Skip to main content

Sharp inequalities related to the volume of the unit ball in \(\mathbb{R}^{n}\)

Abstract

Let \(\Omega _{n}=\pi ^{n/2}/\Gamma (\frac{n}{2}+1)\) (\(n \in \mathbb{N}\)) denote the volume of the unit ball in \(\mathbb{R}^{n}\). In this paper, the logarithmically complete monotonicity of a function involving the ratio of two gamma functions is presented, which yields a sharp double inequality for the quantity \(\Omega _{n}^{2}/(\Omega _{n-1}\Omega _{n+1})\). Also, we establish new sharp inequalities for the quantity \(\Omega _{n}^{2}/(\Omega _{n-1}\Omega _{n+1})\).

1 Introduction

In the recent past, several researchers have established interesting properties of the volume \(\Omega _{n}\) of the unit ball in \(\mathbb{R}^{n}\),

$$ \Omega _{n}=\frac{\pi ^{n/2}}{\Gamma (\frac{n}{2}+1)}, \quad n \in \mathbb{N}:=\{1, 2, \ldots \}, $$

including monotonicity properties, inequalities, and asymptotic expansions.

Böhm and Hertel [1, p. 264] pointed out that the sequence \(\{\Omega _{n} \}_{n \in \mathbb{N}}\) is not monotonic. Indeed, we have

$$ \Omega _{n} < \Omega _{n+1} \quad \text{if } 1 \leq n \leq 4 \quad \text{and} \quad \Omega _{n} > \Omega _{n+1} \quad \text{if } n\geq 5. $$

Anderson et al. [2] showed that \(\{\Omega _{n}^{1/n} \}_{n \in \mathbb{N}}\) is monotonically decreasing to zero, while Anderson and Qiu [3] proved that the sequence \(\{\Omega _{n}^{1/(n\ln n)} \}_{n\geq 2}\) decreases to \(e^{-1/2}\). Guo and Qi [4] proved that the sequence \(\{\Omega _{n}^{1/(n\ln n)} \}_{n\geq 2}\) is logarithmically convex. Klain and Rota [5] proved that the sequence \(\{n\Omega _{n}/\Omega _{n-1} \}_{n \in \mathbb{N}}\) is increasing.

Diverse sharp inequalities for the volume of the unit ball in \(\mathbb{R}^{n}\) have been established [618]. For example, Alzer [6] proved that for \(n\in \mathbb{N}\),

$$\begin{aligned}& a_{1}\Omega _{n+1}^{n/(n+1)} \leq \Omega _{n}< b_{1}\Omega _{n+1}^{n/(n+1)}, \\& \sqrt{\frac{n+a_{2}}{2\pi}} < \frac{\Omega _{n-1}}{\Omega _{n}}\leq \sqrt{ \frac{n+b_{2}}{2\pi}}, \\& \biggl(1+\frac{1}{n} \biggr)^{a_{3}} \leq \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}< \biggl(1+ \frac{1}{n} \biggr)^{b_{3}}, \end{aligned}$$
(1.1)

with the best possible constants

$$\begin{aligned}& a_{1} = \frac{2}{\sqrt{\pi}}=1.1283\ldots , \qquad b_{1}= \sqrt{e}=1.6487\ldots , \\& a_{2} =\frac{1}{2}, \qquad b_{2}= \frac{\pi}{2}-1=0.5707\ldots , \\& a_{3} =2-\frac{\ln \pi}{\ln 2}=0.3485\ldots ,\qquad b_{3}= \frac{1}{2}. \end{aligned}$$

Merkle [13] improved the left-hand side of (1.1) and obtained the following result:

$$\begin{aligned} \biggl(1+\frac{1}{n+1} \biggr)^{1/2}\leq \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}},\quad n\in \mathbb{N}. \end{aligned}$$
(1.2)

Chen and Lin [10, Theorem 3.1] developed (1.2) to produce the following symmetric double inequality:

$$\begin{aligned} \biggl(1+\frac{1}{n+1} \biggr)^{\alpha}< \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}} \leq \biggl(1+ \frac{1}{n+1} \biggr)^{\beta},\quad n\in \mathbb{N}, \end{aligned}$$

with the best possible constants

$$\begin{aligned} \alpha =\frac{1}{2},\quad \beta =\frac{2\ln 2-\ln \pi}{\ln 3-\ln 2}=0.5957713 \ldots. \end{aligned}$$

Ban and Chen [8, Theorem 3.2] proved, for \(n\in \mathbb{N}\),

$$\begin{aligned} \biggl(1+\frac{1}{n+\theta _{1}} \biggr)^{1/2}\leq \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}< \biggl(1+ \frac{1}{n+\theta _{2}} \biggr)^{1/2}, \end{aligned}$$
(1.3)

with the best possible constants

$$\begin{aligned} \theta _{1}=\frac{2\pi ^{2}-16}{16-\pi ^{2}}=0.60994576\ldots \quad \text{and}\quad \theta _{2}=\frac{1}{2}. \end{aligned}$$

Recently, Mortici [16] constructed asymptotic series associated with some expressions involving the volume of the n-dimensional unit ball. New refinements and improvements of some old and recent inequalities for \(\Omega _{n}\) were also presented. For example, Mortici [16, Theorem 15] presented the following asymptotic expansion for the quantity \(\frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}\):

$$\begin{aligned} \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}&\sim 1+ \frac{1}{2n}- \frac{3}{8n^{2}}+\frac{3}{16n^{3}}+\frac{3}{128n^{4}}- \frac{33}{256n^{5}}-\frac{39}{1024n^{6}}+\cdots , \end{aligned}$$
(1.4)

as \(n\to \infty \). Moreover, the author provided a recurrence relation for successively determining the coefficient of \(1/n^{j}\) (\(j\in \mathbb{N}\)) in expansion (1.4).

