In this section, we prove weak and strong convergence theorem for finding a common element of the set of fixed points of the cutter and the finite general split feasibility problem.
Theorem 3
For every \(i=1,2,\ldots,N\), let \(C_{i}\), \(Q_{i}\), Φ, Ψ, \(\Phi ^{*}\), and \(\Psi ^{*}\) define as the same in Lemma 7. Let \(T:H_{1}\rightarrow H_{1}\) be a cutter with \(\varphi = F(T)\cap \xi \neq \emptyset \) and \(I-T\) is demiclosed at 0. For given \(x_{1}\in H_{1}\) and let the sequence \(\{x_{n}\}\) be generated by
$$\begin{aligned} x_{n+1} & = \eta _{n}x_{n}+\alpha _{n}P_{H(x_{n},Tx_{n})}x_{n}+\beta _{n} Tx_{n} \\ &\quad{}+\gamma _{n} \sum_{i=1}^{N} a_{i}P_{C_{i}} \biggl(I-a \biggl(\frac{\Phi ^{*} (I-P_{Q_{i}})\Phi}{2}+ \frac{\Psi ^{*}(I-P_{Q_{i}})\Psi}{2} \biggr) \biggr)x_{n}, \end{aligned}$$
(8)
for all \(n,N \in \mathbb{N}\), where \(\{\eta _{n}\},\{\alpha _{n}\},\{\beta _{n}\},\{\gamma _{n}\} \subseteq (0,1)\) with \(\eta _{n}+\alpha _{n}+\beta _{n}+\gamma _{n}=1\), \(a \in (0,\frac{2}{L})\), and parameters L, \(L_{\Phi}\), \(L_{\Psi}\) define as the same in Lemma 7. Suppose that the following conditions hold:
-
(i)
\(c\leq \eta _{n},\alpha _{n},\beta _{n}\), \(\gamma _{n} \leq d \) for some real number c, d with \(c,d >0\),
-
(ii)
\(\sum_{i=1}^{N} a_{i}=1\), where \(a_{i} >0\) for all \(N \in \mathbb{N}\).
Then, the sequence \(\{x_{n}\}\) converges weakly to \(z^{*} \in \varphi \) and furthermore,
$$ z^{*} = \lim_{n \rightarrow \infty}P_{\varphi}(x_{n}). $$
Proof
Putting \(\nabla g_{i}=\frac{\Phi ^{*}(I-P_{Q_{i}})\Phi}{2}+ \frac{\Psi ^{*}(I-P_{Q_{i}})\Psi}{2}\), for all \(i=1,2,\ldots,N\). First, we show that \(\nabla g_{i}\) are \(\frac{1}{L}\)-inverse strongly monotone.
Let \(x,y \in C_{i}\). Since \(\nabla g_{i}= \frac{\Phi ^{*}(I-P_{Q_{i}})\Phi}{2}+ \frac{\Psi ^{*}(I-P_{Q_{i}})\Psi}{2}\), for all \(i=1,2,\ldots,N\), we have
$$\begin{aligned} &\bigl\Vert \nabla g_{i}(x)-\nabla g_{i}(y) \bigr\Vert ^{2} \\ &\quad = \biggl\Vert \frac{\Phi ^{*}(I-P_{Q_{i}})\Phi (x)}{2}+ \frac{\Psi ^{*}(I-P_{Q_{i}})\Psi (x)}{2}- \frac{\Phi ^{*}(I-P_{Q_{i}})\Phi (y)}{2}- \frac{\Psi ^{*}(I-P_{Q_{i}})\Psi (y)}{2} \biggr\Vert ^{2} \\ &\quad \leq \frac{1}{2} \bigl\Vert \Phi ^{*}(I-P_{Q_{i}}) \Phi (x) -\Phi ^{*}(I-P_{Q_{i}}) \Phi (y) \bigr\Vert ^{2} \\ &\quad\quad {} + \frac{1}{2} \bigl\Vert \Psi ^{*}(I-P_{Q_{i}}) \Psi (x) -\Psi ^{*}(I-P_{Q_{i}}) \Psi (y) \bigr\Vert ^{2} \\ &\quad \leq \frac{L}{2} \bigl\Vert (I-P_{Q_{i}})\Phi (x) -(I-P_{Q_{i}})\Phi (y) \bigr\Vert ^{2} + \frac{L}{2} \bigl\Vert (I-P_{Q_{i}})\Psi (x) -(I-P_{Q_{i}})\Psi (y) \bigr\Vert ^{2}. \end{aligned}$$
