- Research
- Open access
- Published:
Some remarks on α-admissibility in S-metric spaces
Journal of Inequalities and Applications volume 2022, Article number: 34 (2022)
Abstract
The concept of α-admissible mapping introduced by Samet et al. (Nonlinear Anal. 75:2154–2165, 2012) has various generalizations. In this paper, we introduce the concept of \(\alpha _{s}\)-admissible mapping and its various forms by generalizing the concept of α-admissible mapping in the setting of S-metric spaces. Further, we also introduce generalized rational \(\alpha _{s}\)-Geraghty contraction type mappings and study the existence of fixed point theorems in S-metric spaces. Examples are also given to verify the main results.
1 Introduction and preliminaries
The Banach contraction principle is one of the most interesting topics for many researchers because of its applications in various fields, simplicity, and easiness. They attempted to generalize the Banach contraction principle in different directions. Samet et al. [1] made an attempt by introducing the concept of α-admissible mappings and by further introducing the concept of α-ψ-contractive mappings in metric spaces. The results of Samet et al. [1] show that Banach’s fixed point theorem and various other results are direct consequences of their results. On the other hand, as one result of the generalization of a metric space, Sedghi et al. [2] introduced the concept of S-metric space.
Definition 1.1
([2])
Let X be a nonempty set. An S-metric on X is a function \(S:X\times X \times X \rightarrow [0,+\infty )\) that satisfies the following conditions for each \(x,y,z,a \in X\):
-
(1)
\(S(x,y,z)\geq 0\),
-
(2)
\(S(x,y,z)=0\) if and only if \(x=y=z\),
-
(3)
\(S(x,y,z)\leq S(x,x,a)+S(y,y,a)+S(z,z,a)\).
The pair \((X,S)\) is called S-metric space.
Definition 1.2
([2])
In an S-metric space, we have \(S(x, x, y) = S(y, y, x)\).
Definition 1.3
([2])
Let \((X,S)\) be an S-metric space.
-
(1)
A sequence \(\{x_{n}\}\) in X converges to x if and only if \(S(x_{n}, x_{n}, x)\rightarrow 0\) as \(n \rightarrow +\infty \). That is, for each \(\varepsilon >0\), there exists \(n_{0} \in \mathbb{N}\) such that, for all \(n\geq n_{0}\), \(S(x_{n}, x_{n},x) < \varepsilon \), and we denote this by \(\lim_{n \rightarrow +\infty } x_{n} = x\).
-
(2)
A sequence \(\{x_{n}\}\) in X is called a Cauchy sequence if for each \(\varepsilon >0\) there exists \(n_{0} \in \mathbb{N}\) such that \(S(x_{n}, x_{n},x_{m}) < \varepsilon \) for each \(n, m\geq n_{0}\).
-
(3)
The S-metric space \((X, S)\) is said to be complete if every Cauchy sequence is convergent.
In this paper we introduce various concepts of α-admissible mappings in the context of S-metric spaces and name them \(\alpha _{s}\)-admissible. Further, we prove various fixed point theorems based on different contractive types due to \(\alpha _{s}\)-admissible mappings.
Here firstly, we recall the definition of α-admissible mappings and their generalizations in metric space, G-metric space, S-metric space, and \(S_{b}\)-metric space.
Definition 1.4
([1])
Let S be a self-mapping on a metric space \((X, d)\), and let \(\alpha: X\times X \rightarrow [0, +\infty )\) be a function. It is said that S is α-admissible if \(x,y \in X\), \(\alpha (x,y)\geq 1\) imply \(\alpha (Sx,Sy)\geq 1\).
Example 1
Consider \(X = [0,+\infty )\), and define \(S: X \rightarrow X\) and \(\alpha: X \times X \rightarrow [0,+\infty )\) by \(Sx = 5x\) for all \(x,y \in X\) and
Then S is α-admissible.
Definition 1.5
([3])
Let \(S,T: X \rightarrow X\) and \(\alpha: X \times X \rightarrow [0, +\infty )\). It is said that the pair \((S,T)\) is α-admissible if \(x,y \in X\) such that \(\alpha (x,y) \geq 1\), then we have \(\alpha (Sx,Ty) \geq 1\) and \(\alpha (Tx,Sy) \geq 1\).
Definition 1.6
([4])
Let \(S: X \rightarrow X\) and \(\alpha: X \times X \rightarrow (-\infty, +\infty )\). It is said that S is a triangular α-admissible mapping if
-
(T1)
\(\alpha (x,y) \geq 1\) implies \(\alpha (Sx,Sy) \geq 1, x,y \in X\),
-
(T2)
\(\alpha (x,z) \geq 1\), \(\alpha (z,y) \geq 1\) imply \(\alpha (x,y) \geq 1, x,y,z \in X\).
