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Abstract
This paper deals with generalizations and refinements of Fejér’s inequality with some
new applications. We introduce a real mappingMω

f (t) and obtain some its functional
properties. We present several inequalities in connection with fractional integrals and
their refinements by monotone functions. We also give some inequalities related to
Euler’s gamma and beta functions. Furthermore, we obtain some upper and lower
bounds for generalized logarithmic mean and the expected value of random
variables by using the arithmetic mean.
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1 Introduction and preliminaries
Lipót Fejér (1880–1959) in 1906 [18], while studying trigonometric polynomials, discov-
ered the following integral inequalities, which later became known as Fejér’s inequalities
(in some references, they are called the left and right inequalities):

F
(

a + b
2

)∫ b

a
G(x) dx ≤

∫ b

a
F (x)G(x) dx ≤ F (a) + F (b)

2

∫ b

a
G(x) dx, (1)

where F is a convex function ([37]) in the interval (a, b), and G is a positive function in
the same interval such that

G(a + t) = G(b – t), 0 ≤ t ≤ a + b
2

,

i.e., y = G(x) is a symmetric curve with respect to the straight line containing the point
( a+b

2 , 0) and is normal to the x-axis.
For more results about the Fejér’s inequalities, see [7, 17, 24, 29, 38, 40, 41, 45, 50, 55]

and references therein. In fact, Fejér’s inequality (1) is the weighted version of celebrated
Hermite–Hadamard’s inequality for convex function f : [a, b] →R:

F
(

a + b
2

)
≤ 1

b – a

∫ b

a
F (x) dx ≤ F (a) + F (b)

2
. (2)
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Note that inequality (2) was published by Charles Hermite (1822–1901) in Mathesis (3)
([23], 1883, p. 82) but nowhere mentioned in the mathematical literature at that time. Ten
years later, Jacques Hadamard in 1893 [21] proved (2) and apparently was not aware of Her-
mite’s result. In honor of these two mathematicians, inequality (2) is known as Hermite–
Hadamard’s inequality. For more historical details, results, and applications about (2), see
[9, 10, 14, 26, 30, 32, 34, 39, 43, 59] and references therein.

Definition 1.1 We say that a nonnegative function f : I ⊆ R → R is h-convex or f ∈
SX(h, I) if for a nonnegative function h : (0, 1) ⊆ J ⊆ R → R (h �≡ 0) and for all x, y ∈ I
and α ∈ (0, 1), we have

F
(
αx + (1 – α)y

) ≤ h(α)F (x) + h(1 – α)F (y).

A function f is said to be h-concave or f ∈ SV (h, I) if the above inequality is reversed.

The class of h-convex functions includes the classes of Godunova–Levin functions [19]
known as Q(I) (see [15, 31]), s-convex functions in the second sense [5] known as K2

s ,
and p-convex functions [15] known as P(I) (see [13, 33]). Note that if h(α) = α, then all
nonnegative convex functions belong to SX(h, I), and all nonnegative concave functions
belong to SV (h, I). Also, if h(α) = 1

α
, h(α) = 1, and h(α) = αs, where s ∈ (0, 1), then Q(I) =

SX(h, I), P(I) ⊆ SX(h, I), and K2
s ⊆ SX(h, I), respectively. Note in this paper, the function h

is assumed to be integrable on [0, 1].

The mapping Mω
f (t) For two real numbers a < b, consider integrable functions f :

[a, b] →R and ω : [a, b] →R
+ ∪ {0}. Define the mapping Mω

f (t) : [0, 1] →R as

Mω
f (t) =

∫ mt (L,R)

a
f (x)ω(x) dx +

∫ b

Mt (L,R)
f (x)ω(x) dx,

where

mt(L,R) = min
{
L(t),R(t)

}
, Mt(L,R) = max

{
L(t),R(t)

}
,

where L(t) : [0, 1] → [a, b] and R(t) : [0, 1] → [a, b] are defined as

L(t) = tb + (1 – t)a, R(t) = ta + (1 – t)b

for t ∈ [0, 1]. Note that

M1
f (t) =

∫ mt (L,R)

a
f (x) dx +

∫ b

Mt (L,R)
f (x) dx,

where by 1 we mean ω ≡ 1.
We will frequently use the following lemma.

Lemma 1.1 Consider two functions f : [a, b] → R and ω : [a, b] → R
+ ∪ {0}. Also, for any

s ∈ [0, 1], define the bifunction As : [a, b] × [a, b] → [a, b] as As(x, y) = sx + (1 – s)y for x, y ∈
[a, b]. Then for all t ∈ [0, 1],
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(i) mt(L,R) + Mt(L,R) = L(t) + R(t) = a + b;
(ii) Mt(L,R) – mt(L,R) = |L(t) – R(t)| = |1 – 2t|(b – a);

(iii) f (mt(L,R)) + f (Mt(L,R)) = [f ◦L](t) + [f ◦R](t);
(iv) As(mt(L,R), Mt(L,R)) + As(Mt(L,R), mt(L,R)) = a + b.

If ω is symmetric on [a, b] with respect to a+b
2 , then:

(v) It is symmetric on the interval [mt(L,R), Mt(L,R)] with respect to a+b
2 ;

(vi) We have the following identities:

[ω ◦ As]
(
mt(L,R), Mt(L,R)

)
= [ω ◦ As]

(
Mt(L,R), mt(L,R)

)
= [ω ◦ As]

(
L(t),R(t)

)
= [ω ◦ As]

(
R(t),L(t)

)
;

(vii) We have the following integral equalities:

∫ mt (L,R)

a
ω(x) dx =

∫ b

Mt (L,R)
ω(x) dx,

∫ a+b
2

mt (L,R)
ω(x) dx =

∫ Mt (L,R)

a+b
2

ω(x) dx.

Proof The proof of (i), (iii), and (iv) is obvious, and for (ii), we can use the identities

min{x, y} =
x + y – |y – x|

2
,

and

max{x, y} =
x + y + |y – x|

2
.

For (v), suppose a ≤ mt(L,R) ≤ a+b
2 ≤ Mt(L,R) ≤ b, and so for x ∈ [mt(L,R), Mt(L,R)],

from (i) we have

ω
(
mt(L,R) + Mt(L,R) – x

)
= ω(a + b – x) = ω(x),

since ω is symmetric with respect to a+b
2 . For (vi), we just need to consider the following

equalities:

[ω ◦ As]
(
R(t),L(t)

)
= ω

(
s
(
tb + (1 – t)a

)
+ (1 – s)

(
ta + (1 – t)b

))
= ω

(
t
(
sb + (1 – s)a

)
+ (1 – t)

(
sa + (1 – s)b

))
= ω

(
(1 – t)

(
sb + (1 – s)a

)
+ t

(
sa + (1 – s)b

))
= ω

(
s
(
ta + (1 – t)b

)
+ (1 – s)

(
tb + (1 – t)a

))
= [ω ◦ As]

(
L(t),R(t)

)
.

Finally, for (vii), it suffices to use the change of variable u = a + b – x and (i). �

By Lemma 1.1 we obtain the following basic properties for the mapping Mω
f (t).

Proposition 1 Consider two functions f : [a, b] →R and ω : [a, b] →R
+ ∪ {0}. Then:
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(i) For all t ∈ [0, 1],

Mω
f (t) = Mω

f (1 – t),

which shows that Mω
f (t) is symmetric on [a, b] with respect to 1

2 .
(ii) For symmetric ω on [a, b] with respect to a+b

2 and p, q ≥ 1 with 1
p + 1

q = 1, we have

∣∣Mω
f (t)

∣∣ ≤ ‖f ‖p‖ω‖q.

Also, if mt(L,R) = L(t), then

∣∣Mω
f (t)

∣∣ ≤
(

1
2

) 1
q [

t(b – a)
] 1

p ‖ω‖q‖f ‖∞,

and if mt(L,R) = R(t), then

∣∣Mω
f (t)

∣∣ ≤
(

1
2

) 1
q [

(1 – t)(b – a)
] 1

p ‖ω‖q‖f ‖∞.

(iii) Suppose that the function (f ω)(x) = f (x)ω(x) is convex on [a, b]. If mt(L,R) = R(t)
for some t ∈ [0, 1), then the function

Mω
f (t)

1–t is convex. Also, if mt(L,R) = L(t) for

some t ∈ (0, 1], then the function
Mω

f (t)
t is convex.

