https://earthobservatory.nasa.gov/features/Phytoplankton
https://www.epa.gov/environmental-topics
Chattopadhyay, J., Sarkar, R., Mandal, S.: Toxin-producing plankton may act as a biological control for planktonic blooms-field study and mathematical modelling. J. Theor. Biol. 215(3), 333–344 (2002)
Article
Google Scholar
Chattopadhyay, J., Sarkar, R., El Abdllaoui, A.: A delay differential equation model on harmful algal blooms in the presence of toxic substances. IMA J. Math. Appl. Med. Biol. 19(2), 137–161 (2002)
Article
MATH
Google Scholar
Das, K., Ray, S.: Effect of delay on nutrient cycling in phytoplankton–zooplankton interactions in estuarine system. Ecol. Model. 215, 69–76 (2008)
Article
Google Scholar
He, X., Ruan, S.: Global stability in chemostat-type plankton models with delayed nutrient recycling. J. Math. Biol. 37(3), 253–271 (1998)
Article
MathSciNet
MATH
Google Scholar
Roy, S.: The coevolution of two phytoplankton species on a single resource: allelopathy as a pseudo-mixotrophy. Theor. Popul. Biol. 75(1), 68–75 (2009)
Article
MATH
Google Scholar
Singh, A., Gakkhar, S.: A delay model for viral infection in toxin producing phytoplankton and zooplankton system. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3607–3620 (2010)
Article
MathSciNet
MATH
Google Scholar
Saha, T., Bandyopadhyay, M.: Dynamical analysis of toxin producing phytoplankton-zooplankton interactions. Nonlinear Anal., Real World Appl. 10(1), 314–332 (2009)
Article
MathSciNet
MATH
Google Scholar
Zhao, J., Wei, J.: Stability and bifurcation in a two harmful phytoplankton-zooplankton system. Chaos Solitons Fractals 39(3), 1395–1409 (2009)
Article
MathSciNet
MATH
Google Scholar
Kar, T.: Management of a fishery based on continuous fishing effort. Nonlinear Anal., Real World Appl. 5(4), 629–644 (2004)
Article
MathSciNet
MATH
Google Scholar
Jang, S., Baglama, J., Rick, J.: Nutrient-phytoplankton-zooplankton models with a toxin. Math. Comput. Model. 43(1), 105–118 (2006)
Article
MathSciNet
MATH
Google Scholar
Singh, R., Tiwari, S., Ojha, A., Thakur, N.K.: Dynamical study of nutrient-phytoplankton model with toxicity: effect of diffusion and time delay. Math. Methods Appl. Sci. (2022)
Bertolo, A., Lacroix, G., Lescher-Moutoue, F., Sala, S.: Effects of physical refuges on fish-plankton interactions. Freshw. Biol. 41(4), 795–808 (1999)
Article
Google Scholar
Thakur, N.K., Ojha, A.: Complex plankton dynamics induced by adaptation and defense. Model. Earth Syst. Environ. 6, 907–916 (2020)
Article
Google Scholar
Ojha, A., Thakur, N.K.: Exploring the complexity and chaotic behavior in plankton–fish system with mutual interference and time delay. Biosystems 198, 104283 (2020)
Article
Google Scholar
Thakur, N.K., Singh, R., Ojha, A.: Dynamical study of harmful algal bloom in Sundarban mangrove wetland with spatial interaction and competing effects. Model. Earth Syst. Environ. 8, 555–577 (2022)
Article
Google Scholar
Yongzhen, P., Yunfei, L., Changguo, L.: Evolutionary consequences of harvesting for a two-zooplankton one-phytoplankton system. Appl. Math. Model. 36(4), 1752–1765 (2012)
Article
MathSciNet
MATH
Google Scholar
Yunfei, L., Pei, Y., Gao, S., Li, C.: Harvesting of a phytoplankton-zooplankton model. Nonlinear Anal., Real World Appl. 11(5), 3608–3619 (2010)
Article
MathSciNet
MATH
Google Scholar
Mehbuba, R., Mudassar, I.: Dynamical analysis of a delay model of phytoplankton-zooplankton interaction. Appl. Math. Model. 36(2), 638–647 (2012)
Article
MathSciNet
MATH
Google Scholar
