https://earthobservatory.nasa.gov/features/Phytoplankton

https://www.epa.gov/environmental-topics

Chattopadhyay, J., Sarkar, R., Mandal, S.: Toxin-producing plankton may act as a biological control for planktonic blooms-field study and mathematical modelling. J. Theor. Biol. **215**(3), 333–344 (2002)

Article
Google Scholar

Chattopadhyay, J., Sarkar, R., El Abdllaoui, A.: A delay differential equation model on harmful algal blooms in the presence of toxic substances. IMA J. Math. Appl. Med. Biol. **19**(2), 137–161 (2002)

Article
MATH
Google Scholar

Das, K., Ray, S.: Effect of delay on nutrient cycling in phytoplankton–zooplankton interactions in estuarine system. Ecol. Model. **215**, 69–76 (2008)

Article
Google Scholar

He, X., Ruan, S.: Global stability in chemostat-type plankton models with delayed nutrient recycling. J. Math. Biol. **37**(3), 253–271 (1998)

Article
MathSciNet
MATH
Google Scholar

Roy, S.: The coevolution of two phytoplankton species on a single resource: allelopathy as a pseudo-mixotrophy. Theor. Popul. Biol. **75**(1), 68–75 (2009)

Article
MATH
Google Scholar

Singh, A., Gakkhar, S.: A delay model for viral infection in toxin producing phytoplankton and zooplankton system. Commun. Nonlinear Sci. Numer. Simul. **15**(11), 3607–3620 (2010)

Article
MathSciNet
MATH
Google Scholar

Saha, T., Bandyopadhyay, M.: Dynamical analysis of toxin producing phytoplankton-zooplankton interactions. Nonlinear Anal., Real World Appl. **10**(1), 314–332 (2009)

Article
MathSciNet
MATH
Google Scholar

Zhao, J., Wei, J.: Stability and bifurcation in a two harmful phytoplankton-zooplankton system. Chaos Solitons Fractals **39**(3), 1395–1409 (2009)

Article
MathSciNet
MATH
Google Scholar

Kar, T.: Management of a fishery based on continuous fishing effort. Nonlinear Anal., Real World Appl. **5**(4), 629–644 (2004)

Article
MathSciNet
MATH
Google Scholar

Jang, S., Baglama, J., Rick, J.: Nutrient-phytoplankton-zooplankton models with a toxin. Math. Comput. Model. **43**(1), 105–118 (2006)

Article
MathSciNet
MATH
Google Scholar

Singh, R., Tiwari, S., Ojha, A., Thakur, N.K.: Dynamical study of nutrient-phytoplankton model with toxicity: effect of diffusion and time delay. Math. Methods Appl. Sci. (2022)

Bertolo, A., Lacroix, G., Lescher-Moutoue, F., Sala, S.: Effects of physical refuges on fish-plankton interactions. Freshw. Biol. **41**(4), 795–808 (1999)

Article
Google Scholar

Thakur, N.K., Ojha, A.: Complex plankton dynamics induced by adaptation and defense. Model. Earth Syst. Environ. **6**, 907–916 (2020)

Article
Google Scholar

Ojha, A., Thakur, N.K.: Exploring the complexity and chaotic behavior in plankton–fish system with mutual interference and time delay. Biosystems **198**, 104283 (2020)

Article
Google Scholar

Thakur, N.K., Singh, R., Ojha, A.: Dynamical study of harmful algal bloom in Sundarban mangrove wetland with spatial interaction and competing effects. Model. Earth Syst. Environ. **8**, 555–577 (2022)

Article
Google Scholar

Yongzhen, P., Yunfei, L., Changguo, L.: Evolutionary consequences of harvesting for a two-zooplankton one-phytoplankton system. Appl. Math. Model. **36**(4), 1752–1765 (2012)

Article
MathSciNet
MATH
Google Scholar

Yunfei, L., Pei, Y., Gao, S., Li, C.: Harvesting of a phytoplankton-zooplankton model. Nonlinear Anal., Real World Appl. **11**(5), 3608–3619 (2010)

Article
MathSciNet
MATH
Google Scholar

Mehbuba, R., Mudassar, I.: Dynamical analysis of a delay model of phytoplankton-zooplankton interaction. Appl. Math. Model. **36**(2), 638–647 (2012)