(iv) Suppose that f and ω are two continuous functions on [a, b]. If f is nonnegative
(nonpositive) on [a, b], then the function Mω

f (t) is increasing (decreasing) on [0, 1
2 )

and is decreasing (increasing) on ( 1
2 , 1]. Also, Mω

f (t) has a relative extreme point at
t = 1

2 . If ω �≡ 0, then corresponding to any x ∈ [a, b] \ { a+b
2 } satisfying

f (x) + f (a + b – x) = 0,

there exists a critical point for Mω
f (t).

Proof (i) This is a consequence of the facts L(1 – t) = R(t) and R(1 – t) = L(t).
(ii) Since mt(L,R) ≤ a+b

2 ≤ Mt(L,R), using Hölder’s inequality [37] and statements (iii)
and (vii) in Lemma 1.1, we obtain the following inequalities:

∣∣Mω
f (t)

∣∣

≤
(∫ mt (L,R)

a

∣∣f (x)
∣∣p dx

) 1
p
(∫ mt (L,R)

a

∣∣ω(x)
∣∣q dx

) 1
q

+
(∫ b

Mt (L,R)

∣∣f (x)
∣∣p dx

) 1
p
(∫ b

Mt (L,R)

∣∣ω(x)
∣∣q dx

) 1
q

=
(∫ mt (L,R)

a

∣∣ω(x)
∣∣q dx

) 1
q
[(∫ mt (L,R)

a

∣∣f (x)
∣∣p dx

) 1
p

+
(∫ b

Mt (L,R)

∣∣f (x)
∣∣p dx

) 1
p
]

≤ 1
2

(∫ mt (L,R)

a

∣∣ω(x)
∣∣q dx

) 1
q
[(∫ mt (L,R)

a

∣∣f (x)
∣∣p dx

) 1
p

+
(∫ b

Mt (L,R)

∣∣f (x)
∣∣p dx

) 1
p
]

.

This proves (ii).
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(iii) We just prove the first part. Considering the changes of variable x = ta + (1 – t)u and
x = tb + (1 – t)u in two integrals of H(t) =

Mω
f (t)

1–t , we obtain that

H(t) =
∫ b

a
(f ω)

(
ta + (1 – t)x

)
dx +

∫ b

a
(f ω)

(
tb + (1 – t)x

)
dx.

Now for t1, t2 ∈ [0, 1) and nonnegative α, β with α + β = 1, we have

H(αt1 + βt2) =
∫ b

a
(f ω)

(
(αt1 + βt2)a +

(
1 – (αt1 + βt2)

)
x
)

dx

+
∫ b

a
(f ω)

(
(αt1 + βt2)b +

(
1 – (αt1 + βt2)

)
x
)

dx

=
∫ b

a
(f ω)

(
α
(
t1a + (1 – t1)x

))
dx +

∫ b

a
(fw)

(
β
(
t2a + (1 – t2)x

))
dx

+
∫ b

a
(f ω)

(
α
(
t1b + (1 – t1)x

))
dx +

∫ b

a
(fw)

(
β
(
t2b + (1 – t2)x

))
dx

≤ α

[∫ b

a
(f ω)

(
t1a + (1 – t1)x

)
dx +

∫ b

a
(f ω)

(
t1b + (1 – t1)x

)
dx

]

+ β

[∫ b

a
(f ω)

(
t2a + (1 – t2)x

)
dx +

∫ b

a
(f ω)

(
t2b + (1 – t2)x

)
dx

]

= αH(t1) + βH(t2).

(iv) It suffices to apply the following result, which is obtained by using Leibniz integral
rule [35] along with the fact that ω is symmetric on [a, b] with respect to a+b

2 :

1
b – a

dMω
f

dt
(t) =

⎧⎨
⎩

[ω ◦L](t){[f ◦L](t) + [f ◦R](t)}, t ∈ [0, 1
2 ),

–[ω ◦R](t){[f ◦L](t) + [f ◦R](t)}, t ∈ ( 1
2 , 1). �

2 Generalization and refinement of Fejér’s inequality
The following result presents a new and generalized type of the celebrated Fejér’s inequal-
ity in connection with h-convex functions.

Theorem 2.1 Consider two integrable functions f : [a, b] → R and w : [a, b] → R
+ ∪ {0}

such that f is h-convex and ω is symmetric with respect to a+b
2 . For all t ∈ [0, 1], we have

the following inequality:

1
2h( 1

2 )
f
(

a + b
2

)∫ Mt (L,R)

mt (L,R)
ω(x) dx (3)

≤
∫ b

a
f (x)ω(x) dx – Mω

f (t)

≤ |R(t) – L(t)|[f ◦L](t) + [f ◦R](t)
(L(t) – R(t))

∫ L(t)

R(t)
h
(

x – R(t)
L(t) – R(t)

)
ω(x) dx

=
|R(t) – L(t)|([f ◦L](t) + [f ◦R](t)])

(R(t) – L(t))

∫ R(t)

L(t)
h
(

x – L(t)
R(t) – L(t)

)
ω(x) dx.
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Proof According Lemma 1.1, we know that for any t ∈ [0, 1], the function ω is symmetric
on the interval [mt(L,R), Mt(L,R)] with respect to

mt(L,R) + Mt(L,R)
2

=
a + b

2
.

Since f is an h-convex function on [a, b], this property is induced to [mt(L,R), Mt(L,R)]
for any t ∈ [0, 1]. So if we consider Theorems 3 and 5 in [4] in the case that f is h-convex
on [mt(L,R), Mt(L,R)] and ω is symmetric on interval [mt(L,R), Mt(L,R)] with respect
to a+b

2 , then we have

1
2h( 1

2 )
f
(

mt(L,R) + Mt(L,R)
2

)∫ Mt (L,R)

mt (L,R)
ω(x) dx

≤
∫ Mt (L,R)

mt (L,R)
f (x)ω(x) dx

≤ [
Mt(L,R) – mt(L,R)

][
f
(
mt(L,R)

)
+ f

(
Mt(L,R)

)]

×
∫ 1

0
h(s)[ω ◦ As]

(
mt(L,R), Mt(L,R)

)
ds.

Now statements (ii), (iii), and (v) in Lemma 1.1 imply that

1
2h( 1

2 )
f
(

a + b
2

)∫ Mt (L,R)

mt (L,R)
ω(x) dx (4)

≤
∫ Mt (L,R)

mt (L,R)
f (x)ω(x) dx

≤ ∣∣R(t) – L(t)
∣∣([f ◦L](t) + [f ◦R](t)

)∫ 1

0
h(s)[ω ◦ As]

(
L(t),R(t)

)
ds

=
∣∣R(t) – L(t)

∣∣([f ◦L](t) + [f ◦R](t)
)∫ 1

0
h(s)[ω ◦ As]

(
R(t),L(t)

)
ds.

By the definition of mapping Mω
f it is not hard to see that the following identity holds:

∫ b

a
f (x)ω(x) dx –

∫ Mt (L,R)

mt (L,R)
f (x)ω(x) dx = Mω

f (t) (5)

for all t ∈ [0, 1]. On the other hand, apply the changes of variable u = As(L(t),R(t)) or
u = As(R(t),L(t)) in two last integrals in (4) and consider that

1
L(t) – R(t)

∫ L(t)

R(t)
h
(

x – R(t)
L(t) – R(t)

)
ω(x) dx (6)

=
1

R(t) – L(t)

∫ R(t)

L(t)
h
(

x – L(t)
R(t) – L(t)

)
ω(x) dx.

