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Abstract
Let �n = π n/2/�( n2 + 1) (n ∈N) denote the volume of the unit ball in R
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gamma functions is presented, which yields a sharp double inequality for the
quantity �2
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�2
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1 Introduction
In the recent past, several researchers have established interesting properties of the vol-
ume �n of the unit ball in R

n,

�n =
πn/2

�( n
2 + 1)

, n ∈N := {1, 2, . . .},

including monotonicity properties, inequalities, and asymptotic expansions.
Böhm and Hertel [1, p. 264] pointed out that the sequence {�n}n∈N is not monotonic.

Indeed, we have

�n < �n+1 if 1 ≤ n ≤ 4 and �n > �n+1 if n ≥ 5.

Anderson et al. [2] showed that {�1/n
n }n∈N is monotonically decreasing to zero, while An-

derson and Qiu [3] proved that the sequence {�1/(n ln n)
n }n≥2 decreases to e–1/2. Guo and Qi

[4] proved that the sequence {�1/(n ln n)
n }n≥2 is logarithmically convex. Klain and Rota [5]

proved that the sequence {n�n/�n–1}n∈N is increasing.
Diverse sharp inequalities for the volume of the unit ball in R

n have been established
[6–18]. For example, Alzer [6] proved that for n ∈ N,

a1�
n/(n+1)
n+1 ≤ �n < b1�

n/(n+1)
n+1 ,
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√
n + a2

2π
<

�n–1

�n
≤

√
n + b2

2π
,

(
1 +

1
n

)a3

≤ �2
n

�n–1�n+1
<

(
1 +

1
n

)b3

, (1.1)

with the best possible constants

a1 =
2√
π

= 1.1283 . . . , b1 =
√

e = 1.6487 . . . ,

a2 =
1
2

, b2 =
π

2
– 1 = 0.5707 . . . ,

a3 = 2 –
lnπ

ln 2
= 0.3485 . . . , b3 =

1
2

.

Merkle [13] improved the left-hand side of (1.1) and obtained the following result:

(
1 +

1
n + 1

)1/2

≤ �2
n

�n–1�n+1
, n ∈ N. (1.2)

Chen and Lin [10, Theorem 3.1] developed (1.2) to produce the following symmetric dou-
ble inequality:

(
1 +

1
n + 1

)α

<
�2

n
�n–1�n+1

≤
(

1 +
1

n + 1

)β

, n ∈N,

with the best possible constants

α =
1
2

, β =
2 ln 2 – lnπ

ln 3 – ln 2
= 0.5957713 . . . .

Ban and Chen [8, Theorem 3.2] proved, for n ∈N,

(
1 +

1
n + θ1

)1/2

≤ �2
n

�n–1�n+1
<

(
1 +

1
n + θ2

)1/2

, (1.3)

with the best possible constants

θ1 =
2π2 – 16
16 – π2 = 0.60994576 . . . and θ2 =

1
2

.

Recently, Mortici [16] constructed asymptotic series associated with some expressions
involving the volume of the n-dimensional unit ball. New refinements and improvements
of some old and recent inequalities for �n were also presented. For example, Mortici [16,
Theorem 15] presented the following asymptotic expansion for the quantity �2

n
�n–1�n+1

:

�2
n

�n–1�n+1
∼ 1 +

1
2n

–
3

8n2 +
3

16n3 +
3

128n4 –
33

256n5 –
39

1024n6 + · · · , (1.4)

as n → ∞. Moreover, the author provided a recurrence relation for successively determin-
ing the coefficient of 1/nj (j ∈N) in expansion (1.4).
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Lu and Zhang [12] established a general continued fraction approximation for the nth
root of the volume of the unit n-dimensional ball, and then obtained related inequalities.
Chen and Paris [11] presented asymptotic expansions and inequalities related to �n and
the quantities:

�n–1

�n
,

�n

�n–1 + �n+1
, and

�1/n
n

�
1/(n+1)
n+1

.

It is easy to see that

�2
n

�n–1�n+1
=

(
n
2

+
1
2

)(
�( n

2 + 1
2 )

�( n
2 + 1)

)2

. (1.5)

Replacement of n/2 by x in (1.5) yields

I(x) :=
�2

2x
�2x–1�2x+1

=
(

x +
1
2

)(
�(x + 1

2 )
�(x + 1)

)2

, (1.6)

where �x = πx/2/�( x
2 + 1).