Lu and Zhang [12] established a general continued fraction approximation for the nth root of the volume of the unit n-dimensional ball, and then obtained related inequalities. Chen and Paris [11] presented asymptotic expansions and inequalities related to \(\Omega _{n}\) and the quantities:

$$\begin{aligned} \frac{\Omega _{n-1}}{\Omega _{n}},\qquad \frac{\Omega _{n}}{\Omega _{n-1}+\Omega _{n+1}}, \quad \text{and} \quad \frac{\Omega _{n}^{1/n}}{\Omega _{n+1}^{1/(n+1)}}. \end{aligned}$$

It is easy to see that

$$\begin{aligned} \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}= \biggl(\frac{n}{2}+ \frac{1}{2} \biggr) \biggl( \frac{\Gamma (\frac{n}{2}+\frac{1}{2})}{\Gamma (\frac{n}{2}+1)} \biggr)^{2}. \end{aligned}$$
(1.5)

Replacement of \(n/2\) by x in (1.5) yields

$$\begin{aligned} I(x):=\frac{\Omega _{2x}^{2}}{\Omega _{2x-1}\Omega _{2x+1}}= \biggl(x+ \frac{1}{2} \biggr) \biggl(\frac{\Gamma (x+\frac{1}{2})}{\Gamma (x+1)} \biggr)^{2}, \end{aligned}$$
(1.6)

where \(\Omega _{x}=\pi ^{x/2}/\Gamma (\frac{x}{2}+1)\).

From (1.5) and (1.6), we see that the quantity \(\frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}\) is closely related to the ratio of two gamma functions \(\frac{\Gamma (x+\frac{1}{2})}{\Gamma (x+1)}\). The problem of finding new and sharp inequalities for the gamma function Γ and, in particular, for the Wallis ratio

$$ \frac{(2n-1)!!}{(2n)!!}= \frac{\Gamma (n+\frac{1}{2})}{\sqrt{\pi}\Gamma (n+1)}, \quad n\in \mathbb{N}\mathbbm{,} $$

has attracted the attention of many researchers (see [1930] and the references therein). Here, we employ the special double factorial notation as follows:

$$\begin{aligned} &(2n)!!=2\cdot 4\cdot 6\cdots (2n)=2^{n} n!, \\ &(2n-1)!!=1\cdot 3\cdot 5\cdots (2n-1)=\pi ^{-1/2}2^{n} \Gamma \biggl(n+ \frac {1}{2}\biggr), \\ &0!!=1,\qquad (-1)!!=1. \end{aligned}$$

Chen and Paris [30, Corollary 1(i)] obtained the following double inequality:

$$ \begin{aligned}[b] \sqrt{x}\exp \Biggl(\sum _{j=1}^{2m} \biggl(1- \frac{1}{2^{2j}} \biggr)\frac{B_{2j}}{j(2j-1)x^{2j-1}} \Biggr)&< \frac{\Gamma (x+1)}{\Gamma (x+\frac{1}{2})} \\ &< \sqrt{x}\exp \Biggl(\sum_{j=1}^{2m+1} \biggl(1-\frac{1}{2^{2j}} \biggr)\frac{B_{2j}}{j(2j-1)x^{2j-1}} \Biggr) \end{aligned} $$
(1.7)

for \(x>0\) and \(m\in \mathbb{N}_{0}\), where \(B_{n}\) (\(n \in \mathbb{N}_{0}\)) are the Bernoulli numbers defined by the following generating function:

$$ \frac{t}{e^{t}-1}=\sum_{n=0}^{\infty}B_{n} \frac{t^{n}}{n!},\quad \vert t \vert < 2 \pi . $$
(1.8)

From (1.7), we derive

$$\begin{aligned} & \biggl(1+\frac{1}{2x} \biggr)\exp \Biggl(-\sum _{j=1}^{2m} \biggl(1- \frac{1}{2^{2j}} \biggr)\frac{2B_{2j}}{j(2j-1)x^{2j-1}} \Biggr) \\ &\quad > \frac{\Omega _{2x}^{2}}{\Omega _{2x-1}\Omega _{2x+1}}= \biggl(x+ \frac{1}{2} \biggr) \biggl( \frac{\Gamma (x+\frac{1}{2})}{\Gamma (x+1)} \biggr)^{2} \\ &\quad > \biggl(1+\frac{1}{2x} \biggr) \exp \Biggl(-\sum _{j=1}^{2m+1} \biggl(1-\frac{1}{2^{2j}} \biggr) \frac{2B_{2j}}{j(2j-1)x^{2j-1}} \Biggr) \end{aligned}$$
(1.9)

for \(x>0\) and \(m\in \mathbb{N}_{0}\). Replacing x by \(n/2\) in (1.9) yields

$$\begin{aligned} & \biggl(1+\frac{1}{n} \biggr)\exp \Biggl(-\sum _{j=1}^{2m} \frac{ (2^{2j}-1 )B_{2j}}{j(2j-1)n^{2j-1}} \Biggr) \\ &\quad > \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}> \biggl(1+ \frac{1}{n} \biggr)\exp \Biggl(-\sum_{j=1}^{2m+1} \frac{ (2^{2j}-1 )B_{2j}}{j(2j-1)n^{2j-1}} \Biggr) \end{aligned}$$

for \(n\in \mathbb{N}\) and \(m\in \mathbb{N}_{0}\).

In this paper, we prove that the function \(G(x)= (1+\frac{1}{2x+\frac{1}{2}} )^{1/2}/I(x)\) is logarithmically completely monotonic on \((0,\infty )\) (Theorem 3.1), which yields a sharp double inequality for the quantity \(\frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}\) (see (3.5)). Also, we establish new sharp inequalities for the quantity \(\frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}\) (Theorems 4.1 and 4.2).

The numerical values given in this paper have been calculated via the computer program MAPLE 17.

2 Lemmas

Lemma 2.1

([31])

Let \(-\infty \leq a< b\leq \infty \). Let f and g be differentiable functions on an interval \((a, b)\). Assume that either \(g'>0\) everywhere on \((a, b)\) or \(g'<0\) on \((a, b)\). Suppose that \(f(a+)=g(a+)=0\) or \(f(b-)=g(b-)=0\). Then

  1. (1)

    if \(\frac {f'}{g'}\) is increasing on \((a, b)\), then \((\frac {f}{g} )'>0\) on \((a, b)\);

  2. (2)

    if \(\frac {f'}{g'}\) is decreasing on \((a, b)\), then \((\frac {f}{g} )'<0\) on \((a, b)\).