Definition 1.7
([3])
Let \(S,T: X \rightarrow X\) and \(\alpha: X \times X \rightarrow [0, +\infty )\). It is said that a pair \((S,T)\) is a triangular α-admissible mapping if
-
(T1)
\(\alpha (x,y) \geq 1\) implies \(\alpha (Sx,Ty) \geq 1\) and \(\alpha (Tx,Sy) \geq 1, x,y \in X\),
-
(T2)
\(\alpha (x,z) \geq 1\), \(\alpha (z,y) \geq 1\) imply \(\alpha (x,y) \geq 1, x,y,z \in X\).
Definition 1.8
([5])
Let S be a self-mapping on a metric space \((X,d)\), and let \(\alpha, \eta: X \times X \rightarrow [0,+\infty )\) be two functions. It is said that T is an α-admissible mapping with respect to η if \(x,y \in X\), \(\alpha (x,y) \geq \eta (x,y)\) imply \(\alpha (Sx,Sy) \geq \eta (Sx,Sy)\).
It can be noted that if we take \(\eta (x,y) = 1\), then this definition reduces to Definition 1.4. Also, if we take \(\alpha (x,y) = 1\), then S is said to be an η-subadmissible mapping.
Lemma 1.9
([6])
Let \(S: X \rightarrow X\) be a triangular α-admissible mapping. Assume that there exists \(x_{0} \in X\) such that \(\alpha (x_{0},Sx_{0}) \geq 1\). Define a sequence \(\{x_{n}\}\) by \(x_{n+1} = Sx_{n}\). Then \(\alpha (x_{n},x_{m}) \geq 1\) for all \(m,n \in \mathbb{N} \cup \{0\}\) with \(n < m\).
Lemma 1.10
([7])
Let \(S,T: X \rightarrow X\) be a triangular α-admissible mapping. Assume that there exists \(x_{0} \in X\) such that \(\alpha (x_{0}, Sx_{0}) \geq 1\). Define sequences \(x_{2i+1} = Sx_{2i}\) and \(x_{2i+2} = Tx_{2i+1}\), where \(i = 0,1,2,\dots \). Then \(\alpha (x_{n},x_{m}) \geq 1\) for all \(m,n \in \mathbb{N} \cup \{0\}\) with \(n < m\).
Alghamdi and Karapinar [8] generalized the concept of α-admissible mappings in the context of G-metric space and called them β-admissible. The definition of β-admissible given by Alghamdi and Karapinar is as follows.
Definition 1.11
([8])
Let \(T: X \rightarrow X\) and \(\beta: X \times X \times X \rightarrow [0,+\infty )\), then T is said to be β-admissible if for all \(x,y,z \in X\)
They gave a suitable example for β-admissible mappings. Further, they also generalized the α-ψ contractive mappings by introducing generalized G-β-ψ contractive mappings of type I and II.
Hussain et al. [9] further generalized the concept of α-admissible mappings in G-metric space by introducing rectangular G-α-admissible. They also extended rectangular G-α-admissible for two mappings.
Ansari et al. [10] also studied α-admissible mappings in G-metric space by introducing a G-η-subadmissible mapping and an α-dominating map. They also introduced an η-subdominating map, α-regular in the context of G-metric space, partially weakly G-α-admissible, partially weakly G-η-subadmissible mappings, etc.
The concept of α-admissible mappings was extended to S-metric space by Zhou et al. [11] and was called γ-admissible. They defined it as follows.
Definition 1.12
([11])
Let \(T: X \rightarrow X\) and \(\gamma: X^{3} \rightarrow [0,+\infty )\). Then T is said to be γ-admissible if for all \(x,y,z \in X\)
They also extended γ-admissibility for two mappings. Further, they also introduced concepts of various contractive mappings viz. type A, type B, type C, type D, and type E.
Bulbul et al. [12] also introduced the concept of generalized S-β-ψ contractive type mappings on the line of generalized G-β-γ contractive type mappings. Nabil et al. [13] also introduced the concept of α-admissible mappings in \(S_{b}\)-metric space.
From these, what we observed is that β-admissible was for the first time used by Samet et al. [1] to represent α-admissible while dealing with coupled fixed point related problems. Phiangsungnoen et al. [14] also used the name β-admissible mapping in order to represent α-admissible for fuzzy mappings. On the other hand, β-admissible of Alghamdi and Karapinar [8] and γ-admissible of Zhou et al. [11] are all extended versions of α-admissible mappings in G-metric space and S-metric space, respectively. Thus, we can remark that α-admissible and its various forms can be extended to G-metric as well as S-metric spaces and further to \(G_{b}\)-metric and \(S_{b}\)-metric spaces. With this idea, we introduce various forms of α-admissible mappings in the context of S-metric space and present the following definitions. For more detailed information on the generalization of a metric space, one can see research papers in [11–24].