Finally, by the above explanations and using (5) and (6) in (4), we get the desired result. �
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Corollaries and remarks
Multiplying the inequalities (a consequence of the h-convexity of f and some statements
in Lemma 1.1)

f
(

a + b
2

)
= f

(
As(mt(L,R), Mt(L,R)) + As(Mt(L,R), mt(L,R))

2

)

≤ h
(

1
2

)[
f ◦ As

(
mt(L,R), Mt(L,R)

)
+ f ◦ As

(
Mt(L,R), mt(L,R)

)]

≤ h
(

1
2

)
H(s)

[
f
(
mt(L,R)

)
+ f

(
Mt(L,R)

)]

= h
(

1
2

)
H(s)

(
[f ◦L](t) + [f ◦R](t)

)
,

by [ω ◦ As](mt(L,R), Mt(L,R)) (s, t ∈ [0, 1]) and then integrating with respect to variable
s ∈ [0, 1], we obtain the following presentation of generalized Fejér’s inequality:

1
2h( 1

2 )
f
(

a + b
2

)∫ Mt (L,R)

mt (L,R)
ω(x) dx (7)

≤
∫ b

a
f (x)ω(x) dx – Mω

f (t)

≤ [f ◦L](t) + [f ◦R](t)
2

∫ Mt (L,R)

mt (L,R)
H

(
Mt(L,R) – x

Mt(L,R) – mt(L,R)

)
ω(x) dx

=
[f ◦L](t) + [f ◦R](t)

2

∫ Mt (L,R)

mt (L,R)
H

(
x – mt(L,R)

Mt(L,R) – mt(L,R)

)
ω(x) dx,

where H(s) = h(s) + h(1 – s), s ∈ [0, 1]. Since

∫ Mt (L,R)

mt (L,R)
H

(
Mt(L,R) – x

Mt(L,R) – mt(L,R)

)
ω(x) dx

= 2
∫ Mt (L,R)

mt (L,R)
h
(

Mt(L,R) – x
Mt(L,R) – mt(L,R)

)
ω(x) dx,

we conclude that (3) and (7) are equivalent, and the difference is in presentation and con-
sequences.

Inequalities (3) and (7) generalize many Fejér-type inequalities obtained for h-convex
functions in the literature. In these inequalities, taking h(s) = sα (α ∈ (0, 1]), h(s) = 1

s
(s ∈ (0, 1)), h(s) = 1, and h(s) = s, we obtain generalized Fejér-type inequalities for s-convex
functions in the second sense, Godunova–Levin functions, P-functions, and convex func-
tions, respectively. However, setting h(s) = s in (3) and (7), we get the following inequalities,
respectively:

f
(

a + b
2

)∫ Mt (L,R)

mt (L,R)
ω(x) dx (8)

≤
∫ b

a
f (x)ω(x) dx – Mω

f (t)
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≤ [f ◦L](t) + [f ◦R](t)
|R(t) – L(t)|

∫ R(t)

L(t)

(
x – L(t)

)
ω(x) dx

=
[f ◦L](t) + [f ◦R](t)

|L(t) – R(t)|
∫ L(t)

R(t)

(
x – R(t)

)
ω(x) dx,

and

f
(

a + b
2

)∫ Mt (L,R)

mt (L,R)
ω(x) dx ≤

∫ b

a
f (x)ω(x) dx – Mω

f (t) (9)

≤ [f ◦L](t) + [f ◦R](t)
2

∫ Mt (L,R)

mt (L,R)
ω(x) dx.

Inequality (8) is a new generalized Fejér-type inequality, and inequality (9) is a straight
generalization of the classic Fejér’s inequality related to the convex functions.

Inequalities (3) and (7) coincide for the case ω ≡ 1. However, this gives a new generalized
form of the Hermite–Hadamard inequality related to the class of h-convex functions and
its subclasses as well (see also [27, 33, 46, 47]):

1
2h( 1

2 )
f
(

a + b
2

)
≤ 1

(b – a)|1 – 2t|
∫ Mt (L,R)

mt (L,R)
f (x) dx (10)

≤ (
[f ◦L](t) + [f ◦R](t)

)∫ 1

0
h(s) ds

=
(

[f ◦L](t) + [f ◦R](t)
2

)∫ 1

0
H(s) ds.

If we set t = 0, 1 in (3) (Mω
f (0) = Mω

f (1) = 0), then we recapture the following Fejér-type
inequality related to the h-convex functions obtained in [4]:

1
2h( 1

2 )
f
(

a + b
2

)∫ b

a
ω(x) dx ≤

∫ b

a
f (x)ω(x) dx (11)

≤ (b – a)
[
f (a) + f (b)

]∫ 1

0
h(s)ω

(
sa + (1 – s)b

)
ds,

and also with this assumption in (7), we obtain a new h-convex version of Fejér’s inequality:

1
2h( 1

2 )
f
(

a + b
2

)∫ b

a
ω(x) dx ≤

∫ b

a
f (x)ω(x) dx (12)

≤ f (a) + f (b)
2

∫ b

a
H

(
b – x
b – a

)
ω(x) dx

=
f (a) + f (b)

2

∫ b

a
H

(
x – a
b – a

)
ω(x) dx.

Taking ω ≡ 1 in (11) and (12), we recapture the following result obtained in [46]:

1
2h( 1

2 )
f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ [

f (a) + f (b)
]∫ 1

0
h(s) ds,

which is the Hermite–Hadamard inequality related to h-convex functions.
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Now for n ∈N, n ≥ 3, consider the following relations:

a =
a + (n – 1)a

n
≤ b + (n – 1)a

n
=

a + (n – 1)b
n

+
n – 2

n
(a – b) ≤ a + (n – 1)b

n
≤ b,

and

ω

(
a + (n – 1)a

n
+

b + (n – 1)a
n

– x
)

= ω(a + b – x) = ω(x),

showing that ω is symmetric on [ b+(n–1)a
n + a+(n–1)b

n ] with respect to a+b
2 . So if we set t = 1

n
in (3), then we have

1
2h( 1

2 )
f
(

a + b
2

)∫ a+(n–1)b
n

b+(n–1)a
n

ω(x) dx (13)

≤
∫ a+(n–1)b

n

b+(n–1)a
n

f (x)ω(x) dx

≤ n – 2
n

(b – a)
[

f
(

b + (n – 1)a
n

)
+ f

(
a + (n – 1)b

n

)]

×
∫ 1

0
h(s)[ω ◦ As]

(
b + (n – 1)a

n
,

a + (n – 1)b
n

)
ds,

and also in (7), we have

1
2h( 1

2 )
f
(

a + b
2

)∫ a+(n–1)b
n

b+(n–1)a
n

ω(x) dx (14)

≤
∫ a+(n–1)b

n

b+(n–1)a
n

f (x)ω(x) dx

≤ f ( b+(n–1)a
n ) + f ( a+(n–1)b

n )
2

∫ a+(n–1)b
n

b+(n–1)a
n

H
((

n
n – 2

)(
b – x
b – a

–
1
n

))
ω(x) dx.

Inequalities (13) and (14) cover many Hermite–Hadamard-type and Fejér-type inequali-
ties of this kind for all n ≥ 3. For example, consider n = 3, 4 and h(s) = s in (13) and (14) to
obtain the following Fejér-type inequalities:

f
(

a + b
2

)∫ a+2b
3

b+2a
3

ω(x) dx ≤
∫ a+2b

3

b+2a
3

f (x)ω(x) dx

≤
[

f
(

b + 2a
3

)
+ f

(
a + 2b

3

)]∫ a+2b
3

b+2a
3

ω(x) dx,

and

f
(

a + b
2

)∫ a+3b
4

b+3a
4

ω(x) dx ≤
∫ a+3b

4

b+3a
4

f (x)ω(x) dx

≤ f ( b+3a
4 ) + f ( a+3b

4 )
2

∫ a+3b
4

b+3a
4

ω(x) dx.
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Inequalities of this kind of can be found in [12, 53, 54] and references therein. For dif-
ferent types of h(s), ω, and n > 4, we may obtain many inequalities of Hermite–Hadamard
and Fejér types.

In a more particular case, if we consider ω ≡ 1 and h(s) = s simultaneously in (3) and (7),
then we have the following result:

f
(

a + b
2

)
≤ 1

(b – a)|1 – 2t|
∫ mt (L,R)

mt (L,R)
f (x) dx ≤ 1

2
(
[f ◦L](t) + [f ◦R](t)

)
(15)

for t ∈ [0, 1] \ 1
2 , which is a new presentation for Hermite–Hadamard’s inequality depen-

dent on variable t. In particular, for t = 0, 1, we recapture the classical Hermite–Hadamard
inequality. Also, for any n ∈ N \ {1, 2}, we obtain that

f
(

a + b
2

)
≤ n

(b – a)(n – 2)

∫ a+(n–1)b
n

b+(n–1)a
n

f (x) dx

≤ 1
2

[
f
(

b + (n – 1)a
n

)
+ f

(
a + (n – 1)b

n

)]
,

which gives a Hermite–Hadamard-type inequality depending on n.
We continue that for fixed t ∈ [0, 1] and x ∈ [a, b], the function

ω(x) =
(
Mt(L,R) – x

)(
x – mt(L,R)

)

is symmetric on [mt(L,R), Mt(L,R)] with respect to a+b
2 . Also by Lemma 1.1, we obtain

that (the details are omitted)

∫ Mt (L,R)

mt (L,R)

(
Mt(L,R) – x

)(
x – mt(L,R)

)
dx =

|1 – 2t|3(b – a)3

6

and

∫ 1

0
h(s)[ω ◦ As]

(
L(t),R(t)

)
ds = |1 – 2t|2(b – a)2

∫ 1

0
h(s)s(1 – s) ds.

