
So we can extract two results from inequality (28) by using the squeeze theorem [51]. The first one is
and the second is a generalization of Stirling’s formula [16]
For the case \(a\in \mathbb{N}\), we recapture the classic Stirling formula:
The Euler integral of the first kind is known as the beta function [3]:
To obtain some results in connection with beta function by Fejér’s inequality, consider
where \(0< a< b\), \(p>0\), and \(t\in [0,1]\setminus \{\frac{1}{2}\}\). From Example 7 in [57] we deduce that f is an h-convex function on \([m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R})]\). Also, it is not hard to see that ω is symmetric on \([m_{t}(\mathcal{L},\mathcal{R}),M_{t}(\mathcal{L},\mathcal{R})]\) with respect to \(\frac{a+b}{2}\). The following results hold:
Also,
Note that by Lemma 1.1 we have
It follows by some calculations that
and so
Finally, by the above results and Theorem 2.1 we obtain that
which implies the following inequalities related to the beta function:
for \(t\in [0,1]\setminus \{\frac{1}{2}\}\), \(0\leq k\leq 1\), and \(r\in [1,\infty )\).
Remark 2
For the case that \(f(x)= (M_{t}(\mathcal{L},\mathcal{R})-x )^{r}\), with the same argument as above, we recapture (29) because \(\beta (p,p+r)=\beta (p+r,p)\).
In particular, if we set \(k=1\) and \(t=0,1\), then we get
for \(p>0\) and \(r\in [1,\infty )\). From (30) and the characterization \(B(x, y) =\frac{\Gamma (x)\Gamma (y)}{\Gamma (x+y)}\) we obtain that
for \(p>0\) and \(r\in [1,\infty )\). In a more particular case, for any \(p>0\), we have the following result:
6 Special means and random variables
In this section, we discuss a generalization of the well-known inequality including the arithmetic and logarithmic means by using our results in Sect. 2. Also, we give some upper and lower bounds for the expected value of random variables.
6.1 Bounds for generalized logarithmic mean
For \(a,b>0\) and \(a\neq b\), there are two well-known means:
Consider \(x\in [a,b]\) and define
According to Example 7 in [57], f is h-convex, and also, obviously, ω is symmetric with respect to \(\frac{a+b}{2}\). According to Theorem 2.1, we get to the following inequalities:
We consider two cases for For \(k\in \mathbb{N}\cup \{0\}\).
(i) In the case \(k=0\) in (31), we obtain that
which implies that
Inequality (32) includes some new bounds for the generalized logarithmic mean by the arithmetic mean. In particular, for \(p=1\), we have
Furthermor,e for \(t=0,1\), we have the following result, which is known in the literature (see also [14]):
(ii) For the case \(k>0\), by some calculations (the details are omitted) it follows that
and
where in the case \(i=0\), we use the equality \(\prod_{j=0}^{-1}(2k-j)=1\). So we obtain the following discrete-type inequality, which gives a refinement and generalization of inequality (34):
6.2 Bounds for the expected value of random variables
For \(0< a< b\), let \(\omega :[a,b]\to [0,+\infty )\) be a continuous probability density function related to a continuous random variable X symmetric with respect to \(\frac{a+b}{2}\). Also, for \(r\in \mathbb{R}\) and \(t\in [0,1]\), define the generalized expected value of random variable X as
where the integral is assumed to be finite.
If we consider \(f(x)=x^{r}\) for \(r\geq 1\) and \(x\in [a,b]\), then from remarks and corollaries after Theorem 2.1 we have
which generally gives bounds for the generalized expected value of random variable X. Now in the particular case \(h(s)=s\), we get
Since
from (35) we obtain the following interesting result:
By taking \(\omega \equiv 1\) we recapture inequality (33).
Availability of data and materials
No data were used to support this study.