From (1.5) and (1.6), we see that the quantity �2
n

�n–1�n+1
is closely related to the ratio of

two gamma functions �(x+ 1
2 )

�(x+1) . The problem of finding new and sharp inequalities for the
gamma function � and, in particular, for the Wallis ratio

(2n – 1)!!
(2n)!!

=
�(n + 1

2 )√
π�(n + 1)

, n ∈N,

has attracted the attention of many researchers (see [19–30] and the references therein).
Here, we employ the special double factorial notation as follows:

(2n)!! = 2 · 4 · 6 · · · (2n) = 2nn!,

(2n – 1)!! = 1 · 3 · 5 · · · (2n – 1) = π–1/22n�

(
n +

1
2

)
,

0!! = 1, (–1)!! = 1.

Chen and Paris [30, Corollary 1(i)] obtained the following double inequality:

√
x exp

( 2m∑
j=1

(
1 –

1
22j

)
B2j

j(2j – 1)x2j–1

)
<

�(x + 1)
�(x + 1

2 )

<
√

x exp

(2m+1∑
j=1

(
1 –

1
22j

)
B2j

j(2j – 1)x2j–1

)
(1.7)

for x > 0 and m ∈N0, where Bn (n ∈N0) are the Bernoulli numbers defined by the following
generating function:

t
et – 1

=
∞∑

n=0

Bn
tn

n!
, |t| < 2π . (1.8)
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From (1.7), we derive

(
1 +

1
2x

)
exp

(
–

2m∑
j=1

(
1 –

1
22j

)
2B2j

j(2j – 1)x2j–1

)

>
�2

2x
�2x–1�2x+1

=
(

x +
1
2

)(
�(x + 1

2 )
�(x + 1)

)2

>
(

1 +
1

2x

)
exp

(
–

2m+1∑
j=1

(
1 –

1
22j

)
2B2j

j(2j – 1)x2j–1

)
(1.9)

for x > 0 and m ∈N0. Replacing x by n/2 in (1.9) yields

(
1 +

1
n

)
exp

(
–

2m∑
j=1

(22j – 1)B2j

j(2j – 1)n2j–1

)

>
�2

n
�n–1�n+1

>
(

1 +
1
n

)
exp

(
–

2m+1∑
j=1

(22j – 1)B2j

j(2j – 1)n2j–1

)

for n ∈N and m ∈N0.
In this paper, we prove that the function G(x) = (1 + 1

2x+ 1
2

)1/2/I(x) is logarithmically com-
pletely monotonic on (0,∞) (Theorem 3.1), which yields a sharp double inequality for
the quantity �2

n
�n–1�n+1

(see (3.5)). Also, we establish new sharp inequalities for the quantity
�2

n
�n–1�n+1

(Theorems 4.1 and 4.2).
The numerical values given in this paper have been calculated via the computer program

MAPLE 17.

2 Lemmas
Lemma 2.1 ([31]) Let –∞ ≤ a < b ≤ ∞. Let f and g be differentiable functions on an
interval (a, b). Assume that either g ′ > 0 everywhere on (a, b) or g ′ < 0 on (a, b). Suppose
that f (a+) = g(a+) = 0 or f (b–) = g(b–) = 0. Then

(1) if f ′
g′ is increasing on (a, b), then ( f

g )′ > 0 on (a, b);

(2) if f ′
g′ is decreasing on (a, b), then ( f

g )′ < 0 on (a, b).

The gamma function is defined for x > 0 by

�(x) =
∫ ∞

0
tx–1e–t dt.

The logarithmic derivative of �(x), denoted by ψ(x) = �′(x)/�(x), is called psi (or
digamma) function, and ψ (k)(x) (k ∈N) are called polygamma functions.

Lemma 2.2 ([30]) Let m, n ∈N. Then for x > 0,

2m∑
j=1

(
1 –

1
22j

)
2B2j

(2j)!
(2j + n – 2)!

x2j+n–1

< (–1)n
(

ψ (n–1)(x + 1) – ψ (n–1)
(

x +
1
2

))
+

(n – 1)!
2xn
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<
2m–1∑

j=1

(
1 –

1
22j

)
2B2j

(2j)!
(2j + n – 2)!

x2j+n–1 , (2.1)

where Bn (n ∈N0) are the Bernoulli numbers defined by (1.8).