The gamma function is defined for \(x>0\) by

$$ \Gamma (x)= \int ^{\infty}_{0}t^{x-1} e^{-t}\, \mathrm{d} t. $$

The logarithmic derivative of \(\Gamma (x)\), denoted by \(\psi (x)=\Gamma '(x)/\Gamma (x)\), is called psi (or digamma) function, and \(\psi ^{(k)}(x)\) (\(k\in \mathbb{N}\)) are called polygamma functions.

Lemma 2.2

([30])

Let \(m, n\in \mathbb{N}\). Then for \(x>0\),

$$\begin{aligned} &\sum_{j=1}^{2m} \biggl(1-\frac{1}{2^{2j}} \biggr) \frac{2B_{2j}}{(2j)!}\frac{(2j+n-2)!}{x^{2j+n-1}} \\ &\quad < (-1)^{n} \biggl(\psi ^{(n-1)}(x+1)-\psi ^{(n-1)} \biggl(x+ \frac{1}{2} \biggr) \biggr)+ \frac{(n-1)!}{2x^{n}} \\ &\quad < \sum_{j=1}^{2m-1} \biggl(1- \frac{1}{2^{2j}} \biggr) \frac{2B_{2j}}{(2j)!}\frac{(2j+n-2)!}{x^{2j+n-1}}, \end{aligned}$$
(2.1)

where \(B_{n}\) (\(n \in \mathbb{N}_{0}\)) are the Bernoulli numbers defined by (1.8).

In particular, we obtain from (2.1) that

$$\begin{aligned}& \frac{1}{2x}-\frac{1}{8x^{2}}+ \frac{1}{64x^{4}}-\frac{1}{128x^{6}}< \psi (x+1)-\psi \biggl(x+ \frac{1}{2} \biggr)< \frac{1}{2x}- \frac{1}{8x^{2}}+ \frac{1}{64x^{4}},\quad x>0, \end{aligned}$$
(2.2)
$$\begin{aligned}& \frac{1}{2x}-\frac{1}{8x^{2}}+ \frac{1}{64x^{4}}-\frac{1}{128x^{6}}+ \frac{17}{2048x^{8}}- \frac{31}{2048x^{10}} \\& \quad < \psi (x+1)-\psi \biggl(x+\frac{1}{2} \biggr) < \frac{1}{2x}- \frac{1}{8x^{2}}+\frac{1}{64x^{4}}- \frac{1}{128x^{6}}+ \frac{17}{2048x^{8}},\quad x>0, \end{aligned}$$
(2.3)

and

$$\begin{aligned} -\frac{1}{2x^{2}}+\frac{1}{4x^{3}}- \frac{1}{16x^{5}}< \psi '(x+1)- \psi ' \biggl(x+ \frac{1}{2} \biggr),\quad x>0. \end{aligned}$$
(2.4)

3 Logarithmically complete monotonicity of the function \((1+\frac{1}{2x+\frac{1}{2}})^{1/2}/I(x)\)

A function f is said to be completely monotonic on an interval I if it has derivatives of all orders on I and satisfies the following inequality:

$$ (-1)^{n}f^{(n)}(x)\geq 0\quad \text{for } x\in I \text{ and } n\in \mathbb{N}_{0}:= \mathbb{N}\cup \{0\}. $$
(3.1)

Dubourdieu [32, p. 98] pointed out that, if a nonconstant function f is completely monotonic on \(I=(a, \infty )\), then strict inequality holds true in (3.1). See also [33] for a simpler proof of this result. It is known (Bernstein’s theorem) that f is completely monotonic on \((0, \infty )\) if and only if

$$ f(x)= \int ^{\infty}_{0}e^{-xt}\, \mathrm{d}\mu (t), $$

where μ is a nonnegative measure on \([0, \infty )\) such that the integral converges for all \(x>0\). See [34, p. 161].

Recall [35] that a positive function f is said to be logarithmically completely monotonic on an interval I if its logarithm lnf satisfies

$$ (-1)^{k}\bigl[\ln f(x)\bigr]^{(k)}\ge 0 \quad \text{for }x \in I \text{ and } k \in \mathbb{N}. $$

A logarithmically completely monotonic function f on I must be completely monotonic on I (see, e.g., [3638]).

Theorem 3.1

The function

$$ G(x)=\frac{ (1+\frac{1}{2x+\frac{1}{2}} )^{1/2}}{I(x)}= \frac{ (1+\frac{1}{2x+\frac{1}{2}} )^{1/2}}{(x+\frac{1}{2})} \biggl[ \frac{\Gamma (x+1)}{\Gamma (x+\frac{1}{2})} \biggr]^{2} $$
(3.2)

is logarithmically completely monotonic on \((0,\infty )\).

Proof

The logarithm of the gamma function has the following integral representation (see [39, p. 258]):

$$\begin{aligned} \ln \Gamma (z) = \int _{0}^{\infty} \biggl[(z-1)e^{-t}+ \frac{e^{-zt}-e^{-t}}{1-e^{-t}} \biggr]\frac{\mathrm{d} t}{t}. \end{aligned}$$
(3.3)

Using (3.3) and

$$\begin{aligned} \ln x= \int _{0}^{\infty}\frac{e^{-t}-e^{-xt}}{t}\, \mathrm{d} t, \end{aligned}$$

we obtain

$$\begin{aligned} \ln G(x)&=\frac{1}{2}\ln \frac{x+\frac{3}{4}}{x+\frac{1}{4}} - \ln \biggl(x+\frac{1}{2} \biggr)+2 \biggl[\ln \Gamma (x+1)-\ln \Gamma \biggl(x+\frac{1}{2} \biggr) \biggr] \\ &= \int _{0}^{\infty} \biggl(\frac{1}{2}e^{-(x+\frac{1}{4})t}- \frac{1}{2}e^{-(x+\frac{3}{4})t}+e^{-(x+\frac{1}{2})t}+ \frac{2[e^{-(x+1)t}-e^{-(x+\frac{1}{2})t}]}{1-e^{-t}} \biggr) \frac{\mathrm{d} t}{t} \\ &= \int _{0}^{\infty} \biggl(\frac{1}{2e^{t/4}}- \frac{1}{2e^{3t/4}}+ \frac{1}{e^{t/2}}-\frac{2}{e^{t/2}+1} \biggr) \frac{e^{-xt}}{t} \,\mathrm{d} t \\ &= \int _{0}^{\infty}q(t)e^{-xt}\,\mathrm{d} t, \end{aligned}$$
(3.4)

where

$$\begin{aligned} q(t)=\frac{(e^{t/4}+1)(e^{t/4}-1)^{3}}{2t e^{3t/4}(e^{t/2}+1)}>0, \quad t>0. \end{aligned}$$