Definition 1.13
Let \((\mathbb{U},S)\) be an S-metric space, \(A:\mathbb{U} \rightarrow \mathbb{U}\), and \(\alpha _{s}: \mathbb{U}\times \mathbb{U}\times \mathbb{U} \rightarrow [0,+\infty )\). Then A is called \(\alpha _{s}\)-admissible if \(u,v,w \in \mathbb{U}\), \(\alpha _{s}(u,v,w)\geq 1\) imply \(\alpha _{s}(Au,Av,Aw)\geq 1\).
Example 2
Consider \(\mathbb{U}=[0, +\infty )\) and define \(A:\mathbb{U}\rightarrow \mathbb{U}\) and \(\alpha _{s}:\mathbb{U}\times \mathbb{U}\times \mathbb{U} \rightarrow [0,+\infty )\) by \(Au=4u\) for all \(u,v,w \in \mathbb{U}\) and
Then A is \(\alpha _{s}\)-admissible.
Definition 1.14
Let \((\mathbb{U},S)\) be an S-metric space, \(A,B:\mathbb{U}\rightarrow \mathbb{U}\), and \(\alpha _{s}:\mathbb{U}\times \mathbb{U} \times \mathbb{U} \rightarrow [0,+\infty )\). We say that the pair \((A, B)\) is \(\alpha _{s}\)-admissible if \(u,v,w \in \mathbb{U}\) such that \(\alpha _{s} (u,v,w)\geq 1\), then we have \(\alpha _{s}(Au,Av,Bw))\geq 1\) and \(\alpha _{s} (Bu,Bv,Aw) \geq 1\).
Definition 1.15
Let \((\mathbb{U},S)\) be an S-metric space, \(A:\mathbb{U}\rightarrow \mathbb{U}\), and \(\alpha _{s}:\mathbb{U}\times \mathbb{U}\times \mathbb{U}\rightarrow [0 , +\infty )\). We say that A is a triangular \(\alpha _{s}\)-admissible mapping if
-
(i)
\(\alpha _{s}(u,v,w) \geq 1\) implies \(\alpha _{s}(Au,Av,Aw)\geq 1\), \(u,v,w\in \mathbb{U}\).
-
(ii)
\(\alpha _{s}(u,v,t)\geq 1\) and \(\alpha _{s}(t,t,w)\geq 1\) imply \(\alpha _{s}(u,v,w)\geq 1\), \(u,v,w,t \in \mathbb{U}\).
Definition 1.16
Let \((\mathbb{U},S)\) be an S-metric space, \(A:\mathbb{U} \rightarrow \mathbb{U}\), and let \(\alpha _{s},\eta _{s}:\mathbb{U}\times \mathbb{U}\times \mathbb{U} \rightarrow [0,+\infty )\) be two functions. We say that A is an \(\alpha _{s}\)-admissible mapping with respect to \(\eta _{s}\) if \(u,v,w \in \mathbb{U}\),
Note that if we take \(\eta _{s}(u,v,w) = 1\), then this definition reduces to Definition 1.13. Also, if we take \(\alpha _{s}(u,v,w) = 1\), then we say that A is an \(\eta _{s}\)-subadmissible mapping.
Now we state the following two lemmas in the line of Lemma 1.9 and Lemma 1.10.
Lemma 1.17
Let \((\mathbb{U},S)\) be an S-metric space, \(A:\mathbb{U}\rightarrow \mathbb{U}\) be a triangular \(\alpha _{s}\)-admissible mapping. Assume that there exists \(u_{0} \in \mathbb{U}\) such that \(\alpha _{s}(u_{0},u_{0},Au_{0})\geq 1\). Define a sequence \(\{u_{n}\}\) by \(u_{n+1}=Au_{n}\). Then we have
Lemma 1.18
Let \((\mathbb{U},S)\) be an S-metric space, \(A,B:\mathbb{U}\rightarrow \mathbb{U}\) be a triangular \(\alpha _{s}\)-admissible mapping. Assume that there exists \(u_{0} \in \mathbb{U}\) such that \(\alpha _{s}(u_{0},u_{0},Au_{0})\geq 1\). Define sequences
Then we have \(\alpha _{s}(u_{n},u_{n},u_{m})\geq 1\) for all \(m,n\in \mathbb{N}\cup \{0\}\) with \(n< m\).
We denote by \(\mathcal{G}\) the family of all functions \(g: [0,+\infty ) \rightarrow [0,1)\) such that, for any bounded sequence \(\{t_{n}\}\) of positive reals, \(g(t_{n}) \rightarrow 1\) implies \(t_{n} \rightarrow 0\). Then the following theorem of Geraghty contraction can be stated in the context of S-metric spaces.
Theorem 1.19
Let \((\mathbb{U},S)\) be a S-metric space. Let \(A:\mathbb{U}\rightarrow \mathbb{U}\) be a self-mapping. Suppose that there exists \(g \in \mathcal{G}\) such that, for all \(u,v,w \in \mathbb{U}\),
Then A has a unique fixed point \(a \in \mathbb{U}\) and \(\{A^{n}u\}\) converges to a for each \(u \in \mathbb{U}\).