In particular, we obtain from (2.1) that

1
2x

–
1

8x2 +
1

64x4 –
1

128x6 < ψ(x + 1) – ψ

(
x +

1
2

)
<

1
2x

–
1

8x2 +
1

64x4 , x > 0, (2.2)

1
2x

–
1

8x2 +
1

64x4 –
1

128x6 +
17

2048x8 –
31

2048x10

< ψ(x + 1) – ψ

(
x +

1
2

)
<

1
2x

–
1

8x2 +
1

64x4 –
1

128x6 +
17

2048x8 , x > 0, (2.3)

and

–
1

2x2 +
1

4x3 –
1

16x5 < ψ ′(x + 1) – ψ ′
(

x +
1
2

)
, x > 0. (2.4)

3 Logarithmically complete monotonicity of the function (1 + 1
2x+ 1

2
)1/2/I(x)

A function f is said to be completely monotonic on an interval I if it has derivatives of all
orders on I and satisfies the following inequality:

(–1)nf (n)(x) ≥ 0 for x ∈ I and n ∈N0 := N∪ {0}. (3.1)

Dubourdieu [32, p. 98] pointed out that, if a nonconstant function f is completely mono-
tonic on I = (a,∞), then strict inequality holds true in (3.1). See also [33] for a simpler
proof of this result. It is known (Bernstein’s theorem) that f is completely monotonic on
(0,∞) if and only if

f (x) =
∫ ∞

0
e–xt dμ(t),

where μ is a nonnegative measure on [0,∞) such that the integral converges for all x > 0.
See [34, p. 161].

Recall [35] that a positive function f is said to be logarithmically completely monotonic
on an interval I if its logarithm ln f satisfies

(–1)k[ln f (x)
](k) ≥ 0 for x ∈ I and k ∈ N.

A logarithmically completely monotonic function f on I must be completely monotonic
on I (see, e.g., [36–38]).

Theorem 3.1 The function

G(x) =
(1 + 1

2x+ 1
2

)1/2

I(x)
=

(1 + 1
2x+ 1

2
)1/2

(x + 1
2 )

[
�(x + 1)
�(x + 1

2 )

]2

(3.2)

is logarithmically completely monotonic on (0,∞).
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Proof The logarithm of the gamma function has the following integral representation (see
[39, p. 258]):

ln�(z) =
∫ ∞

0

[
(z – 1)e–t +

e–zt – e–t

1 – e–t

]
dt
t

. (3.3)

Using (3.3) and

ln x =
∫ ∞

0

e–t – e–xt

t
dt,

we obtain

ln G(x) =
1
2

ln
x + 3

4

x + 1
4

– ln

(
x +

1
2

)
+ 2

[
ln�(x + 1) – ln�

(
x +

1
2

)]

=
∫ ∞

0

(
1
2

e–(x+ 1
4 )t –

1
2

e–(x+ 3
4 )t + e–(x+ 1

2 )t +
2[e–(x+1)t – e–(x+ 1

2 )t]
1 – e–t

)
dt
t

=
∫ ∞

0

(
1

2et/4 –
1

2e3t/4 +
1

et/2 –
2

et/2 + 1

)
e–xt

t
dt

=
∫ ∞

0
q(t)e–xt dt, (3.4)

where

q(t) =
(et/4 + 1)(et/4 – 1)3

2te3t/4(et/2 + 1)
> 0, t > 0.

We conclude from (3.4) that

(–1)n(ln G(x)
)(n) =

∫ ∞

0
tnq(t)e–xt dt > 0 for x > 0 and n ∈N.

The proof of Theorem 3.1 is complete. �

Remark 3.1 The function G(x), defined by (3.2), is completely monotonic on (0,∞). In
particular, the sequence {G(n/2)} is strictly decreasing for n ∈N, and we have

1 = G(∞) < G
(

n
2

)
=

(1 + 1
n+ 1

2
)1/2

I( n
2 )

≤ G
(

1
2

)
=

√
15π

12
, n ∈N,

which yields the following double inequality for the quantity �2
n

�n–1�n+1
:

p
(

1 +
1

n + 1
2

)1/2

≤ �2
n

�n–1�n+1
< q

(
1 +

1
n + 1

2

)1/2

, n ∈N, (3.5)

with the best possible constants

p =
12√
15π

= 0.986247 . . . and q = 1.
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4 Sharp inequalities for �2
n

�n–1�n+1
Theorem 4.1 For n ∈ N, the following double inequality holds:

(
1 +

1
n + 1

2

)λ

≤ �2
n

�n–1�n+1
<

(
1 +

1
n + 1

2

)μ

, (4.1)

where the constants

λ =
2 ln 2 – lnπ

ln 5 – ln 3
= 0.47289 . . . and μ =

1
2

are the best possible.