(9)
For each \(i=1,2,\ldots,N\). From property of \(P_{Q_{i}}\), we have
$$\begin{aligned} &\bigl\Vert (I-P_{Q_{i}})\Phi (x) -(I-P_{Q_{i}}) \Phi (y) \bigr\Vert ^{2} \\ &\quad = \bigl\langle (I-P_{Q_{i}})\Phi (x) -(I-P_{Q_{i}})\Phi (y), \Phi (x)- \Phi (y)-\bigl(P_{Q_{i}}\Phi (x)-P_{Q_{i}}\Phi (y)\bigr) \bigr\rangle \\ &\quad = \bigl\langle \Phi ^{*}(I-P_{Q_{i}})\Phi (x) -\Phi ^{*}(I-P_{Q_{i}}) \Phi (y), x-y \bigr\rangle \\ &\quad\quad{}- \bigl\langle (I-P_{Q_{i}})\Phi (x) , P_{Q_{i}}\Phi (x)-P_{Q_{i}} \Phi (y) \bigr\rangle + \bigl\langle (I-P_{Q_{i}}) \Phi (y), P_{Q_{i}} \Phi (x)-P_{Q_{i}}\Phi (y) \bigr\rangle \\ &\quad \leq \bigl\langle \Phi ^{*}(I-P_{Q_{i}})\Phi (x) -\Phi ^{*}(I-P_{Q_{i}}) \Phi (y), x-y \bigr\rangle . \end{aligned}$$
(10)
Using the same method as (10), we have
$$ \bigl\Vert (I-P_{Q_{i}})\Psi (x) -(I-P_{Q_{i}}) \Psi (y) \bigr\Vert ^{2} \leq \bigl\langle \Psi ^{*}(I-P_{Q_{i}}) \Psi (x) -\Psi ^{*}(I-P_{Q_{i}}) \Psi (y), x-y \bigr\rangle . $$
(11)
Substituting (10) and (11) into (9), we have
$$\begin{aligned} &\bigl\Vert \nabla g_{i}(x)-\nabla g_{i}(y) \bigr\Vert ^{2} \\ &\quad \leq \frac{L}{2} \bigl\Vert (I-P_{Q_{i}})\Phi (x) -(I-P_{Q_{i}})\Phi (y) \bigr\Vert ^{2} + \frac{L}{2} \bigl\Vert (I-P_{Q_{i}})\Psi (x) -(I-P_{Q_{i}})\Psi (y) \bigr\Vert ^{2} \\ &\quad \leq \frac{L}{2} \bigl\langle \Phi ^{*}(I-P_{Q_{i}}) \Phi (x) -\Phi ^{*}(I-P_{Q_{i}}) \Phi (y), x-y \bigr\rangle \\ &\quad\quad{}+\frac{L}{2} \bigl\langle \Psi ^{*}(I-P_{Q_{i}})\Psi (x) -\Psi ^{*}(I-P_{Q_{i}}) \Psi (y), x-y \bigr\rangle \\ &\quad = L \biggl\langle \frac{\Phi ^{*}(I-P_{Q_{i}})\Phi (x)}{2}+ \frac{\Psi ^{*}(I-P_{Q_{i}})\Psi (x)}{2}\\ &\qquad {} -\biggl( \frac{\Phi ^{*}(I-P_{Q_{i}})\Phi (y)}{2}+ \frac{\Psi ^{*}(I-P_{Q_{i}})\Psi (y)}{2}\biggr),x-y \biggr\rangle \\ &\quad = L \bigl\langle \nabla g_{i}(x)-\nabla g_{i}(y),x-y \bigr\rangle . \end{aligned}$$
So, we have \(\nabla g_{i}\) is \(\frac{1}{L}\)-inverse strongly monotone.