References
Ahlswede, R., Daykin, D.E.: Integrals inequalities for increasing functions. Math. Proc. Camb. Philos. Soc. 86(3), 391–394 (1979)
Ahmad, B., Alsaedi, A., Kirane, M., Torebek, B.T.: Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 353, 120–129 (2019)
Beals, R., Wong, R.: Special Functions: A Graduate Text. Cambridge University Press, Cambridge (2010)
Bombardelli, M., Varošanec, S.: Properties of h-convex functions related to the Hermite–Hadamard–Fejér inequalities. Comput. Math. Appl. 58, 1869–1877 (2009)
Breckner, W.W.: Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. Publ. Inst. Math. 23, 13–20 (1978)
Chebyshev, P.L.: Sur less expressions approximatives des intégrales définies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov 2, 93–98 (1882)
Chen, H., Katugampola, U.N.: Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 446, 1274–1291 (2017)
Davis, P.J.: Leonhard Euler’s integral: a historical profile of the gamma function. Am. Math. Mon. 66(10), 849–869 (1959)
Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11, 91–95 (1998)
Dragomir, S.S., Cho, Y.J., Kim, S.S.: Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 245, 489–501 (2000)
Dragomir, S.S., Gomm, I.: Some applications of Fejér’s inequality for convex functions (I). Aust. J. Math. Anal. Appl. 10(1), 1–11 (2013)
Dragomir, S.S., Milošević, D.M., Sándor, J.: On some refinement of Hadamard’s inequalities and applications. Univ. Beograd Publ. Elektroteh. Fak. Ser. Mat. 4, 3–10 (1993)
Dragomir, S.S., Pearce, C.E.M.: Quasi-convex functions and Hadamard’s inequality. Bull. Aust. Math. Soc. 57(3), 377–385 (1998)
Dragomir, S.S., Pearce, C.E.M.: Selected topics on Hermite–Hadamard inequalities and applications. RGMIA Monographs, Victoria University (2000). http://ajmaa.org/RGMIA/monographs.php/
Dragomir, S.S., Pečarić, J., Persson, L.E.: Some inequalities of Hadamard type. Soochow J. Math. 21, 335–341 (1995)
Dutka, J.: The early history of the factorial function. Arch. Hist. Exact Sci. 43(3), 225–249 (1991)
Farid, G., Rehman, A.U.: Generalization of the Fejér–Hadamard’s inequality for convex function on coordinates. Commun. Korean Math. Soc. 31(1), 53–64 (2016)
Fejér, L.: Über die fourierreihen, II. Math. Naturwise. Anz Ungar. Akad. Wiss. 24, 369–390 (1906)
Godunova, E.K., Levin, V.I.: Neravenstva dlja funkcii širokogo klassa, soderžaščego vypuklye, monotonnye i nekotorye drugie vidy funkcii. In: Vyčislitel. Mat. I. Mat. Fiz. Mežvuzov. Sb. Nauč. Trudov, pp. 138–142. MGPI, Moskva (1985)
Gorenflo, R., Mainardi, F.: Fractional Calculus, Integral and Differential Equations of Fractional Order, pp. 223–276. Springer, New York (1997)
Hadamard, J.: Étude sur les propriètés des fonctions entiéres et en particulier d’une fontion considérée par Riemann. J. Math. Pures Appl. 58, 171–215 (1893)
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1959)
Hermite, C.: Sur deux limites d’une intégrale définie. Mathesis 3, 82–83 (1883)
İşcan, İ.: Hermite–Hadamard–Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babeş–Bolyai, Math. 60(3), 355–366 (2015)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Kirmaci, U.S.: Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 147(1), 137–146 (2004)
Kirmaci, U.S., Klaričić Bakula, M., Özdemir, M.E., Pečarić, J.: Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193(1), 26–35 (2007)
Kiryakova, V.: Generalized Fractional Calculus and Applications. Wiley, New York (1994)
Kotrys, D.: Remarks on Jensen, Hermite–Hadamard and Fejér inequalities for strongly convex stochastic processes. Math. Æterna 5(1), 95–104 (2015)
Mitrinović, D.S., Lacković, I.B.: Hermite and convexity. Aequ. Math. 28, 229–232 (1985)
Mitrinović, D.S., Pečarić, J.: Note on a class of functions of Godunova and Levin. C. R. Math. Rep. Acad. Sci. Can. 12, 33–36 (1990)
Niculescu, C.P., Persson, L.E.: Convex Functions and Their Applications: A Contemporary Approach. CMS Books in Mathematics. Springer, Berlin (2006)