Proof Inequality (4.1) can be written as

λ ≤ xn < μ,

where the sequence {xn}n∈N is defined by

xn =
ln(( n

2 + 1
2 )( �( n

2 + 1
2 )

�( n
2 +1) )2)

ln(1 + 1
n+ 1

2
)

.

We are now in a position to show that the sequence {xn}n∈N is strictly increasing. To this
end, we consider the function f (x) defined by

f (x) =
2 ln�(x + 1

2 ) – 2 ln�(x + 1) + ln(x + 1
2 )

ln(1 + 1
2x+ 1

2
)

=
f1(x)
f2(x)

,

where

f1(x) = 2 ln�

(
x +

1
2

)
– 2 ln�(x + 1) + ln

(
x +

1
2

)

and

f2(x) = ln

(
1 +

1
2x + 1

2

)
.

We conclude from the asymptotic formula of ln�(z) (see [39, p. 257, Eq. (6.1.41)]) that

f1(∞) = lim
x→∞ f1(x) = 0.

Elementary calculations show that

4f ′
1(x)

f ′
2(x)

= (4x + 3)(4x + 1)
[
ψ(x + 1) – ψ

(
x +

1
2

)
–

1
2x + 1

]
=: f3(x).
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By using inequalities (2.2) and (2.4), we obtain, for x ≥ 2,

f ′
3(x) = (32x + 16)

[
ψ(x + 1) – ψ

(
x +

1
2

)
–

1
2x + 1

]

+ (4x + 3)(4x + 1)
[
ψ ′(x + 1) – ψ ′

(
x +

1
2

)
+

2
(2x + 1)2

]

> (32x + 16)
[

1
2x

–
1

8x2 +
1

64x4 –
1

128x6 –
1

2x + 1

]

+ (4x + 3)(4x + 1)
[

–
1

2x2 +
1

4x3 –
1

16x5 +
2

(2x + 1)2

]

=
352 + 2001(x – 2) + 2784(x – 2)2 + 1656(x – 2)3 + 456(x – 2)4 + 48(x – 2)5

16x6(2x + 1)2

> 0.

Hence, f3(x) and f ′
1(x)

f ′
2(x) are both strictly increasing for x ≥ 2. By Lemma 2.1, the function

f (x) =
f1(x)
f2(x)

=
f1(x) – f1(∞)
f2(x) – f2(∞)

is strictly increasing for x ≥ 2. Therefore, the sequence {xn} is strictly increasing for n ≥ 4.
Direct computation yields

x1 =
2 ln 2 – lnπ

ln 5 – ln 3
= 0.47289 . . . , x2 =

ln 3 – 3 ln 2 + lnπ

ln 7 – ln 5
= 0.48711 . . . ,

x3 =
5 ln 2 – 2 ln 3 – lnπ

2 ln 3 – ln 7
= 0.49253 . . . ,

x4 =
2 ln 3 + ln 5 – 7 ln 2 + lnπ

ln 11 – 2 ln 3
= 0.49515 . . . .

Consequently, the sequence {xn}n∈N is strictly increasing. This leads to

2 ln 2 – lnπ

ln 5 – ln 3
= x1 ≤ xn < lim

n→∞ xn for n ∈N.

It remains to prove that

lim
n→∞ xn =

1
2

. (4.2)

We conclude from the asymptotic formula of ln�(z) (see [39, p. 257, Eq. (6.1.41)]) that

xn =
1

2n – 1
2n2 + O(n–3)

1
n – 1

n2 + O(n–3)
=

1
2 + O(n–1)
1 + O(n–1)

→ 1
2

as n → ∞.

Hence, (4.2) holds. This completes the proof of Theorem 4.1. �
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Theorem 4.2 For n ∈ N, the following double inequality holds:

(
1 +

1
n + 1

2

)1/2(
1 –

2
16n3 + 48n2 + 60n + a

)
≤ �2

n
�n–1�n+1

<
(

1 +
1

n + 1
2

)1/2(
1 –

2
16n3 + 48n2 + 60n + b

)
, (4.3)

where the constants

a =
2(248

√
15 – 305π )

5π – 4
√

15
= 21.42398 . . . and b = 29

are the best possible.