We conclude from (3.4) that

$$ (-1)^{n} \bigl(\ln G(x) \bigr)^{(n)}= \int _{0}^{\infty}t^{n} q(t) e^{-xt} \,\mathrm{d} t>0 \quad \text{for } x>0 \text{ and } n \in \mathbb{N}. $$

The proof of Theorem 3.1 is complete. □

Remark 3.1

The function \(G(x)\), defined by (3.2), is completely monotonic on \((0,\infty )\). In particular, the sequence \(\{G(n/2)\}\) is strictly decreasing for \(n\in \mathbb{N}\), and we have

$$ 1=G(\infty )< G \biggl(\frac{n}{2} \biggr)= \frac{ (1+\frac{1}{n+\frac{1}{2}} )^{1/2}}{I(\frac{n}{2})}\leq G \biggl(\frac{1}{2} \biggr)=\frac{\sqrt{15} \pi}{12},\quad n\in \mathbb{N}, $$

which yields the following double inequality for the quantity \(\frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}\):

$$ p \biggl(1+\frac{1}{n+\frac{1}{2}} \biggr)^{1/2}\leq \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}< q \biggl(1+ \frac{1}{n+\frac{1}{2}} \biggr)^{1/2}, \quad n\in \mathbb{N}, $$
(3.5)

with the best possible constants

$$ p=\frac{12}{\sqrt{15} \pi}=0.986247\ldots \quad \text{and}\quad q=1. $$

4 Sharp inequalities for \(\frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}\)

Theorem 4.1

For \(n\in \mathbb{N}\), the following double inequality holds:

$$\begin{aligned} \biggl(1+\frac{1}{n+\frac{1}{2}} \biggr)^{\lambda}\leq \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}< \biggl(1+ \frac{1}{n+\frac{1}{2}} \biggr)^{\mu}, \end{aligned}$$
(4.1)

where the constants

$$\begin{aligned} \lambda =\frac{2\ln 2-\ln \pi}{\ln 5-\ln 3}=0.47289\ldots \quad \textit{and}\quad \mu = \frac{1}{2} \end{aligned}$$

are the best possible.

Proof

Inequality (4.1) can be written as

$$\begin{aligned} \lambda \leq x_{n}< \mu , \end{aligned}$$

where the sequence \(\{x_{n} \}_{n\in \mathbb{N}}\) is defined by

$$\begin{aligned} x_{n}= \frac{\ln ( (\frac{n}{2}+\frac{1}{2} ) (\frac{\Gamma (\frac{n}{2}+\frac{1}{2})}{\Gamma (\frac{n}{2}+1)} )^{2} )}{\ln (1+\frac{1}{n+\frac{1}{2}} )}. \end{aligned}$$

We are now in a position to show that the sequence \(\{x_{n} \}_{n\in \mathbb{N}}\) is strictly increasing. To this end, we consider the function \(f(x)\) defined by

$$\begin{aligned} f(x)= \frac{2\ln \Gamma (x+\frac{1}{2} )-2\ln \Gamma (x+1)+\ln (x+\frac{1}{2} )}{\ln (1+\frac{1}{2x+\frac{1}{2}} )}= \frac{f_{1}(x)}{f_{2}(x)}, \end{aligned}$$

where

$$\begin{aligned} f_{1}(x)=2\ln \Gamma \biggl(x+\frac{1}{2} \biggr)-2\ln \Gamma (x+1)+ \ln \biggl(x+\frac{1}{2} \biggr) \end{aligned}$$

and

$$\begin{aligned} f_{2}(x)=\ln \biggl(1+\frac{1}{2x+\frac{1}{2}} \biggr). \end{aligned}$$

We conclude from the asymptotic formula of \(\ln \Gamma (z)\) (see [39, p. 257, Eq. (6.1.41)]) that

$$ f_{1}(\infty )=\lim_{x\to \infty}f_{1}(x)=0. $$

Elementary calculations show that

$$ \frac{4f'_{1}(x)}{f'_{2}(x)}=(4x+3) (4x+1) \biggl[\psi (x+1)-\psi \biggl(x+ \frac{1}{2} \biggr)-\frac{1}{2x+1} \biggr]=:f_{3}(x). $$

By using inequalities (2.2) and (2.4), we obtain, for \(x\geq 2\),

$$\begin{aligned} f'_{3}(x)&=(32x+16) \biggl[\psi (x+1)-\psi \biggl(x+ \frac{1}{2} \biggr)- \frac{1}{2x+1} \biggr] \\ &\quad{}+(4x+3) (4x+1) \biggl[\psi '(x+1)-\psi ' \biggl(x+\frac{1}{2} \biggr)+\frac{2}{(2x+1)^{2}} \biggr] \\ &>(32x+16) \biggl[\frac{1}{2x}-\frac{1}{8x^{2}}+ \frac{1}{64x^{4}}- \frac{1}{128x^{6}}-\frac{1}{2x+1} \biggr] \\ &\quad{}+(4x+3) (4x+1) \biggl[-\frac{1}{2x^{2}}+\frac{1}{4x^{3}}- \frac{1}{16x^{5}}+\frac{2}{(2x+1)^{2}} \biggr] \\ &= \frac{352+2001(x-2)+2784(x-2)^{2}+1656(x-2)^{3}+456(x-2)^{4}+48(x-2)^{5}}{16x^{6}(2x+1)^{2}} \\ &>0. \end{aligned}$$