2 Main results
In this section, we prove some fixed point theorems satisfying generalized rational \(\alpha _{s}\)-Geraghty contraction type mappings in complete S-metric spaces. Let \((\mathbb{U},S)\) be an S-metric, and let \(\alpha _{s}:\mathbb{U}\times \mathbb{U}\times \mathbb{U}\rightarrow [0,+ \infty )\) be a function. Mappings \(A,B:\mathbb{U}\rightarrow \mathbb{U}\) are called a pair of generalized rational \(\alpha _{s}\)-Geraghty contraction mappings of type I if there exists \(g \in \mathcal{G}\) such that, for all \(u,v,w \in \mathbb{U}\),
where
Mappings \(A,B:\mathbb{U}\rightarrow \mathbb{U}\) are called a pair of generalized rational \(\alpha _{s}\)-Geraghty contraction mappings of type-II if there exists \(g \in \mathcal{G}\) such that, for all \(u,v \in \mathbb{U}\),
where
Let \(A=B\), then B is called a generalized rational \(\alpha _{s}\)-Geraghty contraction mapping of type-I if there exists \(g \in \mathcal{G}\) such that, for all \(u,v,w \in \mathbb{U}\),
where
\(B:\mathbb{U}\rightarrow \mathbb{U}\) is called a generalized rational \(\alpha _{s}\)-Geraghty contraction mapping of type-II if there exists \(g \in \mathcal{G}\) such that, for all \(u,v \in \mathbb{U}\),
where
Theorem 2.1
Let \((\mathbb{U},S)\) be a complete S-metric space, \(\alpha _{s}:\mathbb{U} \times \mathbb{U}\times \mathbb{U} \rightarrow [0,+\infty )\) be a function. Let \(A,B:\mathbb{U} \rightarrow \mathbb{U}\) be two mappings, then suppose that the following hold:
-
(i)
\((A,B)\) is a pair of generalized rational \(\alpha _{s}\)-Geraghty contraction mappings of type I,
-
(ii)
\((A,B)\) is triangular \(\alpha _{s}\)-admissible,
-
(iii)
There exists \(u_{0} \in \mathbb{U}\) such that \(\alpha _{s}(u_{0},u_{0},Au_{0}) \geq 1\),
-
(iv)
A and B are continuous.
Then \((A,B)\) has a common fixed point.
Proof
Let \(u_{1} \in \mathbb{U}\) be such that \(u_{1} = Au_{0}\) and \(u_{2} = Bu_{1}\). Continuing this process, we construct a sequence \(u_{n}\) of points in \(\mathbb{U}\) such that
where \(i = 0,1,2,3,\dots \).
By the assumption \(\alpha _{s}(u_{0},u_{0},u_{1}) \geq 1\) and the pair \((A,B)\) is \(\alpha _{s}\)-admissible, by Lemma 1.18, we have
Then
for all \(i \in \mathbb{N} \cup \{0\}\). Now,
If \(\max \{S(u_{2i},u_{2i},u_{2i+1}),S(u_{2i+1},u_{2i+1},u_{2i+2}) \} = S(u_{2i+1},u_{2i+1},u_{2i+2})\),
then
which is a contradiction. Hence,
This implies that
for all \(n \in \mathbb{N}\cup \{0\}\).
So, the sequence \(\{S(u_{n},u_{n},u_{n+1})\}\) is nonnegative and nonincreasing. Now, we prove that \(S(u_{n},u_{n},u_{n+1}) \rightarrow 0\). It is clear that \(\{S(u_{n},u_{n},u_{n+1})\}\) is a decreasing sequence. Therefore, there exists some positive number r such that \({\lim_{n \to +\infty }}S(u_{n},u_{n},u_{n+1}) = r\).
From (2.7), we have
Now, by taking limit \(n \rightarrow +\infty \), we have
that is,
By the property of g, we have
Now, we show that the sequence \(\{u_{n}\}\) is a Cauchy sequence. Suppose on the contrary that \(\{u_{n}\}\) is not a Cauchy sequence. Then there exist \(\varepsilon > 0\) and sequences \(\{u_{m_{k}}\}\) and \(\{u_{n_{k}}\}\) such that, for all positive integers k, we have \(m_{k} > n_{k} > k\),
and \(m_{k}\) is the smallest number such that (2.10) holds. From (2.10), we get
Using the triangle inequality and (2.11),
Letting \(k \rightarrow +\infty \) in the above inequality and using (2.9), we obtain
Also, from the triangular inequality, we have
and
Taking limit as \(k \rightarrow +\infty \) and using (2.9) and (2.12), we obtain
and
Using (2.13), we have that \({\lim_{k \to +\infty }}S(u_{n_{k}},u_{n_{k}},u_{m_{k}+1}) = \varepsilon \).