For each \(i=1,2,\ldots,N\). From the definition of \(\nabla g_{i}\), we have
$$\begin{aligned} &\bigl\Vert P_{C_{i}}(I-a \nabla g_{i})x-P_{C_{i}}(I-a \nabla g_{i})y \bigr\Vert ^{2} \\ &\quad \leq \bigl\Vert x-y-a\bigl(\nabla g_{i}(x)-\nabla g_{i}(y)\bigr) \bigr\Vert ^{2} \\ &\quad = \Vert x-y \Vert ^{2} -2a \bigl\langle x-y,\nabla g_{i}(x)-\nabla g_{i}(y) \bigr\rangle +a^{2} \bigl\Vert \nabla g_{i}(x)-\nabla g_{i}(y) \bigr\Vert ^{2} \\ &\quad \leq \Vert x-y \Vert ^{2} -\frac{2a}{L} \bigl\Vert \nabla g_{i}(x)-\nabla g_{i}(y) \bigr\Vert ^{2}+a^{2} \bigl\Vert \nabla g_{i}(x)-\nabla g_{i}(y) \bigr\Vert ^{2} \\ &\quad = \Vert x-y \Vert ^{2}-a\biggl(\frac{2}{L}-a\biggr) \bigl\Vert \nabla g_{i}(x)-\nabla g_{i}(y) \bigr\Vert ^{2} \\ &\quad \leq \Vert x-y \Vert ^{2}, \end{aligned}$$
(12)
for all \(x,y \in C_{i}\).
Let \(z\in F(T)\cap \xi \).
Step 1. We show that \(\{x_{n}\}\) is bounded.
From (8), (12), and Lemma 3, we have
$$\begin{aligned} & \Vert x_{n+1}-z \Vert \\ &\quad = \Biggl\Vert \eta _{n}x_{n}+\alpha _{n}P_{H(x_{n},Tx_{n})}x_{n}+\beta _{n} Tx_{n}+ \gamma _{n} \sum_{i=1}^{N} a_{i}P_{C_{i}} (I-a \nabla g_{i} )x_{n} -z \Biggr\Vert \\ &\quad \leq \eta _{n} \Vert x_{n} -z \Vert +\alpha _{n} \Vert P_{H(x_{n},Tx_{n})}x_{n}-z \Vert +\beta _{n} \Vert Tx_{n}-z \Vert \\ &\quad\quad{}+\gamma _{n} \Biggl\Vert \sum_{i=1}^{N} a_{i}P_{C_{i}} (I-a \nabla g_{i} )x_{n} -z \Biggr\Vert \\ &\quad \leq \eta _{n} \Vert x_{n} -z \Vert +\alpha _{n} \Vert x_{n} -z \Vert +\beta _{n} \Vert x_{n} -z \Vert +\gamma _{n} \Biggl\Vert \sum _{i=1}^{N} a_{i}P_{C_{i}} (I-a \nabla g_{i} )x_{n} -z \Biggr\Vert \\ &\quad = (\eta _{n}+\alpha _{n}+\beta _{n}) \Vert x_{n} -z \Vert +\gamma _{n} \Biggl\Vert \sum _{i=1}^{N} a_{i}P_{C_{i}} (I-a\nabla g_{i} )x_{n} - \sum_{i=1}^{N} a_{i}P_{C_{i}} (I-a \nabla g_{i} ) z \Biggr\Vert \\ &\quad = (\eta _{n}+\alpha _{n}+\beta _{n}) \Vert x_{n} -z \Vert +\gamma _{n} \sum _{i=1}^{N} a_{i} \bigl\Vert P_{C_{i}} (I-a\nabla g_{i} )x_{n} -P_{C_{i}} (I-a\nabla g_{i} ) z \bigr\Vert \\ &\quad \leq (\eta _{n}+\alpha _{n}+\beta _{n}) \Vert x_{n} -z \Vert +\gamma _{n} \Vert x_{n} -z \Vert \\ &\quad = \Vert x_{n} -z \Vert , \end{aligned}$$
(13)
then \(\{x_{n}\}\) is Fejér monotone with respect to φ, for all \(z\in \varphi \).
Applying Lemma 4, we have that \(\lim_{n \rightarrow \infty}\|x_{n} -z\|\) exists. In particular, this implies that \(\{x_{n}\}\) is bounded.
Step 2. We show that \(\lim_{n \rightarrow \infty} \|Tx_{n} -x_{n}\|=0\) and \(\lim_{n \rightarrow \infty} \|x_{n}- \sum_{i=1}^{N} a_{i}P_{C_{i}} (I-a\nabla g_{i} )x_{n}\|=0\).