Hence, \(f_{3}(x)\) and \(\frac{f'_{1}(x)}{f'_{2}(x)}\) are both strictly increasing for \(x\geq 2\). By Lemma 2.1, the function

$$ f(x)=\frac{f_{1}(x)}{f_{2}(x)}= \frac{f_{1}(x)-f_{1}(\infty )}{f_{2}(x)-f_{2}(\infty )} $$

is strictly increasing for \(x\geq 2\). Therefore, the sequence \(\{x_{n} \}\) is strictly increasing for \(n\geq 4\). Direct computation yields

$$\begin{aligned} &x_{1}=\frac{2\ln 2-\ln \pi}{\ln 5-\ln 3}=0.47289\ldots ,\qquad x_{2}=\frac{\ln 3-3\ln 2+\ln \pi}{\ln 7-\ln 5}=0.48711 \ldots , \\ &x_{3}=\frac{5\ln 2-2\ln 3-\ln \pi}{2\ln 3-\ln 7}=0.49253\ldots , \\ & x_{4}=\frac{2\ln 3+\ln 5-7\ln 2+\ln \pi}{\ln 11-2\ln 3}=0.49515 \ldots. \end{aligned}$$

Consequently, the sequence \(\{x_{n} \}_{n\in \mathbb{N}}\) is strictly increasing. This leads to

$$ \frac{2\ln 2-\ln \pi}{\ln 5-\ln 3}=x_{1}\leq x_{n}< \lim_{n \to \infty}x_{n}\quad \text{for } n\in \mathbb{N}. $$

It remains to prove that

$$ \lim_{n \to \infty}x_{n}= \frac{1}{2}. $$
(4.2)

We conclude from the asymptotic formula of \(\ln \Gamma (z)\) (see [39, p. 257, Eq. (6.1.41)]) that

$$ x_{n}= \frac{\frac{1}{2 n}-\frac{1}{2 n^{2}}+O(n^{-3})}{\frac{1}{n}-\frac{1}{n^{2}}+O(n^{-3})}= \frac{\frac{1}{2}+O(n^{-1})}{1+O(n^{-1})}\to \frac{1}{2}\quad \text{as } n\to \infty . $$

Hence, (4.2) holds. This completes the proof of Theorem 4.1. □

Theorem 4.2

For \(n\in \mathbb{N}\), the following double inequality holds:

$$\begin{aligned} & \biggl(1+\frac{1}{n+\frac{1}{2}} \biggr)^{1/2} \biggl(1- \frac{2}{16n^{3}+48n^{2}+60n+a} \biggr) \leq \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}} \\ &\quad < \biggl(1+\frac{1}{n+\frac{1}{2}} \biggr)^{1/2} \biggl(1- \frac{2}{16n^{3}+48n^{2}+60n+b} \biggr), \end{aligned}$$
(4.3)

where the constants

$$\begin{aligned} a=\frac{2(248\sqrt{15}-305\pi )}{5\pi -4\sqrt{15}}=21.42398\ldots \quad \textit{and}\quad b=29 \end{aligned}$$

are the best possible.

Proof

First of all, we show that the double inequality (4.3) with \(a=\frac{2(248\sqrt{15}-305\pi )}{5\pi -4\sqrt{15}}\) and \(b=29\) is valid for \(n=1, 2, 3, 4\), and 5. For \(n\in \mathbb{N}\), let

$$\begin{aligned} &L_{n}= \biggl(1+\frac{1}{n+\frac{1}{2}} \biggr)^{1/2} \biggl(1- \frac{2}{16n^{3}+48n^{2}+60n+\frac{2(248\sqrt{15}-305\pi )}{5\pi -4\sqrt{15}}} \biggr), \\ &U_{n}= \biggl(1+\frac{1}{n+\frac{1}{2}} \biggr)^{1/2} \biggl(1- \frac{2}{16n^{3}+48n^{2}+60n+29} \biggr). \end{aligned}$$

Direct computation yields

$$\begin{aligned} &L_{1}=\frac{4}{\pi},\qquad \biggl[ \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}} \biggr]_{n=1}= \frac{4}{\pi}=1.2732\ldots ,\qquad U_{1}=1.2755\ldots , \\ &L_{2}=1.178064357\ldots ,\qquad \biggl[ \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}} \biggr]_{n=2}=1.17809724510 \ldots , \\ & U_{2}=1.178246681 \ldots , \\ &L_{3}=1.131758795\ldots ,\qquad \biggl[ \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}} \biggr]_{n=3}=1.13176848421 \ldots , \\ & U_{3}=1.131789661 \ldots , \\ &L_{4}=1.104462901\ldots ,\qquad \biggl[ \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}} \biggr]_{n=4}=1.10446616728 \ldots , \\ & U_{4}=1.104470767 \ldots , \\ &L_{5}=1.086496467\ldots ,\qquad \biggl[ \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}} \biggr]_{n=5}=1.08649774484 \ldots , \\ & U_{5}=1.086499056 \ldots. \end{aligned}$$

Clearly, the double inequality (4.3) with \(a=\frac{2(248\sqrt{15}-305\pi )}{5\pi -4\sqrt{15}}\) and \(b=29\) is valid for \(n=1, 2, 3, 4\), and 5. For \(n=1\), the equality on the left-hand side of (4.3) holds.

We now prove that the double inequality (4.3) with \(a=\frac{2(248\sqrt{15}-305\pi )}{5\pi -4\sqrt{15}}\) and \(b=29\) is valid for \(n\geq 6\). It suffices to show that for \(x\geq 3\),

$$\begin{aligned} & \biggl(1+\frac{1}{2x+\frac{1}{2}} \biggr)^{1/2} \biggl(1- \frac{2}{16(2x)^{3}+48(2x)^{2}+60(2x)+a} \biggr) \\ &\quad \leq \frac{\Omega _{2x}^{2}}{\Omega _{2x-1}\Omega _{2x+1}} < \biggl(1+\frac{1}{2x+\frac{1}{2}} \biggr)^{1/2} \biggl(1- \frac{2}{16(2x)^{3}+48(2x)^{2}+60(2x)+29} \biggr), \end{aligned}$$

which can be written as

$$\begin{aligned} & \biggl(1+\frac{1}{2x+\frac{1}{2}} \biggr)^{1/2} \biggl(1- \frac{2}{16(2x)^{3}+48(2x)^{2}+60(2x)+a} \biggr) \\ &\quad \leq \biggl(x+ \frac{1}{2} \biggr) \biggl[\frac{\Gamma (x+\frac{1}{2})}{\Gamma (x+1)} \biggr]^{2} \\ &\quad < \biggl(1+\frac{1}{2x+\frac{1}{2}} \biggr)^{1/2} \biggl(1- \frac{2}{16(2x)^{3}+48(2x)^{2}+60(2x)+29} \biggr). \end{aligned}$$
(4.4)