By Lemma 1.18, \(\alpha (u_{n_{k}},u_{n_{k}},u_{m_{k}+1}) \geq 1\), we have
We know that
Finally, we conclude that
By using (2.9), taking limit as \(k \rightarrow +\infty \) in the above inequality, we obtain
So, \({\lim_{k \to +\infty }}S(u_{n_{k}},u_{n_{k}},u_{m_{k}+1}) = 0 < \varepsilon \), which is a contradiction. Hence \(\{u_{n}\}\) is a Cauchy sequence. Since \(\mathbb{U}\) is complete, there exists \(a \in \mathbb{U}\) such that \(u_{n} \rightarrow a\) implies that \(u_{2i+1} \rightarrow a\) and \(u_{2i+2} \rightarrow a\). As A and B are continuous, so we get \(Bu_{2i+1} \rightarrow Ba\) and \(Au_{2i+2} \rightarrow Aa\). Thus \(a=Aa\). Similarly, \(a=Ba\), we have \(Aa=Ba=a\). Then \((A,B)\) has a common fixed point. □
In the following theorem, we dropped continuity.
Theorem 2.2
Let \((\mathbb{U},S)\) be a complete S-metric space, \(\alpha _{s}:\mathbb{U} \times \mathbb{U} \times \mathbb{U} \rightarrow \mathbb{R}\) be a function. Let \(A,B: \mathbb{U} \rightarrow \mathbb{U}\) be two mappings, then suppose that the following hold:
-
(i)
\((A,B)\) is a pair of generalized rational \(\alpha _{s}\)-Geraghty contraction mappings of type-I,
-
(ii)
\((A,B)\) is triangular \(\alpha _{s}\)-admissible,
-
(iii)
There exists \(u_{0} \in \mathbb{U}\) such that \(\alpha _{s}(u_{0},u_{0},Au_{0}) \geq 1\),
-
(iv)
If \(\{u_{n}\}\) is a sequence in \(\mathbb{U}\) such that \(\alpha _{s}(u_{n},u_{n},u_{n+1}) \geq 1\) for all \(n \in \mathbb{N} \cup \{0\}\) and \(u_{n} \rightarrow a \in \mathbb{U}\) as \(n \rightarrow +\infty \), then there exists a subsequence \(\{u_{n_{k}}\}\) of \(\{u_{n}\}\) such that \(\alpha _{s}(u_{n_{k}},u_{n_{k}},a) \geq 1\) for all k.
Then \((A,B)\) has a common fixed point.
Proof
Follows similar lines of Theorem 2.1. Define a sequence \(u_{2i+1} = Au_{2i}\) and \(u_{2i+2} = Bu_{2i+1}\), where \(i = 0,1,2,\dots \) converges to \(a \in \mathbb{U}\). By the hypothesis of \((iv)\), there exists a subsequence \(\{u_{n_{k}}\}\) of \(\{u_{n}\}\) such that \(\alpha _{s}(u_{2n_{k}},u_{2n_{k}},a) \geq 1\) for all k. Now, by using (2.1) for all k, we have
so that
On the other hand, we obtain
Letting \(k \rightarrow +\infty \), we have
Case I:
Suppose that \(S(a,a,Ba) > 0\). From (2.16), for large k, we have \(\nabla _{1}(u_{2n_{k}},u_{2n_{k}},a) > 0\), which implies that
Then we have
Letting \(k \rightarrow +\infty \) in (2.17), we claim that
which is a contradiction. Thus, we find that \(S(a,a,Ba) = 0\) implies \(a = Ba\).
Case II:
Similarly, \(a = Aa\). Thus \(a = Ba = Aa\). □
3 Consequences
and \(A = B\) in Theorem 2.1 and Theorem 2.2, we have the following corollaries.
Corollary 3.1
Let \((\mathbb{U},S)\) be a complete S-metric space, and let A be an \(\alpha _{s}\)-admissible mapping such that the following hold:
-
(i)
A is a generalized rational \(\alpha _{s}\)-Geraghty contraction mapping of type-I,
-
(ii)
A is triangular \(\alpha _{s}\)-admissible,
-
(iii)
There exists \(u_{0} \in \mathbb{U}\) such that \(\alpha _{s}(u_{0},u_{0},Au_{0}) \geq 1\),
-
(iv)
A is continuous.
Then A has a fixed point \(a \in \mathbb{U}\), and A is a Picard operator, that is, \(\{A^{n}u_{0}\}\) converges to a.