So if f is an h-convex function on [a, b], then according to Theorem 2.1, we have the fol-
lowing Hermite–Hadamard-type inequality for h-convex functions:

1
12h( 1

2 )
f
(

a + b
2

)
≤ 1

|1 – 2t|3(b – a)3

∫ Mt (L,R)

mt (L,R)
f (x)

(
Mt(L,R) – x

)(
x – mt(L,R)

)
dx

≤ (
[f ◦L](t) + [f ◦R](t)

)∫ 1

0
h(s)s(1 – s) ds.

In the particular case of h(s) = s and t = 0, 1, we have

f
(

a + b
2

)
≤ 6

(b – a)3

∫ b

a
f (x)(b – x)(x – a) dx ≤ f (a) + f (b)

2
,

which was obtained in [11] for convex function f defined on [a, b].
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Finally, for a convex function f : [a, b] → R, by the definition of M1
f (t), applying some

suitable changes of variable in integrals and using Lemma (1.1), we obtain the following
inequality:

f
(

a + b
2

)
–

∣∣∣∣t –
1
2

∣∣∣∣{f (a) + f (b)
}

≤
∫ b

a
f (x) dx –

∣∣∣∣t –
1
2

∣∣∣∣{[f ◦L](t) + [f ◦R](t)
}

≤ 1
b – a

M1
f (t) ≤ t(1 – t)

[
f (a) + f (b)

]
+ 2 max

{
t2, (1 – t)2}∫ b

a
f (x) dx,

which gives another refinement for the classical Hermite–Hadamard inequality. We en-
courage the interested reader to work on other particular cases of inequalities obtained in
this section and compare the results with previous ones in the literature.

3 Fractional integrals
In this section, we introduce a new class of fractional integrals. Investigating its proper-
ties is the subject of our next works. Here we just consider some particular cases, which
are known types of fractional integrals in the literature (see [20, 25, 28, 42, 44]) and find
some Hermite–Hadamard-type inequalities for them by using generalized Fejér inequality
obtained in the previous section.

For t ∈ [0, 1] \ { 1
2 }, consider a bifunction G : [mt(L,R), Mt(L,R)] × [mt(L,R),

Mt(L,R)] →R
+ ∪ {0} and define the following class of fractional integrals:

Fmt (L,R)+ [f ](x) =
∫ x

mt (L,R)
G(x, u)f (u) du, x > mt(L,R),

and

FMt (L,R)– [f ](x) =
∫ Mt (L,R)

x
G(x, u)f (u) du, x < Mt(L,R),

if the above integrals exist.
Now we discuss three special cases of Fmt (L,R)+ [f ](x) and FMt (L,R)– [f ](x) and obtain

some results in connection with Theorem 2.1.
(1) For α > 0, considering

G(x, u) =
1
α

exp

(
–

1 – α

α
|x – u|

)
, x, u ∈ [

mt(L,R), Mt(L,R)
]
,

in Fmt (L,R)+ [f ](x) and FMt (L,R)– [f ](x), we obtain the following class of fractional integrals:

Iα
mt (L,R)+ [f ](x) =

1
α

∫ x

mt (L,R)
exp

(
–

1 – α

α
(x – u)

)
f (u) du, x > mt(L,R),

and

Iα
Mt (L,R)– [f ](x) =

1
α

∫ Mt (L,R)

x
exp

(
–

1 – α

α
(u – x)

)
f (u) du, x < Mt(L,R),



Rostamian Delavar Journal of Inequalities and Applications         (2023) 2023:42 Page 12 of 28

which generalize Iα
a+ [f ](x) and Iα

b– [f ](x), presented and discussed in [2] (consider t = 0, 1
and α ∈ (0, 1) in the above integrals).

To obtain Hermite–Hadamard’s inequality related to the classes Iα
mt (L,R)+ [f ](x) and

Iα
Mt (L,R)– [f ](x), in Theorem 2.1, consider

ω(x) =
1
α

[
exp

(
–

1 – α

α

(
Mt(L,R) – x

))
+ exp

(
–

1 – α

α

(
x – mt(L,R)

))]

for x ∈ [mt(L,R), Mt(L,R)] and also

ρ(t) = –
(1 – α)|1 – 2t|(b – a)

α
, t ∈ [0, 1)

∖ {
1
2

}
.

Obviously, ω is a nonnegative function, and using Lemma 1.1, it is not hard to see that
Mt(L,R) – x = a + b – x – mt(L,R) and x – mt(L,R) = Mt(L,R) – (a + b – x). So

ω(x) =
1
α

[
exp

(
–

1 – α

α

(
Mt(L,R) – x

))
+ exp

(
–

1 – α

α

(
x – mt(L,R)

))]

=
1
α

[
exp

(
–

1 – α

α

(
a + b – x – mt(L,R)

))

+ exp

(
–

1 – α

α

(
Mt(L,R) – (a + b – x)

))]

= ω(a + b – x) = w
(
mt(L,R) + Mt(L,R) – x

)
,

which implies that ω is symmetric on [mt(L,R), Mt(L,R)] with respect to a+b
2 . It follows

that

∫ Mt (L,R)

mt (L,R)
ω(x) dx =

2
1 – α

[
1 – exp

(
–

1 – α

α

(
Mt(L,R) – mt(L,R)

))]
(16)

=
2

1 – α

[
1 – exp

(
–

1 – α

α

(|1 – 2t|(b – a)
))]

=
2

1 – α

[
1 – [exp◦ρ](t)

]
.

Also,

∫ b

a
f (x)ω(x) dx – Mω

f (t) = Iα
mt (L,R)+ [f ]

(
Mt(L,R)

)
+ Iα

Mt (L,R)– [f ]
(
mt(L,R)

)
, (17)

and again by Lemma 1.1

∫ 1

0
h(s)[ω ◦ As]

(
mt(L,R), Mt(L,R)

)
ds (18)

=
1
α

∫ 1

0
H(s) exp

(
–

(1 – α)s
α

(b – a)|1 – 2t|
)

ds

=
1
α

∫ 1

0
H(s)

[
exp◦(sρ)

]
(t) ds.
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Finally, from (16)–(18) we have

1 – [exp◦ρ](t)
h( 1

2 )(1 – α)
f
(

a + b
2

)
(19)

≤ Iα
mt (L,R)+ [f ]

(
Mt(L,R)

)
+ Iα

Mt (L,R)– [f ]
(
mt(L,R)

)

≤ |1 – 2t|(b – a)[f ◦L(t) + f ◦R(t)]
α

∫ 1

0
H(s)

[
exp◦(sρ)

]
(t) ds

for t ∈ [0, 1] \ { 1
2 }, which is the h-convex type of Hermite–Hadamard’s inequality in con-

nection with this class of fractional integrals. In particular, if we set h(s) = s in (19), then
from the fact that

∫ 1

0

[
exp◦(sρ)

]
(t) ds =

α

(1 – α)|1 – 2t|(b – a)
(
1 – [exp◦ρ](t)

)

we obtain

f
(

a + b
2

)
(20)

≤ (1 – α)[Iα
mt (L,R)+ [f ](Mt(L,R)) + Iα

Mt (L,R)– [f ](mt(L,R))]
2(1 – [exp◦ρ](t))

≤ f ◦L(t) + f ◦R(t)
2

for t ∈ [0, 1] \ { 1
2 }, which gives a convex type of Hermite–Hadamard’s inequality in con-

nection with Iα
mt (L,R)+ [f ](Mt(L,R)) and Iα

Mt (L,R)– [f ](mt(L,R)). In a more particular case
for t = 0, 1 in (20), we obtain

f
(

a + b
2

)
≤ (1 – α)[Iα

a+ f (b) + Iα
b– f (a)]

2(1 – exp(– (1–α)(b–a)
α

))
≤ f (a) + f (b)

2
,

which was obtained in [2] (Theorem 1). Finally, letting α → 1– in (20), we recapture (15),
since

lim
α→1–

1 – α

2(1 – exp◦(ρ)](t))
=

1
2(b – a)|1 – 2t| ,

for all t ∈ [0, 1] \ { 1
2 }.