In order to prove the double inequality (4.4) for \(x\geq 3\), it suffices to show that

$$\begin{aligned} f(x)>0\quad \text{and}\quad g(x)< 0 \quad \text{for } x\geq 3, \end{aligned}$$

where

$$\begin{aligned}& \begin{aligned} f(x)&=2 \biggl[\ln \Gamma \biggl(x+\frac{1}{2} \biggr)-\ln \Gamma (x+1) \biggr]+\ln \biggl(x+\frac{1}{2} \biggr)-\frac{1}{2}\ln \biggl(1+ \frac{1}{2x+\frac{1}{2}} \biggr) \\ &\quad{}-\ln \biggl(1-\frac{2}{16(2x)^{3}+48(2x)^{2}+60(2x)+a} \biggr), \end{aligned} \\& \begin{aligned} g(x)&=2 \biggl[\ln \Gamma \biggl(x+\frac{1}{2} \biggr)-\ln \Gamma (x+1) \biggr]+\ln \biggl(x+\frac{1}{2} \biggr)-\frac{1}{2}\ln \biggl(1+ \frac{1}{2x+\frac{1}{2}} \biggr) \\ &\quad{}-\ln \biggl(1-\frac{2}{16(2x)^{3}+48(2x)^{2}+60(2x)+29} \biggr). \end{aligned} \end{aligned}$$

We conclude from the asymptotic formula of \(\ln \Gamma (z)\) (see [39, p. 257, Eq. (6.1.41)]) that

$$\begin{aligned} \lim_{x\to \infty}f(x)=\lim_{x\to \infty}g(x)=0. \end{aligned}$$

Differentiating \(f(x)\) and applying the left-hand side of (2.3), and noting that

$$\begin{aligned} a=\frac{2(248\sqrt{15}-305\pi )}{5\pi -4\sqrt{15}}< \frac{43}{2}, \end{aligned}$$

we obtain for \(x\geq 3\),

$$\begin{aligned} f'(x)&=-2 \biggl[\psi (x+1)-\psi \biggl(x+\frac{1}{2} \biggr) \biggr]+ \frac{2(16x^{2}+20x+5)}{(4x+3)(4x+1)(2x+1)} \\ &\quad{}- \frac{48(16x^{2}+16x+5)}{(128x^{3}+192x^{2}+120x+a-2)(128x^{3}+192x^{2}+120x+a)} \\ &< -2 \biggl(\frac{1}{2x}-\frac{1}{8x^{2}}+\frac{1}{64x^{4}}- \frac{1}{128x^{6}}+\frac{17}{2048x^{8}}-\frac{31}{2048x^{10}} \biggr) \\ &\quad{}+\frac{2(16x^{2}+20x+5)}{(4x+3)(4x+1)(2x+1)} \\ &\quad{}- \frac{48(16x^{2}+16x+5)}{(128x^{3}+192x^{2}+120x+\frac{43}{2}-2)(128x^{3}+192x^{2}+120x+\frac{43}{2})} \\ &=- \frac {P_{12}(x-3)}{1024x^{10}(4x+3)(4x+1)(2x+1)(256x^{3}+384x^{2}+240x+39)(256x^{3}+384x^{2}+240x+43)}, \end{aligned}$$

where

$$\begin{aligned} P_{12}(x)&=2{,}312{,}798{,}031{,}594+12{,}277{,}183{,}388{,}658x+26{,}310{,}509{,}734{,}485x^{2} \\ &\quad{}+32{,}318{,}240{,}921{,}214x^{3}+26{,}087{,}077{,}081{,}952x^{4}+14{,}780{,}270{,}044{,}224x^{5} \\ &\quad{}+6{,}067{,}872{,}771{,}744x^{6}+1{,}824{,}299{,}158{,}976x^{7}+399{,}070{,}033{,}152x^{8} \\ &\quad{}+61{,}948{,}727{,}808x^{9}+6{,}475{,}038{,}720x^{10} +408{,}944{,}640x^{11}+11{,}796{,}480x^{12}. \end{aligned}$$

Hence, \(f'(x)<0\) for \(x\geq 3\). So, \(f(x)\) is strictly decreasing for \(x\geq 3\), and we have

$$\begin{aligned} f(x)>\lim_{t\to \infty}f(t)=0,\quad x\geq 3. \end{aligned}$$

Therefore, the left-hand side of (4.3) with \(a=\frac{2(248\sqrt{15}-305\pi )}{5\pi -4\sqrt{15}}\) is valid for \(n\in \mathbb{N}\).

Differentiating \(g(x)\) and applying the right-hand side of (2.3), we obtain for \(x\geq 3\),

$$\begin{aligned} g'(x)&=-2 \biggl[\psi (x+1)-\psi \biggl(x+\frac{1}{2} \biggr) \biggr]+ \frac{2(16x^{2}+20x+5)}{(4x+3)(4x+1)(2x+1)} \\ &\quad{}- \frac{48(16x^{2}+16x+5)}{(128x^{3}+192x^{2}+120x+27)(128x^{3}+192x^{2}+120x+29)} \\ &>-2 \biggl(\frac{1}{2x}-\frac{1}{8x^{2}}+\frac{1}{64x^{4}}- \frac{1}{128x^{6}}+\frac{17}{2048x^{8}} \biggr)+ \frac{2(16x^{2}+20x+5)}{(4x+3)(4x+1)(2x+1)} \\ &\quad{}- \frac{48(16x^{2}+16x+5)}{(128x^{3}+192x^{2}+120x+27)(128x^{3}+192x^{2}+120x+29)} \\ &=- \frac {P_{9}(x-3)}{1024x^{8}(4x+3)(4x+1)(2x+1)(128x^{3}+192x^{2}+120x+27)(128x^{3}+192x^{2}+120x+29)}, \end{aligned}$$

where

$$\begin{aligned} P_{9}(x)&=23{,}529{,}054{,}501+184{,}258{,}816{,}470x+357{,}871{,}998{,}912x^{2} \\ &\quad{}+340{,}974{,}002{,}496x^{3}+191{,}948{,}408{,}224x^{4}+68{,}526{,}376{,}128x^{5} \\ &\quad{}+15{,}780{,}445{,}440x^{6}+2{,}282{,}252{,}800x^{7}+189{,}235{,}200x^{8}+6{,}881{,}280x^{9}. \end{aligned}$$