Ojha, A., Thakur, N.K.: Delay-induced Hopf and double Hopf-bifurcation in plankton system with dormancy of predators. Nonlinear Dyn. 105, 997–1018 (2021)
Article
Google Scholar
Franks, P.J.S.: Models of harmful algal blooms. Limnol. Oceanogr. 42(5part2), 1273–1282 (1997)
Article
Google Scholar
Andrew, M.E., John, B.: Oscillatory behaviour in a three-component plankton population model. Dyn. Stab. Syst. 11(4), 347–370 (1996)
Article
MATH
Google Scholar
Ruan, S.: Persistence and coexistence in zooplankton–phytoplankton–nutrient models with instantaneous nutrient recycling. J. Math. Biol. 31(6), 633–654 (1993)
Article
MathSciNet
MATH
Google Scholar
Jang, S.R.: Dynamics of variable-yield nutrient–phytoplankton–zooplankton models with nutrient recycling and self-shading. J. Math. Biol. 40(6), 229–250 (2000)
Article
MathSciNet
MATH
Google Scholar
Mitra, A.: A multi-nutrient model for the description of stoichiometric modulation of predation in micro-and mesozooplankton. J. Plankton Res. 28(6), 597–611 (2006)
Article
Google Scholar
Lakshmanan, M., Rajaseekar, S.: Nonlinear Dynamics: Integrability, Chaos and Patterns. Springer, Berlin (2012)
Google Scholar
Mukhopadhyay, B., Bhattacharyya, R.: Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity. Ecol. Model. 198(1–2), 163–173 (2006)
Article
Google Scholar
Chakraborty, K., Das, K.: Modeling and analysis of a two-zooplankton one-phytoplankton system in the presence of toxicity. Appl. Math. Model. 39(3), 1241–1265 (2015)
Article
MathSciNet
MATH
Google Scholar
Kaur, R.P., Sharma, A., Sharma, A.K.: Impact of fear effect on plankton–fish system dynamics incorporating zooplankton refuge. Chaos Solitons Fractals 143, 110563 (2021)
Article
MathSciNet
MATH
Google Scholar
Caputo, M.: Linear models of dissipation whose q is almost frequency independent-II. Geophys. J. Int. 13, 529–539 (1967)
Article
Google Scholar
Achar, S.J., Baishya, C., Kaabar, M.K.: Dynamics of the worm transmission in wireless sensor network in the framework of fractional derivatives. Math. Methods Appl. Sci. 45(8), 4278–4294 (2022)
Article
MathSciNet
Google Scholar
Baishya, C., Achar, S.J., Veeresha, P., Prakasha, D.G.: Dynamics of a fractional epidemiological model with disease infection in both the populations. Chaos 31(4), 043130 (2021)
Article
MathSciNet
MATH
Google Scholar
Kilbas, A.A., Srivastava, H.M., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Book
MATH
Google Scholar
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
MATH
Google Scholar
Ross, B.: A brief history and exposition of the fundamental theory of fractional calculus. In: Fractional Calculus and Its Applications: Proceedings of the International Conference Held at the University of New Haven, pp. 1–36. Springer, Berlin (1975)
Chapter
Google Scholar
Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)
Google Scholar
Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5(1), 1–6 (1997)
MathSciNet
MATH
Google Scholar
Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)
Article
MathSciNet
MATH
Google Scholar
Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1), 3–22 (2002)
Article
MathSciNet
MATH
Google Scholar
Wang, B., Chen, L.Q.: Asymptotic stability analysis with numerical confirmation of an axially accelerating beam constituted by the standard linear solid model. J. Sound Vib. 328(4–5), 456–466 (2009)
Article
Google Scholar
Clark, C.W.: Mathematical bioeconomics. In: Mathematical Problems in Biology, pp. 29–45. Springer, Berlin (1974)
Chapter
Google Scholar
Arditi, R., Ginzburg, L.R.: Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139(3), 311–326 (1989)
Article
Google Scholar