(2) In Fmt (L,R)+ [f ](x) and FMt (L,R)– [f ](x) for α > 0, consider

G(x, u) =
1

�(α)
|x – u|α–1, x, u ∈ [

mt(L,R), Mt(L,R)
]
.

So we obtain the following generalized Riemann–Liouville fractional integrals:

J α
mt (L,R)+ f (x) =

1
�(α)

∫ x

mt (L,R)
(x – u)α–1f (u) du, x > mt(L,R),
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and

J α
Mt (L,R)– f (x) =

1
�(α)

∫ Mt (L,R)

x
(u – x)α–1f (u) dt, Mt(L,R) < x.

The fractional integrals J α
mt (L,R)+ f (x) and J α

Mt (L,R)– f (x) in the particular cases t = 0, 1 re-
duce to Jα

a+ f (x) and Jα
b– f (x), respectively, which are known as the Riemann–Liouville frac-

tional integrals in the literature. Now in Theorem 2.1 consider

ω(x) =
(Mt(L,R) – x)α–1 + (x – mt(L,R))α–1

�(α)
, x ∈ [

mt(L,R), Mt(L,R)
]
.

By using Lemma 1.1 it is not hard to see that w is symmetric on [mt(L,R), Mt(L,R)] with
respect to a+b

2 and also is nonnegative. Also, the following results hold:

∫ Mt (L,R)

mt (L,R)
ω(x) dx =

2(Mt(L,R) – mt(L,R))α

�(α + 1)
=

2(b – a)α|1 – 2t|α
�(α + 1)

,

∫ b

a
f (x)ω(x) dx – Mω

f (t) = J α
mt (L,R)+ [f ]

(
Mt(L,R)

)
+ J α

Mt (L,R)– [f ]
(
mt(L,R)

)
,

and

∫ 1

0
h(s)[ω ◦ As]

(
mt(L,R), Mt(L,R)

)
ds =

(
Mt(L,R) – mt(L,R)

)α–1
∫ 1

0
H(s)sα–1 ds.

The above results altogether imply that

1
h( 1

2 )
f
(

a + b
2

)
(21)

≤ �(α + 1)
(b – a)α|1 – 2t|α

[
J α

mt (L,R)+ [f ]
(
Mt(L,R)

)
+ J α

Mt (L,R)– [f ]
(
mt(L,R)

)]

≤ α
[
f ◦L(t) + f ◦R(t)

]∫ 1

0
H(s)sα–1 ds

for t ∈ [0, 1] \ { 1
2 }. In the case h(s) = s, from (21) we get the following inequality, which is a

generalization of inequality (2.1) obtained in [48]:

f
(

a + b
2

)
≤ �(α + 1)

2(b – a)α|1 – 2t|α
[
J α

mt (L,R)+ [f ]
(
Mt(L,R)

)
+ J α

Mt (L,R)– [f ]
(
mt(L,R)

)]

≤ f ◦L(t) + f ◦R(t)
2

.

Also, for α = 1, we obtain a generalization of inequality (2.1) presented in [46]:

1
2h( 1

2 )
f
(

a + b
2

)
≤ 1

(b – a)|1 – 2t|
∫ Mt (L,R)

mt (L,R)
f (x) dx ≤ [

f ◦L(t) + f ◦R(t)
]∫ 1

0
h(s) ds.

Furthermore, for t = 0, 1 in (21), we have the following Hermite–Hadamard-type inequal-
ity via Riemann–Liouville fractional integrals, which is comparable with inequality (6) in
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[56]:

1
h( 1

2 )
f
(

a + b
2

)
≤ �(α + 1)

(b – a)α
[
J α

a+ [f ](a) + J α
b– [f ](b)

] ≤ α
[
f (a) + f (b)

] ∫ 1

0
H(s)sα–1 ds.

Also, for

ω(u) = G
(

a + b
2

, u
)

=
|u – a+b

2 |α–1

�(α)
, u ∈ [a, b],

in Fα
mt (L,R)+ [f ](x) and Fα

Mt (L,R)– [f ](x), by Theorem 2.1 we have another inequality related
to the classical Riemann–Liouville fractional integrals with respect to the midpoint of the
interval [a, b]:

1
2αh( 1

2 )
f
(

a + b
2

)
≤ �(α + 1)

(b – a)α

[
J α

a+ [f ]
(

a + b
2

)
+ J α

a+ [f ]
(

a + b
2

)]

≤ α
[
f (a) + f (b)

]∫ 1

0
h(s)

∣∣∣∣1
2

– s
∣∣∣∣
α–1

ds.

Now for the particular case h(s) = s, we get

f
(

a + b
2

)
≤ 2α–1�(α + 1)

(b – a)α

[
J α

a+ [f ]
(

a + b
2

)
+ J α

a+ [f ]
(

a + b
2

)]
≤ f (a) + f (b)

2
,

which is equivalent to inequality (2.1) (obtained for positive functions) in [49].
(3) If we consider

G(x, u) =
1

�(α)
|x – u|α–1 lnβ

(
γ

|x – u|
)

, x, u ∈ [
mt(L,R), Mt(L,R)

]
,

in Fmt (L,R)+ [f ](x) and FMt (L,R)– [f ](x) for α > 0, γ > Mt(L,R) – mt(L,R), and β ≥ 0, then
we obtain the following class of fractional integrals, which in the particular case t = 0, 1
have been presented and discussed in [44] as operators with power-logarithmic kernels:

Kα,β
mt (L,R)+ [f ](x) =

1
�(α)

∫ x

mt (L,R)
(x – u)α–1 lnβ

(
γ

x – u

)
f (u) du, x > mt(L,R),

and

Kα,β
Mt (L,R)– [f ](x) =

1
�(α)

∫ Mt (L,R)

x
(u – x)α–1 lnβ

(
γ

u – x

)
f (u) du, x < Mt(L,R).

Here we obtain a Hermite–Hadamard-type inequality for fractional integrals Kα,1
a+ [f ](x)

and Kα,1
a+ [f ](x) as a particular case of the above fractional integrals. For any x ∈ [mt(L,R),

Mt(L,R)], define

ω(x) =
(Mt(L,R) – x)α–1 ln( γ

Mt (L,R)–x ) + (x – mt(L,R))α–1 ln( γ

x–mt (L,R) )
�(α)

.
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The function w is nonnegative on [mt(L,R), Mt(L,R)] and symmetric with respect to a+b
2 .

Also, we have the following results:

∫ Mt (L,R)

mt (L,R)
ω(x) dx =

2(Mt(L,R) – mt(L,R))α

�(α + 1)

[
ln

(
γ

Mt(L,R) – mt(L,R)

)
+

1
α

]
,

∫ b

a
f (x)ω(x) dx – Mω

f (t) = Kα,1
mt (L,R)+ [f ]

(
Mt(L,R)

)
+ Kα,1

Mt (L,R)– [f ]
(
mt(L,R)

)
,

and
∫ 1

0
h(s)[ω ◦ As]

(
R(t),L(t)

)
ds

=
(Mt(L,R) – Mt(L,R))α–1

�(α)

∫ 1

0
H(s)sα–1 ln

(
γ

s(Mt(L,R) – mt(L,R))

)
ds.

So from Theorem 2.1 we have

1
h( 1

2 )
f
(

a + b
2

)[
ln

(
γ

Mt(L,R) – mt(L,R)

)
+

1
α

]

≤ �(α + 1)
(Mt(L,R) – mt(L,R))α

[
Kα,1

mt (L,R)+ [f ]
(
Mt(L,R)

)
+ Kα,1

Mt (L,R)– [f ]
(
mt(L,R)

)]

≤ α
[
f ◦L(t) + f ◦R(t)

]∫ 1

0
H(s)sα–1 ln

(
γ

s(Mt(L,R) – mt(L,R))

)
ds

for t ∈ [0, 1] \ { 1
2 }. Now if we set h(s) = s in the above inequality, then we get

f
(

a + b
2

)
≤ �(α + 1)

2(b – a)α|1 – 2t|αR
[
Kα,1

mt (L,R)+ [f ]
(
Mt(L,R)

)
+ Kα,1

Mt (L,R)– [f ]
(
mt(L,R)

)]

≤ [f ◦L(t) + f ◦R(t)]
2

,

where R = ln( γ

(b–a)|1–2t| ) + 1
α

. In the particular case of t = 0, 1,

f
(

a + b
2

)
≤ �(α + 1)

2(b – a)αR
[
Kα,1

a+ [f ](b) + Kα,1
b– [f ](a)

] ≤ f (a) + f (b)
2

.