From (8) and (12), we have
$$\begin{aligned} & \Vert x_{n+1}-z \Vert ^{2} \\ &\quad = \Biggl\Vert \eta _{n}x_{n}+\alpha _{n}P_{H(x_{n},Tx_{n})}x_{n}+\beta _{n}Tx_{n}+ \gamma _{n} \sum_{i=1}^{N} a_{i}P_{C_{i}} (I-a \nabla g_{i} )x_{n} -z \Biggr\Vert ^{2} \\ &\quad = \Biggl\Vert \eta _{n}(x_{n}-z)+\alpha _{n}(P_{H(x_{n},Tx_{n})}x_{n}-z)+ \beta _{n}(Tx_{n}-z) \\ &\quad\quad{}+\gamma _{n}\Biggl( \sum_{i=1}^{N} a_{i}P_{C_{i}} (I-a \nabla g_{i} )x_{n} -z\Biggr) \Biggr\Vert ^{2} \\ &\quad \leq \Vert x_{n}-z \Vert ^{2} -\eta _{n} \beta _{n} \Vert x_{n} -Tx_{n} \Vert ^{2}- \eta _{n} \gamma _{n} \Biggl\Vert x_{n}- \sum_{i=1}^{N} a_{i}P_{C_{i}} (I-a\nabla g_{i} )x_{n} \Biggr\Vert ^{2}, \end{aligned}$$
which yields that
$$ \eta _{n} \beta _{n} \Vert x_{n} -Tx_{n} \Vert ^{2}+\eta _{n} \gamma _{n} \Biggl\Vert x_{n}- \sum _{i=1}^{N} a_{i}P_{C_{i}} (I-a\nabla g_{i} )x_{n} \Biggr\Vert ^{2} \leq \Vert x_{n}-z \Vert ^{2} - \Vert x_{n+1}-z \Vert ^{2}. $$
(14)
From (14) and \(\lim_{n \rightarrow \infty} (\|x_{n}-z\|^{2} - \|x_{n+1}-z \|^{2})=0\), then
$$ \lim_{n \rightarrow \infty} \Vert x_{n} -Tx_{n} \Vert = \lim_{n \rightarrow \infty} \Biggl\Vert x_{n}- \sum_{i=1}^{N} a_{i}P_{C_{i}} (I-a\nabla g_{i} )x_{n} \Biggr\Vert =0. $$
(15)
Step 3. We show that the sequences \(\{x_{n}\}\) converge weakly to \(z^{*} \in \varphi \).
Since \(\{x_{n}\}\) is bounded by Step 1, there exists a subsequence \(\{x_{n_{k}}\}\) of \(\{x_{n}\}\) that converges weakly to some element of z̄.
By Lemma 5 and (15), we obtain
$$ \bar{z} = T \bar{z}, $$
then
$$ \bar{z} \in F(T). $$
(16)
Assume that \(\bar{z} \notin \xi \).
By Lemma 7 and Lemma 3, we also have \(\bar{z}\neq \sum_{i=1}^{N} a_{i}P_{C_{i}} (I-a \nabla g_{i} )\bar{z}\).
From (12), (15), and Opial’s property, we have
$$\begin{aligned} \liminf_{k \rightarrow \infty} \Vert x_{n_{k}}-\bar{z} \Vert & < \liminf_{k \rightarrow \infty} \Biggl\Vert x_{n_{k}}- \sum _{i=1}^{N} a_{i}P_{C_{i}} (I-a\nabla g_{i} )\bar{z} \Biggr\Vert \\ & \leq \liminf_{k \rightarrow \infty}\Biggl( \Biggl\Vert x_{n_{k}}- \sum_{i=1}^{N} a_{i}P_{C_{i}} (I-a\nabla g_{i} )x_{n_{k}} \Biggr\Vert \\ &\quad{}+ \Biggl\Vert \sum_{i=1}^{N} a_{i}P_{C_{i}} (I-a\nabla g_{i} )x_{n_{k}}- \sum_{i=1}^{N} a_{i}P_{C_{i}} (I-a \nabla g_{i} )\bar{z} \Biggr\Vert \Biggr) \\ & \leq \liminf_{k \rightarrow \infty} \Vert x_{n_{k}}- \bar{z} \Vert . \end{aligned}$$
This is a contradiction, then we have
$$ \bar{z} \in \xi . $$
(17)
From (16) and (17), thus
$$ \bar{z} \in \varphi . $$
Next, we will show that the entire sequence \(\{x_{n}\}\) weakly converges to z̄.