Article
MathSciNet
MATH
Google Scholar

Ojha, A., Thakur, N.K.: Delay-induced Hopf and double Hopf-bifurcation in plankton system with dormancy of predators. Nonlinear Dyn. **105**, 997–1018 (2021)

Article
Google Scholar

Franks, P.J.S.: Models of harmful algal blooms. Limnol. Oceanogr. **42**(5part2), 1273–1282 (1997)

Article
Google Scholar

Andrew, M.E., John, B.: Oscillatory behaviour in a three-component plankton population model. Dyn. Stab. Syst. **11**(4), 347–370 (1996)

Article
MATH
Google Scholar

Ruan, S.: Persistence and coexistence in zooplankton–phytoplankton–nutrient models with instantaneous nutrient recycling. J. Math. Biol. **31**(6), 633–654 (1993)

Article
MathSciNet
MATH
Google Scholar

Jang, S.R.: Dynamics of variable-yield nutrient–phytoplankton–zooplankton models with nutrient recycling and self-shading. J. Math. Biol. **40**(6), 229–250 (2000)

Article
MathSciNet
MATH
Google Scholar

Mitra, A.: A multi-nutrient model for the description of stoichiometric modulation of predation in micro-and mesozooplankton. J. Plankton Res. **28**(6), 597–611 (2006)

Article
Google Scholar

Lakshmanan, M., Rajaseekar, S.: Nonlinear Dynamics: Integrability, Chaos and Patterns. Springer, Berlin (2012)

Google Scholar

Mukhopadhyay, B., Bhattacharyya, R.: Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity. Ecol. Model. **198**(1–2), 163–173 (2006)

Article
Google Scholar

Chakraborty, K., Das, K.: Modeling and analysis of a two-zooplankton one-phytoplankton system in the presence of toxicity. Appl. Math. Model. **39**(3), 1241–1265 (2015)

Article
MathSciNet
MATH
Google Scholar

Kaur, R.P., Sharma, A., Sharma, A.K.: Impact of fear effect on plankton–fish system dynamics incorporating zooplankton refuge. Chaos Solitons Fractals **143**, 110563 (2021)

Article
MathSciNet
MATH
Google Scholar

Caputo, M.: Linear models of dissipation whose q is almost frequency independent-II. Geophys. J. Int. **13**, 529–539 (1967)

Article
Google Scholar

Achar, S.J., Baishya, C., Kaabar, M.K.: Dynamics of the worm transmission in wireless sensor network in the framework of fractional derivatives. Math. Methods Appl. Sci. **45**(8), 4278–4294 (2022)

Article
MathSciNet
Google Scholar

Baishya, C., Achar, S.J., Veeresha, P., Prakasha, D.G.: Dynamics of a fractional epidemiological model with disease infection in both the populations. Chaos **31**(4), 043130 (2021)

Article
MathSciNet
MATH
Google Scholar

Kilbas, A.A., Srivastava, H.M., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

Book
MATH
Google Scholar

Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

MATH
Google Scholar

Ross, B.: A brief history and exposition of the fundamental theory of fractional calculus. In: Fractional Calculus and Its Applications: Proceedings of the International Conference Held at the University of New Haven, pp. 1–36. Springer, Berlin (1975)

Chapter
Google Scholar

Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. **1**(2), 73–85 (2015)

Google Scholar

Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. **5**(1), 1–6 (1997)

MathSciNet
MATH
Google Scholar

Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. **265**(2), 229–248 (2002)

Article
MathSciNet
MATH
Google Scholar

Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. **29**(1), 3–22 (2002)

Article
MathSciNet
MATH
Google Scholar

Wang, B., Chen, L.Q.: Asymptotic stability analysis with numerical confirmation of an axially accelerating beam constituted by the standard linear solid model. J. Sound Vib. **328**(4–5), 456–466 (2009)

Article
Google Scholar

Clark, C.W.: Mathematical bioeconomics. In: Mathematical Problems in Biology, pp. 29–45. Springer, Berlin (1974)

Chapter
Google Scholar

Arditi, R., Ginzburg, L.R.: Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. **139**(3), 311–326 (1989)

Article
Google Scholar