Corollary 3.2
Let \((\mathbb{U},S)\) be a complete S-metric space, and let A be an \(\alpha _{s}\)-admissible mapping such that the following hold:
-
(i)
A is a generalized rational \(\alpha _{s}\)-Geraghty contraction mapping of type-I,
-
(ii)
A is triangular \(\alpha _{s}\)-admissible,
-
(iii)
There exists \(u_{0} \in \mathbb{U}\) such that \(\alpha _{s}(u_{0},u_{0},Au_{0}) \geq 1\),
-
(iv)
If \(\{u_{n}\}\) is a sequence in \(\mathbb{U}\) such that \(\alpha _{s}(u_{n},u_{n},u_{n+1}) \geq 1\) for all \(n \in \mathbb{N}\cup \{0\}\) and \(u_{n} \rightarrow a \in \mathbb{U}\) as \(n \rightarrow + \infty \), then there exists a subsequence \(\{u_{n_{k}}\}\) of \(\{u_{n}\}\) such that \(\alpha _{s}(u_{n_{k}},u_{n_{k}},a) \geq 1\) for all k.
Then A has a fixed point \(a \in \mathbb{U}\) and A is a Picard operator, that is, \(\{A^{n}u_{0}\}\) converges to a.
in Theorem 2.1 and Theorem 2.2, we can have another result.
Let \((\mathbb{U},S)\) be a S-metric space, and let \(\alpha _{s},\eta _{s}:\mathbb{U}\times \mathbb{U} \times \mathbb{U} \rightarrow [0,+\infty )\) be a function. Mappings \(A,B: \mathbb{U} \rightarrow \mathbb{U}\) are called a pair of generalized rational \(\alpha _{s}\)-Geraghty contraction type mappings with respect to \(\eta _{s}\) if there exists \(g \in \mathcal{G}\) such that, for all \(u,v,w \in \mathbb{U}\),
where
Theorem 3.3
Let \((\mathbb{U},S)\) be a complete S-metric space. Let A be an \(\alpha _{s}\)-admissible mapping with respect to \(\eta _{s}\) such that the following hold:
-
(i)
\((A,B)\) is a generalized rational \(\alpha _{s}\)-Geraghty contraction type mapping,
-
(ii)
\((A,B)\) is triangular \(\alpha _{s}\)-admissible,
-
(iii)
There exists \(u_{0} \in \mathbb{U}\) such that \(\alpha _{s}(u_{0},u_{0},Au_{0}) \geq \eta _{s}(u_{0},u_{0},Au_{0})\),
-
(iv)
A and B are continuous.
Then \((A,B)\) has a common fixed point.
Proof
Let \(u_{1}\in \mathbb{U}\) be such that \(u_{1} = Au_{0}\) and \(u_{2} = Bu_{1}\). Continuing this process, we construct a sequence \(\{u_{n}\}\) of points in \(\mathbb{U}\) such that
where \(i = 0,1,2,3,\dots \).
By assumption \(\alpha _{s}(u_{0},u_{0},u_{1}) \geq \eta _{s}(u_{0},u_{0},u_{1})\) and the pair \((A,B)\) is \(\alpha _{s}\)-admissible with respect to \(\eta _{s}\), we have \(\alpha _{s}(Au_{0},Au_{0},Bu_{1}) \geq \eta _{s}(Au_{0},Au_{0},Bu_{1})\), from which we deduce that \(\alpha _{s}(u_{1},u_{1},u_{2}) \geq \eta _{s}(u_{1},u_{1},u_{2})\), which also implies that \(\alpha _{s}(Bu_{1},Bu_{1},Au_{2}) \geq \eta _{s}(Bu_{1},Bu_{1},Au_{2})\). Continuing in this way, we obtain \(\alpha _{s}(u_{n},u_{n},u_{n+1}) \geq \eta _{s}(u_{n},u_{n},u_{n+1})\) for all \(n \in \mathbb{N} \cup \{0\}\).
Therefore,
for all \(i \in \mathbb{N} \cup \{0\}\). Now
From the definition of g, the case \(\nabla _{1}(u_{2i},u_{2i},u_{2i+1}) = S(u_{2i+1},u_{2i+1},u_{2i+2})\) is impossible.
which is a contradiction. Otherwise, in the other case
This implies that
for all \(n \in \mathbb{N} \cup \{0\}\). □
Following similar lines of Theorem 2.1, we can prove that A and B have a common fixed point.
Theorem 3.4
Let \((\mathbb{U},S)\) be a complete S-metric space, and let \((A,B)\) be an \(\alpha _{s}\)-admissible mapping with respect to \(\eta _{s}\) such that the following hold:
-
(i)
\((A,B)\) is a generalized rational \(\alpha _{s}\)-Geraghty contraction type mapping,
-
(ii)
\((A,B)\) is triangular \(\alpha _{s}\)-admissible,
-
(iii)
There exists \(u_{0} \in \mathbb{U}\) such that \(\alpha _{s}(u_{0},u_{0},Au_{0}) \geq \eta _{s}(u_{0},u_{0},Au_{0})\),
-
(iv)
If \(\{u_{n}\}\) is a sequence in \(\mathbb{U}\) such that \(\alpha _{s}(u_{n},u_{n},u_{n+1}) \geq \eta _{s}(u_{n},u_{n},u_{n+1})\) for all \(n \in \mathbb{N} \cup \{0\}\) and \(u_{n} \rightarrow a \in \mathbb{U}\) as \(n \rightarrow +\infty \), then there exists a subsequence \(\{u_{n_{k}}\}\) of \(\{u_{n}\}\) such that \(\alpha _{s}(u_{n_{k}},u_{n_{k}},a) \geq \eta _{s}(u_{n_{k}},u_{n_{k}},a)\) for all k.