Hence, \(g'(x)<0\) for \(x\geq 3\). So, \(g(x)\) is strictly increasing for \(x\geq 3\), and we have

$$\begin{aligned} g(x)< \lim_{t\to \infty}f(t)=0,\quad x\geq 3. \end{aligned}$$

Therefore, the right-hand side of (4.3) with \(b=29\) is valid for \(n\in \mathbb{N}\).

If we write (4.3) as

$$\begin{aligned} a\leq x_{n}< b, \quad x_{n}= \frac{2}{1-\frac{\frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}}{ (1+\frac{1}{n+\frac{1}{2}} )^{1/2}}}- \bigl(16n^{3}+48n^{2}+60n\bigr), \end{aligned}$$

we find that

$$\begin{aligned} x_{1}=\frac{2(248\sqrt{15}-305\pi )}{5\pi -4\sqrt{15}} \end{aligned}$$

and

$$\begin{aligned} \lim_{n\to \infty}x_{n}&=\lim_{n\to \infty} \biggl\{ \frac{2}{1-\frac{\frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}}{ (1+\frac{1}{n+\frac{1}{2}} )^{1/2}}}-\bigl(16n^{3}+48n^{2}+60n \bigr) \biggr\} \\ &=\lim_{n\to \infty} \biggl\{ \frac{2}{\frac{1}{8n^{3}}-\frac{3}{8n^{4}}+\frac{21}{32n^{5}}-\frac{101}{128n^{6}}+O (\frac{1}{n^{7}} )}- \bigl(16n^{3}+48n^{2}+60n\bigr) \biggr\} \\ &=\lim_{n\to \infty} \biggl\{ 29+O \biggl(\frac{1}{n} \biggr) \biggr\} =29. \end{aligned}$$

This limit is obtained by using the asymptotic expansion (1.4).

Hence, the double inequality (4.3) holds for \(n\in \mathbb{N}\), and the constants \(a=\frac{2(248\sqrt{15}-305\pi )}{5\pi -4\sqrt{15}}\) and \(b=29\) are the best possible. The proof of Theorem 4.2 is complete. □

5 Comparison

It follows form (1.1), (1.2) and (1.3) and (4.3) that

$$\begin{aligned}& \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}\sim \biggl(1+ \frac{1}{n} \biggr)^{1/2}=u_{n} \quad ( \text{Alzer [6]}), \end{aligned}$$
(5.1)
$$\begin{aligned}& \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}\sim \biggl(1+ \frac{1}{n+1} \biggr)^{1/2}=v_{n} \quad ( \text{Merkle [13]}), \end{aligned}$$
(5.2)
$$\begin{aligned}& \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}\sim \biggl(1+ \frac{1}{n+\frac{1}{2}} \biggr)^{1/2}=w_{n} \quad (\text{Ban and Chen [8]}), \end{aligned}$$
(5.3)
$$\begin{aligned}& \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}\sim \biggl(1+ \frac{1}{n+\frac{1}{2}} \biggr)^{1/2} \biggl(1- \frac{2}{16n^{3}+48n^{2}+60n+29} \biggr)=r_{n} \quad (\text{New}). \end{aligned}$$
(5.4)

We here offer some numerical computations (see Table 1) to show the superiority of our sequence \(\{r_{n}\}_{n\geq 1}\) over the sequences \(\{u_{n}\}_{n\geq 1}\), \(\{v_{n}\}_{n\geq 1}\), and \(\{w_{n}\}_{n\geq 1}\).

Table 1 Comparison of approximation formulas (5.1)–(5.4)

Here \(V_{n}:=\frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}\). In fact, we have, as \(n\to \infty \),

$$\begin{aligned} &\frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}= u_{n}+O \biggl( \frac{1}{n^{2}} \biggr),\qquad \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}= v_{n}+O \biggl( \frac{1}{n^{2}} \biggr), \\ &\frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}= w_{n}+O \biggl( \frac{1}{n^{3}} \biggr),\qquad \frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}= r_{n}+O \biggl( \frac{1}{n^{7}} \biggr). \end{aligned}$$

These formulas are obtained by using the computer program MAPLE 17.

6 Conclusion

Here, in our present investigation, we have first revisited several interesting properties of the volume \(\Omega _{n}\) of the unit ball in \(\mathbb{R}^{n}\), including monotonicity properties, inequalities, and asymptotic expansions. We have then shown that the function \(G(x)= (1+\frac{1}{2x+\frac{1}{2}} )^{1/2}/I(x)\) is logarithmically completely monotonic on \((0,\infty )\) (Theorem 3.1), which yielded a double inequality for the quantity \(\frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}\), see (3.5). Also, we have established new sharp inequalities for the quantity \(\frac{\Omega _{n}^{2}}{\Omega _{n-1}\Omega _{n+1}}\), see (4.1) and (4.3). We have also considered a number of related developments on the subject of this paper.

Availability of data and materials

All of the material is owned by the authors and no permissions are required.