Finally, we recommend the interested readers to study [20, 25, 28, 44] and references
therein to get more inequalities and results.

4 Refinements for Hermite–Hadamard’s inequality by monotone functions
In this section, we obtain some refinements of Hermite–Hadamard’s inequality by using
fractional integrals discussed in the previous section, provided that the considered func-
tions are nonnegative and monotone. We focus on the Riemann–Liouville fractional in-
tegrals, but results can be extended to many classes of fractional integrals. We need the
following result, which is a consequence of Theorem 1 in [1] (see also [6, 22]).

Theorem 4.1 If f1 and f2 are nonnegative increasing functions on [0, 1], then

∫ 1

0
f1(x) dx

∫ 1

0
f2(x) dx ≤

∫ 1

0
f1(x)f2(x) dx.
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Here we give some refinements for Hermite–Hadamard’s inequality by using fractional
integrals for h-convex functions.

Theorem 4.2 Suppose that f : [a, b] →R is an integrable h-convex function and t ∈ [0, 1]\
{ 1

2 }. Then:
(i) For α ≥ 1, we have the following inequality for nonnegative and increasing f :

1
2h( 1

2 )
f
(

a + b
2

)
(22)

≤ 1
|1 – 2t|(b – a)

∫ Mt (L,R)

mt (L,R)
f (u) du

≤ �(α + 1)
2|1 – 2t|α(b – a)α

[
J α

mt (L,R)+ [f ]
(
Mt(L,R)

)
+ J α

Mt (L,R)– [f ]
(
mt(L,R)

)]

≤ α

[
f ◦L(t) + f ◦R(t)

2

]∫ 1

0
H(s)sα–1 ds.

(ii) For any α > 0, we have

1
2h( 1

2 )
f
(

a + b
2

)
(23)

≤ �(α + 1)
2|1 – 2t|α(b – a)α

[
J α

mt (L,R)+ [f ]
(
Mt(L,R)

)
+ J α

Mt (L,R)– [f ]
(
mt(L,R)

)]

≤ α

|1 – 2t|(b – a)

∫ Mt (L,R)

mt (L,R)
f (u) du.

Proof It is clear that a ≤ mt(L,R) ≤ Mt(L,R) ≤ b for all t ∈ [0, 1]. So

f
(
smt(L,R) + (1 – s)Mt(L,R)

) ≤ h(s)f
(
mt(L,R)

)
+ h(1 – s)f

(
Mt(L,R)

)
,

and

f
(
sMt(L,R) + (1 – s)mt(L,R)

) ≤ h(s)f
(
Mt(L,R)

)
+ h(1 – s)f

(
mt(L,R)

)
.

From these inequalities we have

f
(
smt(L,R) + (1 – s)Mt(L,R)

)
+ f

(
sMt(L,R) + (1 – s)mt(L,R)

)
(24)

≤ H(s)
[
f
(
mt(L,R)

)
+ f

(
Mt(L,R)

)]
.

Multiplying both sides of (24) by sα–1, integrating the resulting inequality with respect to
variable s over [0, 1], and using Theorem 4.1, imply the following result:

∫ 1

0
sα–1 ds ·

∫ 1

0
f
(
smt(L,R) + (1 – s)Mt(L,R)

)
ds

+
∫ 1

0
sα–1 ds ·

∫ 1

0
f
(
sMt(L,R) + (1 – s)mt(L,R)

)
ds



Rostamian Delavar Journal of Inequalities and Applications         (2023) 2023:42 Page 18 of 28

≤
∫ 1

0
sα–1f

(
smt(L,R) + (1 – s)Mt(L,R)

)
ds

+
∫ 1

0
sα–1f

(
sMt(L,R) + (1 – s)mt(L,R)

)
ds

≤ [
f
(
mt(L,R)

)
+ f

(
Mt(L,R)

)]∫ 1

0
sα–1H(s) ds.

Using the changes of variable u = smt(L,R) + (1 – s)Mt(L,R) and u = sMt(L,R) + (1 –
s)mt(L,R), respectively, in the above integrals, we obtain that

2
Mt(L,R) – mt(L,R)

∫ Mt (L,R)

mt (L,R)
f (u) du

≤ α

(Mt(L,R) – mt(L,R))α

×
[∫ Mt (L,R)

mt (L,R)

(
Mt(L,R) – u

)α–1f (u) du +
∫ Mt (L,R)

mt (L,R)

(
u – mt(L,R)

)α–1f (u) du
]

≤ α
[
f
(
mt(L,R)

)
+ f

(
Mt(L,R)

)]∫ 1

0
H(s)sα–1 ds.

Now since f is h-convex on [mt(L,R), Mt(L,R)], by the left part of (10), Lemma 1.1, and
the definition of J α

mt (L,R)+ [f ](Mt(L,R)) and J α
Mt (L,R)– [f ](mt(L,R)) we have

1
2h( 1

2 )
f
(

a + b
2

)

≤ 1
Mt(L,R) – mt(L,R)

∫ Mt (L,R)

mt (L,R)
f (u) du

≤ �(α + 1)
2(Mt(L,R) – mt(L,R))α

[
J α

mt (L,R)+ [f ]
(
Mt(L,R)

)
+ J α

Mt (L,R)– [f ]
(
mt(L,R)

)]

≤ α

[
f ◦L(t) + f ◦R(t)

2

]∫ 1

0
H(s)sα–1 ds,

which is equivalent to inequality (22). It follows that

f
(

a + b
2

)
= f

(
mt(L,R) + Mt(L,R)

2

)

= f
(

As(mt(L,R), Mt(L,R)) + As(Mt(L,R), mt(L,R))
2

)

≤ h
(

1
2

)[
f
(
As

(
mt(L,R), Mt(L,R)

))
+ f

(
As

(
Mt(L,R), mt(L,R)

))]
.

Multiplying the above inequalities by sα–1 and then integrating with respect to variable
s over [0, 1] lead to

∫ 1

0
f
(

a + b
2

)
sα–1 ds ≤ h

(
1
2

)[∫ 1

0
f ◦ As

(
Mt(L,R), mt(L,R)

)
sα–1 ds

+
∫ 1

0
f ◦ As

(
mt(L,R), Mt(L,R)

)
sα–1 ds

]
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≤ h
(

1
2

)[∫ 1

0
f ◦ As

(
Mt(L,R), mt(L,R)

)
ds

+
∫ 1

0
f ◦ As

(
mt(L,R), Mt(L,R)

)
ds

]
.

This implies that

1
αh( 1

2 )
f
(

a + b
2

)

≤ �(α)
(Mt(L,R) – mt(L,R))α

[
J α

mt (L,R)+ [f ]
(
Mt(L,R)

)
+ J α

Mt (L,R)– [f ]
(
mt(L,R)

)]

≤ 2
Mt(L,R) – mt(L,R)

∫ Mt (L,R)

mt (L,R)
f (u) du,

which is equivalent to inequality (23). �

From Theorem 4.2 we have the following refinement for h-convex version of Hermite–
Hadamard’s inequality.

Corollary 4.1 Suppose that f : [a, b] → R is a nonnegative increasing h-convex function
and integrable on [a, b]. Consider t ∈ [0, 1] \ { 1

2 } and α ≥ 1. Then

1
2h( 1

2 )
f
(

a + b
2

)
(25)

≤ 1
|1 – 2t|(b – a)

∫ Mt (L,R)

mt (L,R)
f (u) du

≤ �(α + 1)
2|1 – 2t|α(b – a)α

[
J α

mt (L,R)+ [f ]
(
Mt(L,R)

)
+ J α

Mt (L,R)– [f ]
(
mt(L,R)

)]

≤ α

|1 – 2t|(b – a)

∫ Mt (L,R)

mt (L,R)
f (u) du ≤ α

[
f ◦L(t) + f ◦R(t)

] ∫ 1

0
h(s) ds.

Remark 1 (i) If h1 and h2 are two nonnegative decreasing functions defined on [0, 1] with
upper bounds B1 and B2, respectively, then the functions B1 – h1 and B2 – h2 are nonneg-
ative increasing functions defined on [0, 1]. So we have that

∫ 1

0

(
B1 – h1(x)

)
dx

∫ 1

0

(
B2 – h2(x)

)
dx ≤

∫ 1

0

(
B – h1(x)

)(
B – h2(x)

)
dx,

which with some calculations gives

∫ 1

0
h1(x) dx

∫ 1

0
h2(x) dx ≤

∫ 1

0
h1(x)h2(x) dx.