Since \(\{x_{n}\}\) is bounded by Step 1, there exists a subsequence \(\{x_{n_{j}}\}\) of \(\{x_{n}\}\) that converges weakly to some element of \(\bar{z}'\). Assume that \(x_{n_{j}} \rightharpoonup \bar{z}'\) as \(j \rightarrow \infty \), with \(\bar{z}' \neq \bar{z}\) and \(\bar{z}' \in \varphi \).
By the Opial condition, we have
$$\begin{aligned} \lim_{n\rightarrow \infty} \Vert x_{n}-\bar{z} \Vert & = \liminf_{k \rightarrow \infty} \Vert x_{n_{k}}-\bar{z} \Vert \\ & < \liminf_{k \rightarrow \infty} \bigl\Vert x_{n_{k}}- \bar{z}^{\prime } \bigr\Vert \\ & = \lim_{n\rightarrow \infty} \bigl\Vert x_{n}- \bar{z}^{\prime } \bigr\Vert \\ & < \liminf_{j \rightarrow \infty} \Vert x_{n_{j}}-\bar{z} \Vert \\ & = \lim_{n\rightarrow \infty} \Vert x_{n}-\bar{z} \Vert , \end{aligned}$$
and this is a contradiction, thus \(\bar{z}^{\prime }= \bar{z}\). This implies that the sequence \(\{x_{n}\}_{n=0}^{\infty}\) converges weakly to the same point \(\bar{z}\in \varphi \).
Finally, if we take
$$ u_{n} = P_{\varphi}x_{n} , $$
then by (13) and Lemma 6, we see that \(\{P_{\varphi }x_{n}\}_{n=0}^{\infty}\) converges strongly to some \(z^{*} \in \varphi \).
Since \(P_{\varphi}\) is a cutter and the convergences of \(\{x_{n}\}\) and \(\{u_{n}\}\), we have
$$ \bigl\langle \bar{z}-z^{*} ,z^{*} -\bar{z} \bigr\rangle \geq 0, $$
and hence \(z^{*} = \bar{z}\), this completes the proof. □
Corollary 1
For every \(i=1,2,\ldots,N\), let \(C_{i}\), \(Q_{i}\), Φ, \(\Phi ^{*}\), and T define as the same in Theorem 3. Assume that \(\varphi = F(T)\cap \Gamma ^{\Phi}\neq \emptyset \), where \(\Gamma ^{\Phi}=\{x\in \bigcap_{i=1}^{N}C_{i} | \Phi (x) \in \bigcap_{i=1}^{N}Q_{i}, \forall i=1,2,\ldots,N\}\). For given \(x_{1}\in H_{1}\) and let the sequence \(\{x_{n}\}\) be generated by
$$ x_{n+1} = \eta _{n}x_{n}+\alpha _{n}P_{H(x_{n},Tx_{n})}x_{n}+\beta _{n} Tx_{n}+\gamma _{n} \sum_{i=1}^{N} a_{i}P_{C_{i}} \bigl(I-a \bigl(\Phi ^{*}(I-P_{Q_{i}}) \Phi \bigr) \bigr)x_{n}, $$
(18)
for all \(n,N \in \mathbb{N}\), where \(\{\eta _{n}\},\{\alpha _{n}\},\{\beta _{n}\},\{\gamma _{n}\} \subseteq (0,1)\) with \(\eta _{n}+\alpha _{n}+\beta _{n}+\gamma _{n}=1\), \(a \in (0,\frac{2}{L})\), and L is spectral radius of \(\Phi ^{*}\Phi \). Suppose that the following conditions hold:
-
(i)
\(c\leq \eta _{n},\alpha _{n},\beta _{n}\), \(\gamma _{n} \leq d \) for some real number c, d with \(c,d >0\),
-
(ii)
\(\sum_{i=1}^{N} a_{i}=1\), where \(a_{i} >0\) for all \(N \in \mathbb{N}\).