References

  1. Böhm, J., Hertel, E.: Polyedergeometrie in n-dimensionalen Räumen konstanter Krümmung. Birkhäuser, Basel (1981)

    MATH  Google Scholar 

  2. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Special functions of quasiconformal theory. Expo. Math. 7, 97–136 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Anderson, G.D., Qiu, S.-L.: A monotoneity property of the gamma function. Proc. Am. Math. Soc. 125, 3355–3362 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo, B.-N., Qi, F.: Monotonicity and logarithmic convexity relating to the volume of the unit ball. Optim. Lett. 7, 1139–1153 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Klain, D.A., Rota, G.-C.: A continuous analogue of Sperner’s theorem. Commun. Pure Appl. Math. 50, 205–223 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alzer, H.: Inequalities for the volume of the unit ball in \(\mathbb{R}^{n}\). J. Math. Anal. Appl. 252, 353–363 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alzer, H.: Inequalities for the volume of the unit ball in \(\mathbb{R}^{n}\), II. Mediterr. J. Math. 5, 395–413 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ban, T., Chen, C.-P.: New inequalities for the volume of the unit ball in \(\mathbb{R}^{n}\). J. Math. Inequal. 11(2), 527–542 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borgwardt, K.H.: The Simplex Method. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  10. Chen, C.-P., Lin, L.: Inequalities for the volume of the unit ball in \(\mathbb{R}^{n}\). Mediterr. J. Math. 11, 299–314 (2014)

    Article  MathSciNet  Google Scholar 

  11. Chen, C.-P., Paris, R.B.: Inequalities and asymptotic expansions related to the volume of the unit ball in \(\mathbb{R}^{n}\). Results Math. 74(1), Article 44 (2019). https://doi.org/10.1007/s00025-019-0967-1

    Article  MATH  Google Scholar 

  12. Lu, D., Zhang, P.: A new general asymptotic formula and inequalities involving the volume of the unit ball. J. Number Theory 170, 302–314 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Merkle, M.: Gurland’s ratio for the gamma function. Comput. Math. Appl. 49, 389–406 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Mortici, C.: Monotonicity properties of the volume of the unit ball in \(\mathbb{R}^{n}\). Optim. Lett. 4, 457–464 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mortici, C.: Estimates of the function and quotient by Minc–Sathre. Appl. Math. Comput. 253, 52–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mortici, C.: Series associated to some expressions involving the volume of the unit ball and applications. Appl. Math. Comput. 294, 121–138 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yin, L., Huang, L.-G.: Some inequalities for the volume of the unit ball. J. Class. Anal. 6(1), 39–46 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, H.: New bounds and asymptotic expansions for the volume of the unit ball in \(\mathbb{R}^{n}\) based on Padé approximation. Results Math. 77, Article 116 (2022). https://doi.org/10.1007/s00025-022-01652-1

    Article  MATH  Google Scholar 

  19. Chen, C.-P., Qi, F.: The best bounds in Wallis’ inequality. Proc. Am. Math. Soc. 133, 397–401 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lampret, V.: Wallis sequence estimated through the Euler–Maclaurin formula: even from the Wallis product π could be computed fairly accurately. Aust. Math. Soc. Gaz. 31, 328–339 (2004)

    MathSciNet  Google Scholar 

  21. Lampret, V.: An asymptotic approximation of Wallis’ sequence. Cent. Eur. J. Math. 10, 775–787 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, L., Deng, J.-E., Chen, C.-P.: Inequalities and asymptotic expansions associated with the Wallis sequence. J. Inequal. Appl. 2014, 251 (2014). http://www.journalofinequalitiesandapplications.com/content/2014/1/251

    Article  MathSciNet  MATH  Google Scholar 

  23. Deng, J.-E., Ban, T., Chen, C.-P.: Sharp inequalities and asymptotic expansion associated with the Wallis sequence. J. Inequal. Appl. 2015, 186 (2015). https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-015-0699-z

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, L., Ma, W.-C., Chen, C.-P.: Padé approximant related to the Wallis formula. J. Inequal. Appl. 2017, 132 (2017). https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-017-1406-z

    Article  MATH  Google Scholar 

  25. Mortic, C.: New approximation formulas for evaluating the ratio of gamma functions. Math. Comput. Model. 52, 425–433 (2010)

    Article  MathSciNet  Google Scholar 

  26. Gurland, J.: On Wallis’ formula. Am. Math. Mon. 63, 643–645 (1956)

    MathSciNet  MATH  Google Scholar 

  27. Lin, L.: Further refinements of Gurland’s formula for π. J. Inequal. Appl. 2013, 48 (2013). http://www.journalofinequalitiesandapplications.com/content/2013/1/48

    Article  MathSciNet  MATH  Google Scholar 

  28. Mortici, C.: Refinements of Gurland’s formula for pi. Comput. Math. Appl. 62, 2616–2620 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Mortici, C.: Estimating π from the Wallis sequence. Math. Commun. 17, 489–495 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Chen, C.-P., Paris, R.B.: Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function. Appl. Math. Comput. 250, 514–529 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pinelis, I.: L’Hospital type rules for monotonicity, with applications. J. Inequal. Pure Appl. Math. 3(1), Article 5 (2002)

    MATH  Google Scholar 

  32. Dubourdieu, J.: Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace–Stieltjes. Compos. Math. 7, 96–111 (1939) (in French)

    MathSciNet  MATH  Google Scholar 

  33. van Haeringen, H.: Completely monotonic and related functions. J. Math. Anal. Appl. 204, 389–408 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  35. Guo, B.-N., Qi, F.: A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function. UPB Sci. Bull., Ser. A, Appl. Math. Phys. 72(2), 21–30 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Atanassov, R.D., Tsoukrovski, U.V.: Some properties of a class of logarithmically completely monotonic functions. C. R. Acad. Bulgare Sci. 41, 21–23 (1988)

    MathSciNet  MATH  Google Scholar 

  37. Berg, C.: Integral representation of some functions related to the gamma function. Mediterr. J. Math. 1, 433–439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Qi, F., Chen, C.-P.: A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 296, 603–607 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 9th printing edn. Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington (1972)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the referee for very helpful and detailed comments.

Funding

Supported by the Fundamental Research Funds for the Universities of the Henan Province (Grant No. NSFRF210446).

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that they have no conflicts of interest.

Corresponding author

Correspondence to Chao-Ping Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, XF., Chen, CP. Sharp inequalities related to the volume of the unit ball in \(\mathbb{R}^{n}\). J Inequal Appl 2023, 65 (2023). https://doi.org/10.1186/s13660-023-02933-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-02933-1

MSC

  • 33B15
  • 26D15

Keywords

  • Volume of the unit n-dimensional ball
  • Gamma function
  • Inequalities
  • Logarithmically completely monotonic function