Proof First of all, we show that the double inequality (4.3) with a = 2(248
√

15–305π )
5π–4

√
15

and b = 29
is valid for n = 1, 2, 3, 4, and 5. For n ∈N, let

Ln =
(

1 +
1

n + 1
2

)1/2(
1 –

2

16n3 + 48n2 + 60n + 2(248
√

15–305π )
5π–4

√
15

)
,

Un =
(

1 +
1

n + 1
2

)1/2(
1 –

2
16n3 + 48n2 + 60n + 29

)
.

Direct computation yields

L1 =
4
π

,
[

�2
n

�n–1�n+1

]
n=1

=
4
π

= 1.2732 . . . , U1 = 1.2755 . . . ,

L2 = 1.178064357 . . . ,
[

�2
n

�n–1�n+1

]
n=2

= 1.17809724510 . . . ,

U2 = 1.178246681 . . . ,

L3 = 1.131758795 . . . ,
[

�2
n

�n–1�n+1

]
n=3

= 1.13176848421 . . . ,

U3 = 1.131789661 . . . ,

L4 = 1.104462901 . . . ,
[

�2
n

�n–1�n+1

]
n=4

= 1.10446616728 . . . ,

U4 = 1.104470767 . . . ,

L5 = 1.086496467 . . . ,
[

�2
n

�n–1�n+1

]
n=5

= 1.08649774484 . . . ,

U5 = 1.086499056 . . . .

Clearly, the double inequality (4.3) with a = 2(248
√

15–305π )
5π–4

√
15

and b = 29 is valid for n =
1, 2, 3, 4, and 5. For n = 1, the equality on the left-hand side of (4.3) holds.
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We now prove that the double inequality (4.3) with a = 2(248
√

15–305π )
5π–4

√
15 and b = 29 is valid

for n ≥ 6. It suffices to show that for x ≥ 3,

(
1 +

1
2x + 1

2

)1/2(
1 –

2
16(2x)3 + 48(2x)2 + 60(2x) + a

)

≤ �2
2x

�2x–1�2x+1
<

(
1 +

1
2x + 1

2

)1/2(
1 –

2
16(2x)3 + 48(2x)2 + 60(2x) + 29

)
,

which can be written as

(
1 +

1
2x + 1

2

)1/2(
1 –

2
16(2x)3 + 48(2x)2 + 60(2x) + a

)

≤
(

x +
1
2

)[
�(x + 1

2 )
�(x + 1)

]2

<
(

1 +
1

2x + 1
2

)1/2(
1 –

2
16(2x)3 + 48(2x)2 + 60(2x) + 29

)
. (4.4)

In order to prove the double inequality (4.4) for x ≥ 3, it suffices to show that

f (x) > 0 and g(x) < 0 for x ≥ 3,

where

f (x) = 2
[

ln�

(
x +

1
2

)
– ln�(x + 1)

]
+ ln

(
x +

1
2

)
–

1
2

ln

(
1 +

1
2x + 1

2

)

– ln

(
1 –

2
16(2x)3 + 48(2x)2 + 60(2x) + a

)
,

g(x) = 2
[

ln�

(
x +

1
2

)
– ln�(x + 1)

]
+ ln

(
x +

1
2

)
–

1
2

ln

(
1 +

1
2x + 1

2

)

– ln

(
1 –

2
16(2x)3 + 48(2x)2 + 60(2x) + 29

)
.

We conclude from the asymptotic formula of ln�(z) (see [39, p. 257, Eq. (6.1.41)]) that

lim
x→∞ f (x) = lim

x→∞ g(x) = 0.

Differentiating f (x) and applying the left-hand side of (2.3), and noting that

a =
2(248

√
15 – 305π )

5π – 4
√

15
<

43
2

,

we obtain for x ≥ 3,

f ′(x) = –2
[
ψ(x + 1) – ψ

(
x +

1
2

)]
+

2(16x2 + 20x + 5)
(4x + 3)(4x + 1)(2x + 1)

–
48(16x2 + 16x + 5)

(128x3 + 192x2 + 120x + a – 2)(128x3 + 192x2 + 120x + a)
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< –2
(

1
2x

–
1

8x2 +
1

64x4 –
1

128x6 +
17

2048x8 –
31

2048x10

)

+
2(16x2 + 20x + 5)

(4x + 3)(4x + 1)(2x + 1)

–
48(16x2 + 16x + 5)

(128x3 + 192x2 + 120x + 43
2 – 2)(128x3 + 192x2 + 120x + 43

2 )

= – P12(x – 3)
1024x10(4x + 3)(4x + 1)(2x + 1)(256x3 + 384x2 + 240x + 39)(256x3 + 384x2 + 240x + 43)

,

where

P12(x) = 2,312,798,031,594 + 12,277,183,388,658x + 26,310,509,734,485x2

+ 32,318,240,921,214x3 + 26,087,077,081,952x4 + 14,780,270,044,224x5

+ 6,067,872,771,744x6 + 1,824,299,158,976x7 + 399,070,033,152x8

+ 61,948,727,808x9 + 6,475,038,720x10 + 408,944,640x11 + 11,796,480x12.