Then A and B have a common fixed point.
Proof
Follows similar lines of Theorem 2.2. □
and \(A = B\) in Theorem 3.3 and Theorem 3.4, we get the following corollaries.
Corollary 3.5
Let \((\mathbb{U},S)\) be a complete S-metric space, and let A be an \(\alpha _{s}\)-admissible mapping with respect to \(\eta _{s}\) such that the following hold:
-
(i)
A is a generalized rational \(\alpha _{s}\)-Geraghty contraction type mapping,
-
(ii)
A is triangular \(\alpha _{s}\)-admissible,
-
(iii)
There exists \(u_{0} \in \mathbb{U}\) such that \(\alpha _{s}(u_{0},u_{0},Au_{0}) \geq \eta _{s}(u_{0},u_{0},Au_{0})\),
-
(iv)
A is continuous.
Then A has a fixed point \(a \in \mathbb{U}\) and A is a Picard operator, that is, \(\{A^{n}u_{0}\}\) converges to a.
Corollary 3.6
Let \((\mathbb{U},S)\) be a complete S-metric space, and let A be an \(\alpha _{s}\)-admissible mapping with respect to \(\eta _{s}\) such that the following hold:
-
(i)
A is a generalized rational \(\alpha _{s}\)-Geraghty contraction type mapping,
-
(ii)
A is triangular \(\alpha _{s}\)-admissible,
-
(iii)
There exists \(u_{0} \in \mathbb{U}\) such that \(\alpha _{s}(u_{n},u_{n},Au_{n+1}) \geq \eta _{s}(u_{n},u_{n},Au_{n+1})\) for all \(n \in \mathbb{N} \cup \{0\}\) and \(u_{n} \rightarrow a \in \mathbb{U}\) as \(n \rightarrow +\infty \), then there exists a subsequence \(\{u_{n_{k}}\}\) of \(\{u_{n}\}\) such that \(\alpha _{s}(u_{n_{k}},u_{n_{k}},a) \geq \eta _{s}(u_{n_{k}},u_{n_{k}},a)\) for all k.
Then A has a fixed point \(a \in \mathbb{U}\), and A is a Picard operator, that is, \(\{A^{n}u_{0}\}\) converges to a.
Example 3
Let \(\mathbb{U}=\{1,2,3\}\) and S be an S-metric. Let \(S(1,1,3)=S(3,3,1)=\frac{5}{7}\), \(S(1,1,1)=S(2,2,2)=S(3,3,3)=0\), \(S(1,1,2)=S(2,2,1)=1\), \(S(2,2,3)=S(3,3,2)=\frac{4}{7}\). Also, let
Define the mappings \(A,B:\mathbb{U}\rightarrow \mathbb{U}\) as follows: \(Au=1\) for each \(u\in \mathbb{U}\), \(B(1)=B(3)=1\), \(B(2)=3\), and \(g:[0,+\infty )\rightarrow [0,1)\), then
Let \(u=2\) and \(v=3\), then condition (i) of Theorem 2.1 is not satisfied as
where
We prove that Theorem 2.1 can be applied to A and B. Let \(u,v\in \mathbb{U}\), clearly \((A,B)\) is \(\alpha _{s}\)-admissible such that \(\alpha _{s}(u,u,v)\geq 1\). Let \(u,v \in \mathbb{U}\) so that \(Au, Bv\in \mathbb{U}\) and \(\alpha _{s}(Au,Au,Bv)= 1\). Hence \((A,B)\) is \(\alpha _{s}\)-admissible. We know that condition (i) of Theorem 2.1 is satisfied.
If \(u,v \in \mathbb{U}\), then \(\alpha _{s}(u,u,v)= 1\), we have
where
and \(S(A2, A2, B3)=S(1,1,1)=0\).
Hence all the hypotheses of Theorem 2.1 are satisfied. So, A and B have a common fixed point.
Availability of data and materials
Not applicable to this paper.