This implies that inequality (25) can be obtained if f : [a, b] → R is a nonnegative upper
bounded decreasing h-convex function, 0 < α ≤ 1, and t ∈ [0, 1] \ { 1

2 }.
(ii) Multiplying both sides of (24) by the nonnegative increasing function

g(s) = exp

(
–

1 – α

α
s
(
Mt(L,R) – mt(L,R)

))
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for fixed t ∈ [0, 1] \ { 1
2 }, integrating the resulting inequality with respect to variable s over

[0, 1], and using Theorem 4.1, we obtain the following refinement of (19):

1
2h( 1

2 )
f
(

a + b
2

)

≤ 1
|1 – 2t|(b – a)

∫ Mt (L,R)

mt (L,R)
f (u) du

≤ 1 – α

2(1 – [exp◦ρ](t))
[
Iα

mt (L,R)+ [f ]
(
Mt(L,R)

)
+ Iα

Mt (L,R)– [f ]
(
mt(L,R)

)]

≤ ρ(t)
[exp◦ρ](t) – 1

[
f ◦L(t) + f ◦R(t)

2

]∫ 1

0
H(s)

[
exp◦(sρ)

]
(t) ds.

In the case h(s) = s, we have the following refinement of Hermite–Hadamard’s inequality
by using another kind of fractional integrals:

f
(

a + b
2

)
≤ 1

|1 – 2t|(b – a)

∫ Mt (L,R)

mt (L,R)
f (u) du

≤ 1 – α

2(1 – [exp◦ρ](t))
[
Iα

mt (L,R)+ [f ]
(
Mt(L,R)

)
+ Iα

Mt (L,R)– [f ]
(
mt(L,R)

)]

≤ f ◦L(t) + f ◦R(t)
2

.

If we let α → 1–, then we recapture (15).

5 Gamma and beta functions
In this section, we present some inequalities and results related to gamma and beta func-
tions. Especially, considering appropriate functions in Theorem 2.1 along with some cal-
culations, we give a simple proof of the well-known Stirling formula as well.

The Euler integral of the second kind, i.e., gamma function [8], is defined as

�(x) =
∫ ∞

0
tx–1e–t dt, Re(x) > 0.

Consider the function f (x) = ln�(x), x ∈ (0, +∞), which is convex (�(x) is log-convex). To
see this (see also [3]), we have

(ln�)′′(x) =
�′′(x)�(x) – (�′(x))2

(�(x))2 > 0,

which follows by using the Cauchy–Schwarz inequality [52] for

〈f , g〉 =
∫ ∞

0
f (t)g(t)tx–1e–t dt

(
f (t) = ln(t), g ≡ 1

)

and the fact that

�(n)(x) =
∫ ∞

0
tx–1e–t[ln(t)

]n dt (nth derivative).
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Now in Theorem 2.1, consider h(s) = s, t = 0, 1, b = a + 1 for a ∈ (0, +∞), and a symmet-
ric function ω : [a, a + 1] → (0, +∞) with respect to a + 1

2 . Then we obtain the following
inequality:

�

(
a +

1
2

)
≤ exp

(
1
K

∫ a+1

a
ω(x) ln�(x) dx

)
≤ √

�(a)�(a + 1), (26)

where K =
∫ a+1

a ω(x) dx. In the particular case ω ≡ 1, by the Raabe formula [36]

∫ a+1

a
ln�(x) dx = ln

√
2π + a ln(a) – a

and inequality (26) we have

�

(
a +

1
2

)
≤ √

2π

(
a
e

)a

≤ √
�(a)�(a + 1) (27)

for all a ∈ (0, +∞). By applying Wendel’s inequality ([58])

(
a

a + s

)1–s

≤ �(a + s)
as�(a)

≤ 1

in (27) for s = 1
2 , we get

√
a

a + 1
2

≤ �(a + 1
2 )

a 1
2 �(a)

≤
√

2πa( a
e )r

�(a + 1)
≤ 1. (28)

So we can extract two results from inequality (28) by using the squeeze theorem [51]. The
first one is

lim
a→∞

�(a + 1
2 )

a 1
2 �(a)

= 1,

and the second is a generalization of Stirling’s formula [16]

�(a + 1) ≈ √
2πa

(
a
e

)a

as a → ∞.

For the case a ∈N, we recapture the classic Stirling formula:

a! ≈ √
2πa

(
a
e

)a

as a → ∞.

The Euler integral of the first kind is known as the beta function [3]:

β(x, y) =
∫ 1

0
tx–1(1 – t)y–1 dt, Re(x) > 0, Re(y) > 0.
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To obtain some results in connection with beta function by Fejér’s inequality, consider

⎧⎪⎪⎨
⎪⎪⎩

f (x) = (x – mt(L,R))r , 0 < mt(L,R) ≤ x ≤ Mt(L,R), r ∈ [1,∞),

ω(x) = (Mt (L,R)–x)P–1(x–mt (L,R))P–1

(Mt (L,R)–mt (L,R))p , 0 < mt(L,R) ≤ x ≤ Mt(L,R),

h(s) = sk , 0 ≤ k ≤ 1, s > 0,

where 0 < a < b, p > 0, and t ∈ [0, 1] \ { 1
2 }. From Example 7 in [57] we deduce that f is an

h-convex function on [mt(L,R), Mt(L,R)]. Also, it is not hard to see that ω is symmetric
on [mt(L,R), Mt(L,R)] with respect to a+b

2 . The following results hold:

∫ Mt (L,R)

mt (L,R)
ω(x) dx =

(
Mt(L,R) – mt(L,R)

)p–1
∫ 1

0
xp–1(1 – x)p–1 dx

=
(
Mt(L,R) – mt(L,R)

)p–1
β(p, p),

∫ b

a
f (x)ω(x) dx – Mω

f (t) =
∫ Mt (L,R)

mt (L,R)
f (x)ω(x) dx

=
(Mt(L,R) – mt(L,R))2p+r–1

(Mt(L,R) – mt(L,R))p

∫ 1

0
xp–1(1 – x)p+r–1 dx

=
(
Mt(L,R) – mt(L,R)

)p+r–1
β(p, p + r).

Also,

f
(

a + b
2

)
=

(
a + b

2
– mt(L,R)

)r

=
(

Mt(L,R) + mt(L,R)
2

– mt(L,R)
)r

=
(Mt(L,R) – mt(L,R))r

2r .

Note that by Lemma 1.1 we have

[f ◦L](t) + [f ◦R](t) =
(
Mt(L,R) – mt(L,R)

)r .

It follows by some calculations that

[ω ◦ As]
(
L(t),R(t)

)
ds

= ω
(
sL(t) + (1 – s)R(t)

)

=
(Mt(L,R) – (sL(t) + (1 – s)R(t)))p–1(sL(t) + (1 – s)R(t) – mt(L,R))p–1

(Mt(L,R) – mt(L,R))p

=
(
Mt(L,R) – mt(L,R)

)p–2sp–1(1 – s)p–1,

and so

∫ 1

0
h(s)[ω ◦ As]

(
L(t),R(t)

)
ds =

(
Mt(L,R) – mt(L,R)

)p–2
∫ 1

0
sk+p–1(1 – s)p–1 ds

=
(
Mt(L,R) – mt(L,R)

)p–2
β(k + p, p).
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Finally, by the above results and Theorem 2.1 we obtain that

1
2( 1

2 )k
.
(Mt(L,R) – mt(L,R))r

2r

(
Mt(L,R) – mt(L,R)

)p–1
β(p, p)

≤ (
Mt(L,R) – mt(L,R)

)p+r–1
β(p, p + r)

≤ (
Mt(L,R) – mt(L,R)

)r+1(Mt(L,R) – mt(L,R)
)p–2

β(k + p, p),

which implies the following inequalities related to the beta function:

2k–r–1β(p, p) ≤ tβ(p, p + r) + (1 – t)2k–r–1β(p, p) ≤ β(p, p + r) ≤ β(k + p, p) (29)

for t ∈ [0, 1] \ { 1
2 }, 0 ≤ k ≤ 1, and r ∈ [1,∞).

Remark 2 For the case that f (x) = (Mt(L,R) – x)r , with the same argument as above, we
recapture (29) because β(p, p + r) = β(p + r, p).