Hence, f ′(x) < 0 for x ≥ 3. So, f (x) is strictly decreasing for x ≥ 3, and we have

f (x) > lim
t→∞ f (t) = 0, x ≥ 3.

Therefore, the left-hand side of (4.3) with a = 2(248
√

15–305π )
5π–4

√
15

is valid for n ∈ N.
Differentiating g(x) and applying the right-hand side of (2.3), we obtain for x ≥ 3,

g ′(x) = –2
[
ψ(x + 1) – ψ

(
x +

1
2

)]
+

2(16x2 + 20x + 5)
(4x + 3)(4x + 1)(2x + 1)

–
48(16x2 + 16x + 5)

(128x3 + 192x2 + 120x + 27)(128x3 + 192x2 + 120x + 29)

> –2
(

1
2x

–
1

8x2 +
1

64x4 –
1

128x6 +
17

2048x8

)
+

2(16x2 + 20x + 5)
(4x + 3)(4x + 1)(2x + 1)

–
48(16x2 + 16x + 5)

(128x3 + 192x2 + 120x + 27)(128x3 + 192x2 + 120x + 29)

= – P9(x – 3)
1024x8(4x + 3)(4x + 1)(2x + 1)(128x3 + 192x2 + 120x + 27)(128x3 + 192x2 + 120x + 29)

,

where

P9(x) = 23,529,054,501 + 184,258,816,470x + 357,871,998,912x2

+ 340,974,002,496x3 + 191,948,408,224x4 + 68,526,376,128x5

+ 15,780,445,440x6 + 2,282,252,800x7 + 189,235,200x8 + 6,881,280x9.

Hence, g ′(x) < 0 for x ≥ 3. So, g(x) is strictly increasing for x ≥ 3, and we have

g(x) < lim
t→∞ f (t) = 0, x ≥ 3.

Therefore, the right-hand side of (4.3) with b = 29 is valid for n ∈N.
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If we write (4.3) as

a ≤ xn < b, xn =
2

1 –
�2n

�n–1�n+1
(1+ 1

n+ 1
2

)1/2

–
(
16n3 + 48n2 + 60n

)
,

we find that

x1 =
2(248

√
15 – 305π )

5π – 4
√

15

and

lim
n→∞ xn = lim

n→∞

{
2

1 –
�2n

�n–1�n+1
(1+ 1

n+ 1
2

)1/2

–
(
16n3 + 48n2 + 60n

)}

= lim
n→∞

{
2

1
8n3 – 3

8n4 + 21
32n5 – 101

128n6 + O( 1
n7 )

–
(
16n3 + 48n2 + 60n

)}

= lim
n→∞

{
29 + O

(
1
n

)}
= 29.

This limit is obtained by using the asymptotic expansion (1.4).
Hence, the double inequality (4.3) holds for n ∈ N, and the constants a = 2(248

√
15–305π )

5π–4
√

15
and b = 29 are the best possible. The proof of Theorem 4.2 is complete. �

5 Comparison
It follows form (1.1), (1.2) and (1.3) and (4.3) that

�2
n

�n–1�n+1
∼

(
1 +

1
n

)1/2

= un (Alzer [6]), (5.1)

�2
n

�n–1�n+1
∼

(
1 +

1
n + 1

)1/2

= vn (Merkle [13]), (5.2)

�2
n

�n–1�n+1
∼

(
1 +

1
n + 1

2

)1/2

= wn (Ban and Chen [8]), (5.3)

�2
n

�n–1�n+1
∼

(
1 +

1
n + 1

2

)1/2(
1 –

2
16n3 + 48n2 + 60n + 29

)
= rn (New). (5.4)

We here offer some numerical computations (see Table 1) to show the superiority of our
sequence {rn}n≥1 over the sequences {un}n≥1, {vn}n≥1, and {wn}n≥1.