Then, the sequence \(\{x_{n}\}\) converges weakly to \(z^{*} \in \varphi \) and furthermore,
$$ z^{*} = \lim_{n \rightarrow \infty}P_{\varphi}(x_{n}). $$
Proof
Putting \(\Phi \equiv \Psi \), in Theorem 3, we obtain the desired conclusion. □
The following corollary is a modification in terms of the iterative process of Theorem 1.
Corollary 2
For every \(i=1,2,\ldots,N\), let \(C_{i}\), \(Q_{i}\), Φ, Ψ, \(\Phi ^{*}\), \(\Psi ^{*}\), T, all parameters, and the conditions (i) and (ii) define as the same in Theorem 3. Assume that \(\varphi =F(T)\cap \xi \neq \emptyset \), and \(I-T\) is demiclosed at 0. For given \(x_{1} \in H_{1}\) and let the sequence \(\{x_{n}\}\) be generated by
$$\begin{aligned} x_{n+1} & = \eta _{n}x_{n}+\alpha _{n}P_{H(x_{n},Tx_{n})}x_{n}+\beta _{n} Tx_{n}+\gamma _{n} \Biggl( \sum _{i=1}^{N} a_{i}tP_{C_{i}}\bigl(I-a \bigl(\Phi ^{*}(I-P_{Q_{i}})\Phi \bigr)\bigr) \\ &\quad{}+ \sum_{i=1}^{N} a_{i}(1-t)P_{C_{i}} \bigl(I-a \bigl(\Psi ^{*}(I-P_{Q_{i}}) \Psi \bigr)\bigr) \Biggr)x_{n}, \end{aligned}$$
for all \(n,N \in \mathbb{N}\). where \(\{\eta _{n}\},\{\alpha _{n}\},\{\beta _{n}\},\{\gamma _{n}\} \subseteq (0,1)\) with \(\eta _{n}+\alpha _{n}+\beta _{n}+\gamma _{n}=1\), \(t\in (0,1)\), \(a \in (0,\frac{2}{L})\), and parameters L, \(L_{\Phi}\), \(L_{\Psi}\) define as the same in Lemma 7. Suppose the following conditions hold:
-
(i)
\(c\leq \eta _{n},\alpha _{n},\beta _{n}\), \(\gamma _{n} \leq d \) for some real number c, d with \(c,d >0\),
-
(ii)
\(\sum_{i=1}^{N} a_{i}=1\), where \(a_{i} >0\) for all \(N \in \mathbb{N}\).
Then, the sequence \(\{x_{n}\}\) converges weakly to \(z^{*} \in \varphi \) and furthermore,
$$ z^{*} = \lim_{n \rightarrow \infty}P_{\varphi}(x_{n}). $$
Proof
For each \(i=1,2,\ldots,N\). From Lemma 2, then we get
$$\begin{aligned} \xi &\equiv F \biggl(P_{C_{i}} \biggl(I-a \biggl( \frac{\Phi ^{*} (I-P_{Q_{i}})\Phi}{2}+ \frac{\Psi ^{*}(I-P_{Q_{i}})\Psi}{2} \biggr) \biggr) \biggr) \\ & = VI \biggl(C_{i},\frac{\Phi ^{*} (I-P_{Q_{i}})\Phi}{2}+ \frac{\Psi ^{*}(I-P_{Q_{i}})\Psi}{2} \biggr) \\ & = VI \bigl(C_{i},\Phi ^{*} (I-P_{Q_{i}})\Phi \bigr) \cap VI \bigl(C_{i}, \Psi ^{*} (I-P_{Q_{i}}) \Psi \bigr) \\ & =F \bigl(P_{C_{i}}\bigl(I-\lambda _{i} \bigl(\Phi ^{*}(I-P_{Q_{i}})\Phi \bigr)\bigr) \bigr) \cap F \bigl(P_{C_{i}}\bigl(I-\lambda _{i} \bigl(\Psi ^{*}(I-P_{Q_{i}})\Psi \bigr)\bigr) \bigr), \end{aligned}$$
for all \(N \in \mathbb{N}\) and \(\lambda _{i} >0\). Applying the above and Theorem 3, we obtain the desired conclusion. □