Pearce, C.E.M., Rubinov, A.M.: P-functions, quasi-convex functions and Hadamard-type inequalities. J. Math. Anal. Appl. 240, 92–104 (1999)
Pečarić, J., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, San Diego (1992)
Protter, M.H., Morrey, C.B. Jr: Intermediate Calculus, 2nd edn. Springer, New York (1985)
Raabe, J.L.: Angen aherte Bestimmung der Factorenfolge \(1.2.3.4.5...n=\Gamma (1+n)=\int x^{n}e^{-x}\,dx \), wenn n eine sehr grosse Zahl ist. J. Reine Angew. Math. 25, 146–159 (1843)
Robert, A.W., Varbeg, D.E.: Convex Functions. Academic Press, New York (1973)
Rostamian Delavar, M., De La Sen, M.: Hermite–Hadamard–Fejér inequality related to generalized convex functions via fractional integrals. J. Math. 2018, Article ID 5864091 (2018)
Rostamian Delavar, M., Dragomir, S.S.: On η-convexity. Math. Inequal. Appl. 20, 203–216 (2017)
Rostamian Delavar, M., Dragomir, S.S.: Two mappings in connection to Fejér inequality with applications. Math. Inequal. Appl. 21(4), 1111–1123 (2018)
Rostamian Delavar, M., Dragomir, S.S.: Weighted trapezoidal inequalities related to the area balance of a function with applications. Appl. Math. Comput. 340, 5–14 (2019)
Rostamian Delavar, M., Dragomir, S.S.: Hermite–Hadamard’s mid-point type inequalities for generalized fractional integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114, 73 (2020)
Rostamian Delavar, M., Dragomir, S.S., De La Sen, M.: Estimation type results related to Fejér inequality with applications. J. Inequal. Appl. 2018, 85 (2018)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Amsterdam (1993)
Sarikaya, M.Z., Budak, H.: On Fejér type inequalities via local fractional integrals. J. Fract. Calc. Appl. 8(1), 59–77 (2017)
Sarikaya, M.Z., Saglam, A., Yildirim, H.: On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2(3), 335–341 (2008)
Sarikaya, M.Z., Set, E., Özdemir, M.E.: On some new inequalities of Hadamard type involving h-convex functions. Acta Math. Univ. Comen. 79(2), 265–272 (2010)
Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)
Sarikaya, M.Z., Yildirim, H.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 17(2), 1049–1059 (2017)
Set, E., İşcan, İ., Sarikaya, M.Z., Özdemir, M.E.: On new inequalities of Hermite–Hadamard–Fejér type for convex functions via fractional integrals. Appl. Math. Comput. 259, 875–881 (2015)
Sohrab, H.H.: Basic Real Analysis, 2nd edn. Birkhäuser, Basel (2003)
Steele, J.M.: The Cauchy–Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Math. Assoc. of America, Washington (2004)
Tseng, K.-L., Hwang, S.-R., Dragomir, S.S.: Fejér-type inequalities (I). J. Inequal. Appl. 2010, 531976 (2010)
Tseng, K.-L., Hwang, S.-R., Dragomir, S.S.: Fejér-type inequalities (II). Math. Slovaca 67(1), 109–120 (2017)
Tseng, K.-L., Yang, G.-S., Hsu, K.-C.: Some inequalities for differentiable mappings and applications to Fejér inequality and weighted trapezoidal formula. Taiwan. J. Math. 15(4), 1737–1747 (2011)
Tunc, M.: On new inequalities for h-convex functions via Riemann–Liouville fractional integration. Filomat 27(4), 559–565 (2013)
Varošanec, S.: On h-convexity. J. Math. Anal. Appl. 326, 303–311 (2007)
Wendel, J.G.: Note on the gamma function. Am. Math. Mon. 55(9), 563–564 (1948)
Yang, G.-S.: Inequalities of Hadamard type for Lipschitzian mappings. J. Math. Anal. Appl. 260, 230–238 (2001)
Acknowledgements
Not applicable.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
The author has read and approved the manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Rostamian Delavar, M. On Fejér’s inequality: generalizations and applications. J Inequal Appl 2023, 42 (2023). https://doi.org/10.1186/s13660-023-02949-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-023-02949-7
MSC
- 26A33
- 26A51
- 26D10
- 26D15
Keywords
- Fejér’s inequality
- Fractional integrals
- Euler’s beta and gamma functions
- Special means
- Random variables