References
Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for \(\alpha -\psi \)-contractive type mappings. Nonlinear Anal. 75, 2154–2165 (2012)
Sedghi, S., Shobe, N., Aliouche, A.: A generalization of fixed point theorems in S-metric spaces. Mat. Vesn. 64(3), 258–266 (2012)
Abdeljwad, T.: Meir–Keeler α-contractive fixed and common fixed point theorems. Fixed Point Theory Appl. 2013, 19 (2013)
Karapinar, E., Kumam, P., Salimi, P.: On α-ψ-Meir–Keeler contractive mappings. Fixed Point Theory Appl. 2013, 94 (2013)
Salimi, P., Latif, A., Hussain, N.: Modified α-ψ-contractive mappings with applications. Fixed Point Theory Appl. 2013, 151 (2013)
Cho, S., Bae, J., Karapinar, E.: Fixed point theorems of α-geraghaty contraction type in metric space. Fixed Point Theory Appl. 2013, 329 (2013)
Arshad, M., Hussain, A., Azam, A.: Fixed point of α-geraghaty contraction with application. UPB Sci. Bull., Ser. A 78(2), 67–78 (2016)
Alghamdi, M.A., Karapınar, E.: \(G-\beta -\psi \) contractive-type mappings and related fixed point theorems. J. Inequal. Appl. 2013, 70 (2013)
Hussain, N., Parvaneh, V., Golkarmanesh, F.: Coupled and tripled coincidence point results under \((F, g)\)-invariant sets in \(G_{b}\)-metric spaces and \(G-\alpha \)-admissible mappings. Math. Sci. 9, 11–26 (2015)
Ansari, A.H., Changdok, S., Hussain, N., Mustafa, Z., Jaradat, M.M.M.: Some common fixed point theorems for weakly α-admissible pairs in G-metric spaces with auxiliary functions. J. Math. Anal. 8(3), 80–107 (2017)
Zhou, M., Liu, X.L., Radenović, S.: S-γ-ϕ-φ-contractive type mappings in S-metric spaces. J. Nonlinear Sci. Appl. 10, 1613–1639 (2017)
Bulbul, K., Rohen, Y., Mahendra, Y., Khan, M.S.: Fixed point theorems of generalised S-β-ψ contractive type mappings. Math. Morav. 22(1), 81–92 (2018)
Mlaiki, N., Mukheimer, A., Rohen, Y., Souayah, N., Abdeljawad, T.: Fixed point theorems for α-ψ-contractive mapping in \(S_{b}\)-metric spaces. J. Math. Anal. 8(5), 40–46 (2017)
Phiangsungnoen, S., Sintunavarat, W., Kumam, P.: Fuzzy fixed point theorems for fuzzy mappings via β-admissible with applications. Fixed Point Theory Appl. 2014, 190 (2014)
Debnath, P., Neog, M., Radenović, S.: Set valued Reich type G-contractions in a complete metric space with graph. Rend. Circ. Mat. Palermo 69, 917–924 (2020). https://doi.org/10.1007/s12215-019-00446-9
Mahmood, Q., Shahzad, A., Shoaib, A., Ansari, A.H., Radenović, S.: Common fixed point results for α-ψ-contractive mappings via \((F;h)\) mappings via pair of upper class functions. J. Math. Anal. 10(4), 1–10 (2019)
Babu, A.S., Došenović, T., Ali, M.D.M., Radenović, S., Rao, K.P.R.: Some Prešić type results in b-dislocated metric spaces. Constr. Math. Anal. 2(1), 40–48 (2019)
Došenović, T., Radenović, S., Sedghi, S.: Generalized metric spaces: survey. TWMS J. Pure Appl. Math. 9(1), 3–17 (2018)
Sedghi, S., Gholidahneh, A., Došenović, T., Esfahani, J., Radenović, S.: Common fixed point of four maps in \(S_{b}\)-metric spaces. J. Linear Topol. Algebra 5(2), 93–104 (2016)
Ansari, A.H., Djekić, D.D., Gu, F., Popović, B.Z., Radenović, S.: C-class functions and remarks on fixed points of weakly compatible mappings in G-metric spaces satisfying common limit range property. Math. Interdiscip. Res. 1, 279–290 (2016)
Aleksić, Z., Mitrović, Z.D., Radenović, S.: Picard sequences in b-metric spaces. Fixed Point Theory 21(1), 35–46 (2020)
Gholidahneh, A., Sedghi, S., Došenović, T., Radenović, S.: Ordered S-metric spaces and coupled common fixed point theorems of integral type contraction. Math. Interdiscip. Res. 2, 71–84 (2017)
Dhamodharan, D., Krishnakumar, R., Radenović, S.: Coupled fixed point theorems of integral type contraction in \(S_{b}\)-metric spaces. Res. Fixed Point Theory Appl. 2019, Article ID 2018032 (2019)
Agarwal, R.P., Karapinar, E., O’Regan, D., Roldan–Lopez-de-Hiero, A.F.: Fixed Point Theory in Metric Type Spaces. Springer, Switzerland (2015)
Acknowledgements
The authors would like to express their thanks to the editor and reviewers for valuable advice in helping to improve the manuscript.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
NP, YR, and ST together studied and prepared the manuscript. SR analyzed all the results and made necessary improvements. YR is the major contributor in writing the paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Priyobarta, N., Rohen, Y., Thounaojam, S. et al. Some remarks on α-admissibility in S-metric spaces. J Inequal Appl 2022, 34 (2022). https://doi.org/10.1186/s13660-022-02767-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-022-02767-3