In particular, if we set k = 1 and t = 0, 1, then we get

1
2r β(p, p) ≤ β(p + r, p) ≤ β(1 + p, p) =

1
2
β(p, p) (30)

for p > 0 and r ∈ [1,∞). From (30) and the characterization B(x, y) = �(x)�(y)
�(x+y) we obtain that

1
2r ≤ �(2p)�(p + r)

�(p)�(2p + r)
≤ 1

2

for p > 0 and r ∈ [1,∞). In a more particular case, for any p > 0, we have the following
result:

1
2
�(p)�(2p + 1) = �(2p)�(p + 1).

6 Special means and random variables
In this section, we discuss a generalization of the well-known inequality including the
arithmetic and logarithmic means by using our results in Sect. 2. Also, we give some upper
and lower bounds for the expected value of random variables.

6.1 Bounds for generalized logarithmic mean
For a, b > 0 and a �= b, there are two well-known means:

A(a, b) =
a + b

2
, arithmetic mean,

Lr(a, b) =
[

br+1 – ar+1

(b – a)(r + 1)

] 1
r
, r ∈R \ {–1, 0}, generalized logarithmic mean.

Consider x ∈ [a, b] and define

⎧⎪⎪⎨
⎪⎪⎩

f (x) = xn, n ∈ (–∞, –1) ∪ (–1, 0] ∪ [1,∞),

h(t) = tp, p ≤ 1,

ω(x) = (x – a+b
2 )2k , k ∈N∪ {0}.
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According to Example 7 in [57], f is h-convex, and also, obviously, ω is symmetric with
respect to a+b

2 . According to Theorem 2.1, we get to the following inequalities:

2p–1
(

a + b
2

)n ∫ Mt (L,R)

mt (L,R)

(
x –

a + b
2

)2k

dx (31)

≤
∫ b

a
xn

(
x –

a + b
2

)2k

dx – Mω
f (t)

≤ ∣∣L(t) – R(t)
∣∣[(L(t)

)n +
(
R(t)

)n] ∫ 1

0
sp

(
As

(
L(t),R(t)

)
–

a + b
2

)2k

ds.

We consider two cases for For k ∈N∪ {0}.
(i) In the case k = 0 in (31), we obtain that

2p–1
(

a + b
2

)n

≤ Mt(L,R)n+1 – mt(L,R)n+1

(n + 1)|1 – 2t|(b – a)
≤ (L(t))n + (R(t))n

p + 1
,

which implies that

2p–1An(a, b) ≤ Ln
n
(
mt(L,R), Mt(L,R)

) ≤ 2A((L(t))n, (R(t))n)
p + 1

. (32)

Inequality (32) includes some new bounds for the generalized logarithmic mean by the
arithmetic mean. In particular, for p = 1, we have

An(a, b) ≤ Ln
n
(
mt(L,R), Mt(L,R)

) ≤ A
((
L(t)

)n,
(
R(t)

)n). (33)

Furthermor,e for t = 0, 1, we have the following result, which is known in the literature
(see also [14]):

An(a, b) ≤ Ln
n(a, b) ≤ A

(
an, bn). (34)

(ii) For the case k > 0, by some calculations (the details are omitted) it follows that

∫ Mt (L,R)

mt (L,R)

(
x –

a + b
2

)2k

dx =
2–2k|L(t) – R(t)|2k+1

2k + 1
,

∫ b

a
xn

(
x –

a + b
2

)2k

dx – Mω
f (t)

=
∫ Mt (L,R)

mt (L,R)
xn

(
x –

a + b
2

)2k

dx

=
2k–1∑
i=0

(–1)i ∏i–1
j=0(2k – j)[Mt(L,R)n+1+i – mt(L,R)n+1+i]

22k–i ∏i+1
l=1(n + l)

(
Mt(L,R) – mt(L,R)

)2k–i

+
2k!∏2k+1

l=1 (n + l)
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and

∫ 1

0
sp[ω ◦ As]

(
L(t),R(t)

)
ds

= |L – R|2k
∫ 1

0
sp

(
s –

1
2

)2k

=
∣∣L(t) – R(t)

∣∣2k
(2k–1∑

i=0

(–1)i( 1
2 )2k–i ∏i–1

j=0(2k – j)∏i+1
l=1(p + l)

+
2k!∏2k+1

l=1 (p + l)

)
,

where in the case i = 0, we use the equality
∏–1

j=0(2k – j) = 1. So we obtain the following
discrete-type inequality, which gives a refinement and generalization of inequality (34):

2p–2k+1

2k + 1

(
a + b

2

)n

≤
2k–1∑
i=0

(–1)i ∏i–1
j=0(2k – j)[Mt(L,R)n+1+i – mt(L,R)n+1+i]

22k–i|L(t) – R(t)|i+1 ∏i+1
l=1(n + l)

+
2k!

|L(t) – R(t)|2k+1 ∏2k+1
l=1 (n + l)

≤ [(
L(t)

)n +
(
R(t)

)n](2k–1∑
i=0

(–1)i( 1
2 )2k–i ∏i–1

j=0(2k – j)∏i+1
l=1(p + l)

+
2k!∏2k+1

l=1 (p + l)

)
.

6.2 Bounds for the expected value of random variables
For 0 < a < b, let ω : [a, b] → [0, +∞) be a continuous probability density function related
to a continuous random variable X symmetric with respect to a+b

2 . Also, for r ∈ R and
t ∈ [0, 1], define the generalized expected value of random variable X as

Et
r(X) =

∫ Mt (L,R)

mt (L,R)
xrω(x) dx,

where the integral is assumed to be finite.
If we consider f (x) = xr for r ≥ 1 and x ∈ [a, b], then from remarks and corollaries after

Theorem 2.1 we have

1
2h( 1

2 )

(
a + b

2

)r ∫ Mt (L,R)

mt (L,R)
ω(x) dx

≤ Et
r(X)

≤ [(
mt(L,R)

)r +
(
Mt(L,R)

)r] ∫ Mt (L,R)

mt (L,R)
h
(

x – mt(L,R)
Mt(L,R) – mt(L,R)

)
ω(x) dx

=
[(

mt(L,R)
)r +

(
Mt(L,R)

)r] ∫ Mt (L,R)

mt (L,R)
h
(

Mt(L,R) – x
Mt(L,R) – mt(L,R)

)
ω(x) dx,
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which generally gives bounds for the generalized expected value of random variable X.
Now in the particular case h(s) = s, we get

Ar(a, b)
∫ Mt (L,R)

mt (L,R)
ω(x) dx (35)

≤ Et
r(X) ≤ (mt(L,R))r + (Mt(L,R))r

Mt(L,R) – mt(L,R)

∫ Mt (L,R)

mt (L,R)

(
x – mt(L,R)

)
ω(x) dx

=
(mt(L,R))r + (Mt(L,R))r

Mt(L,R) – mt(L,R)

∫ Mt (L,R)

mt (L,R)

(
Mt(L,R) – x

)
ω(x) dx

=
(mt(L,R))r + (Mt(L,R))r

Mt(L,R) – mt(L,R)

[
Et

1(X) –
∫ Mt (L,R)

mt (L,R)
mt(L,R)ω(x) dx

]

=
(mt(L,R))r + (Mt(L,R))r

Mt(L,R) – mt(L,R)

[∫ Mt (L,R)

mt (L,R)
Mt(L,R)ω(x) dx – Et

1(X)
]

.

Since

Et
1(X) =

a + b
2

∫ Mt (L,R)

mt (L,R)
ω(x) dx =

mt(L,R) + Mt(L,R)
2

∫ Mt (L,R)

mt (L,R)
ω(x) dx,

from (35) we obtain the following interesting result:

Ar(a, b)
∫ Mt (L,R)

mt (L,R)
ω(x) dx

≤ Et
r(X) ≤ A

((
mt(L,R)

)r ,
(
Mt(L,R)

)r)∫ Mt (L,R)

mt (L,R)
ω(x) dx.

By taking ω ≡ 1 we recapture inequality (33).
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20. Gorenflo, R., Mainardi, F.: Fractional Calculus, Integral and Differential Equations of Fractional Order, pp. 223–276.

Springer, New York (1997)
21. Hadamard, J.: Étude sur les propriètés des fonctions entiéres et en particulier d’une fontion considérée par Riemann.

J. Math. Pures Appl. 58, 171–215 (1893)
22. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1959)
23. Hermite, C.: Sur deux limites d’une intégrale définie. Mathesis 3, 82–83 (1883)
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