Table 1 Comparison of approximation formulas (5.1)–(5.4)

n un–Vn
Vn

Vn–vn
Vn

wn–Vn
Vn

rn–Vn
Vn

10 2.2651× 10–3 1.885× 10–3 9.3351× 10–5 1.1467× 10–8

100 2.4751× 10–5 1.885× 10–5 1.2131× 10–7 2.1845× 10–15

1000 2.4975× 10–7 2.4925× 10–7 1.2462× 10–10 2.3273× 10–22

10,000 2.4997× 10–9 2.4992× 10–9 1.2496× 10–13 2.3421× 10–29
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Here Vn := �2
n

�n–1�n+1
. In fact, we have, as n → ∞,

�2
n

�n–1�n+1
= un + O

(
1
n2

)
,

�2
n

�n–1�n+1
= vn + O

(
1
n2

)
,

�2
n

�n–1�n+1
= wn + O

(
1
n3

)
,

�2
n

�n–1�n+1
= rn + O

(
1
n7

)
.

These formulas are obtained by using the computer program MAPLE 17.

6 Conclusion
Here, in our present investigation, we have first revisited several interesting properties of
the volume �n of the unit ball in R

n, including monotonicity properties, inequalities, and
asymptotic expansions. We have then shown that the function G(x) = (1 + 1

2x+ 1
2

)1/2/I(x) is
logarithmically completely monotonic on (0,∞) (Theorem 3.1), which yielded a double
inequality for the quantity �2

n
�n–1�n+1

, see (3.5). Also, we have established new sharp in-

equalities for the quantity �2
n

�n–1�n+1
, see (4.1) and (4.3). We have also considered a number

of related developments on the subject of this paper.

Acknowledgements
The authors express their gratitude to the referee for very helpful and detailed comments.

Funding
Supported by the Fundamental Research Funds for the Universities of the Henan Province (Grant No. NSFRF210446).

Availability of data and materials
All of the material is owned by the authors and no permissions are required.

Declarations

Competing interests
The authors declare no competing interests.

Author contributions
The authors declare that they have no conflicts of interest.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 December 2022 Accepted: 3 February 2023

References
1. Böhm, J., Hertel, E.: Polyedergeometrie in n-dimensionalen Räumen konstanter Krümmung. Birkhäuser, Basel (1981)
2. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Special functions of quasiconformal theory. Expo. Math. 7, 97–136

(1989)
3. Anderson, G.D., Qiu, S.-L.: A monotoneity property of the gamma function. Proc. Am. Math. Soc. 125, 3355–3362

(1997)
4. Guo, B.-N., Qi, F.: Monotonicity and logarithmic convexity relating to the volume of the unit ball. Optim. Lett. 7,

1139–1153 (2013)
5. Klain, D.A., Rota, G.-C.: A continuous analogue of Sperner’s theorem. Commun. Pure Appl. Math. 50, 205–223 (1997)
6. Alzer, H.: Inequalities for the volume of the unit ball in R

n . J. Math. Anal. Appl. 252, 353–363 (2000)
7. Alzer, H.: Inequalities for the volume of the unit ball in R

n , II. Mediterr. J. Math. 5, 395–413 (2008)
8. Ban, T., Chen, C.-P.: New inequalities for the volume of the unit ball in R

n . J. Math. Inequal. 11(2), 527–542 (2017)
9. Borgwardt, K.H.: The Simplex Method. Springer, Berlin (1987)
10. Chen, C.-P., Lin, L.: Inequalities for the volume of the unit ball in R

n . Mediterr. J. Math. 11, 299–314 (2014)
11. Chen, C.-P., Paris, R.B.: Inequalities and asymptotic expansions related to the volume of the unit ball in R

n . Results
Math. 74(1), Article 44 (2019). https://doi.org/10.1007/s00025-019-0967-1

12. Lu, D., Zhang, P.: A new general asymptotic formula and inequalities involving the volume of the unit ball. J. Number
Theory 170, 302–314 (2017)

13. Merkle, M.: Gurland’s ratio for the gamma function. Comput. Math. Appl. 49, 389–406 (2005)

https://doi.org/10.1007/s00025-019-0967-1


Han and Chen Journal of Inequalities and Applications         (2023) 2023:65 Page 14 of 14

14. Mortici, C.: Monotonicity properties of the volume of the unit ball in R
n . Optim. Lett. 4, 457–464 (2010)

15. Mortici, C.: Estimates of the function and quotient by Minc–Sathre. Appl. Math. Comput. 253, 52–60 (2015)
16. Mortici, C.: Series associated to some expressions involving the volume of the unit ball and applications. Appl. Math.

Comput. 294, 121–138 (2017)
17. Yin, L., Huang, L.-G.: Some inequalities for the volume of the unit ball. J. Class. Anal. 6(1), 39–46 (2015)
18. Zhang, H.: New bounds and asymptotic expansions for the volume of the unit ball in R

n based on Padé
approximation. Results Math. 77, Article 116 (2022). https://doi.org/10.1007/s00025-022-01652-1

19. Chen, C.-P., Qi, F.: The best bounds in Wallis’ inequality. Proc. Am. Math. Soc. 133, 397–401 (2005)
20. Lampret, V.: Wallis sequence estimated through the Euler–Maclaurin formula: even from the Wallis product π could

be computed fairly accurately. Aust. Math. Soc. Gaz. 31, 328–339 (2004)
21. Lampret, V.: An asymptotic approximation of Wallis’ sequence. Cent. Eur. J. Math. 10, 775–787 (2012)
22. Lin, L., Deng, J.-E., Chen, C.-P.: Inequalities and asymptotic expansions associated with the Wallis sequence. J. Inequal.

Appl. 2014, 251 (2014). http://www.journalofinequalitiesandapplications.com/content/2014/1/251
23. Deng, J.-E., Ban, T., Chen, C.-P.: Sharp inequalities and asymptotic expansion associated with the Wallis sequence.

J. Inequal. Appl. 2015, 186 (2015).
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-015-0699-z

24. Lin, L., Ma, W.-C., Chen, C.-P.: Padé approximant related to the Wallis formula. J. Inequal. Appl. 2017, 132 (2017).
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-017-1406-z

25. Mortic, C.: New approximation formulas for evaluating the ratio of gamma functions. Math. Comput. Model. 52,
425–433 (2010)

26. Gurland, J.: On Wallis’ formula. Am. Math. Mon. 63, 643–645 (1956)
27. Lin, L.: Further refinements of Gurland’s formula for π . J. Inequal. Appl. 2013, 48 (2013).

http://www.journalofinequalitiesandapplications.com/content/2013/1/48
28. Mortici, C.: Refinements of Gurland’s formula for pi. Comput. Math. Appl. 62, 2616–2620 (2011)
29. Mortici, C.: Estimating π from the Wallis sequence. Math. Commun. 17, 489–495 (2012)
30. Chen, C.-P., Paris, R.B.: Inequalities, asymptotic expansions and completely monotonic functions related to the

gamma function. Appl. Math. Comput. 250, 514–529 (2015)
31. Pinelis, I.: L’Hospital type rules for monotonicity, with applications. J. Inequal. Pure Appl. Math. 3(1), Article 5 (2002)
32. Dubourdieu, J.: Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace–Stieltjes. Compos. Math. 7,

96–111 (1939) (in French)
33. van Haeringen, H.: Completely monotonic and related functions. J. Math. Anal. Appl. 204, 389–408 (1996)
34. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1941)
35. Guo, B.-N., Qi, F.: A property of logarithmically absolutely monotonic functions and the logarithmically complete

monotonicity of a power-exponential function. UPB Sci. Bull., Ser. A, Appl. Math. Phys. 72(2), 21–30 (2010)
36. Atanassov, R.D., Tsoukrovski, U.V.: Some properties of a class of logarithmically completely monotonic functions.

C. R. Acad. Bulgare Sci. 41, 21–23 (1988)
37. Berg, C.: Integral representation of some functions related to the gamma function. Mediterr. J. Math. 1, 433–439

(2004)
38. Qi, F., Chen, C.-P.: A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 296, 603–607 (2004)
39. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical

Tables 9th printing edn. Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington (1972)

https://doi.org/10.1007/s00025-022-01652-1
http://www.journalofinequalitiesandapplications.com/content/2014/1/251
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-015-0699-z
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-017-1406-z
http://www.journalofinequalitiesandapplications.com/content/2013/1/48

	Sharp inequalities related to the volume of the unit ball in Rn
	Abstract
	MSC
	Keywords

	Introduction
	Lemmas
	Logarithmically complete monotonicity of the function (1+1/2x+1/2)1/2/I(x)
	Sharp inequalities for Omegan2/Omegan-1Omegan+1
	Comparison
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author contributions
	Publisher's Note
	References


