- Research
- Open access
- Published:
On a half-discrete Hilbert-type inequality related to hyperbolic functions
Journal of Inequalities and Applications volume 2021, Article number: 153 (2021)
Abstract
By the introduction of a new half-discrete kernel which is composed of several exponent functions, and using the method of weight coefficient, a Hilbert-type inequality and its equivalent forms involving multiple parameters are established. In addition, it is proved that the constant factors of the newly obtained inequalities are the best possible. Furthermore, by the use of the rational fraction expansion of the tangent function and introducing the Bernoulli numbers, some interesting and special half-discrete Hilbert-type inequalities are presented at the end of the paper.
1 Introduction
Let \(a_{n},\mu _{n}>0\), \(a=\{a_{n}\}_{n=1}^{\infty }\), and \(p>1\). Define
In particular, if \(\mu _{n}=1\), then we have the abbreviated notations \(\|a\|_{p}:=\|a\|_{p,\mu }\) and \(l_{p}:=l_{p,\mu }\).
Let \(p>1\) and consider measurable functions \(f(x),\nu (x)>0\). Define
For \(\nu (x)=1\), we have the abbreviations as follows: \(\|f\|_{p}:=\|f\|_{p,\nu }\) and \(L_{p}(\mathbb{R}^{+}):=L_{p,\nu }(\mathbb{R}^{+})\).
Consider two sequences of real numbers, \(a=\{a_{n}\}_{n=1}^{\infty }\in l_{2}\) and \(b=\{b_{n}\}_{n=1}^{\infty }\in l_{2}\). Then
where the constant factor π is the best possible. Inequality (1.1) was first proved by the German mathematician D. Hilbert in 1908 in his lectures on integral equations, and is usually known as Hilbert’s double series inequality [1]. Three years later, Schur established the integral analogue of (1.1), that is[1],
where \(f, g\geq 0\) are two real-valued functions, and \(f, g\in L_{2}(\mathbb{R}^{+})\).
In 1925, by the introduction of a pair of conjugate parameters p and q, \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), Hardy and Riesz generalized (1.1) as follows:
where \(a=\{a_{n}\}_{n=1}^{\infty }\in l_{p}\) and \(b=\{b_{n}\}_{n=1}^{\infty }\in l_{q}\).
Since the 1990s, by the introduction of parameters and special functions, researchers established quite a few generalizations of (1.3) (see [2–11]).
It should be noted that there is a sharper form of (1.3) (see [1, Theorem 323]):
Regarding extensions of (1.4), we can refer to [12–16]. In addition, some extensions of (1.2) were also established in the past 20 years (see [10, 11, 17–20]). Furthermore, by constructing new kernel functions, introducing parameters, and considering coefficient refinement, reverse form, and multi-dimensional extension, a large number of new inequalities similar to (1.1) and (1.2) were established in the past several decades (see [21–31]). These newly constructed inequalities are generally called Hilbert-type inequalities.
In addition to integral and discrete forms, Hilbert-type inequalities also appear in half-discrete form. The first half-discrete Hilbert-type inequality was proved by Hardy et al. [1, Theorem 351], but the constant factor was not proved to be the best possible. In 2011, Yang [32] proved that
where the constant factor π is the best possible. With regard to the related results of half-discrete Hilbert inequality, we can refer to [33–40].
The main objective of this paper is to establish a half-discrete Hilbert-type inequality with the kernel function, in particular exponential or hyperbolic function. We first present some relevant results in the literature. For example, Yang [41] proved that
where \(\nu _{1}(x)=x^{-1}\) and \(\nu _{2}(y)=y^{3}\).
In 2013, Liu [42] established the following inequality involving hyperbolic secant function:
where \(\operatorname{sech} (u)=\frac{2}{e^{u}+e^{-u}}\), \(\nu (x)=x^{-3}\), and \(c_{0}=\sum_{k=0}^{\infty }\frac{(-1)^{k}}{(2k+1)^{2}}=0.915965^{+}\) is the Catalan constant.
Another Hilbert-type inequality with a half-discrete kernel involving hyperbolic secant function was established by Zhong [43] in 2012. It reads
where \(\nu (x)=x^{3}\), \(\mu _{n}=\frac{1}{n}\).
In this work, we will establish the following half-discrete Hilbert-type inequalities with the kernels involving hyperbolic tangent and cotangent functions:
where \(\nu (x)=\frac{1}{x}\), \(\mu _{n}=\frac{1}{n}\), \(m\in \mathbb{N}^{+}\).
It is of interest that we also present some other half-discrete inequalities involving hyperbolic functions. More generally, we construct a kernel function with multiple parameters, which unifies the homogeneous and nonhomogeneous kernels, and then a half-discrete Hilbert-type inequality and its equivalent forms are established.
2 Some lemmas
Lemma 2.1
Let \(\eta _{1},\eta _{2}\in \{1,-1\}\), and \(\eta _{2}\neq -1\) for \(\eta _{1}=1\). Let \(\gamma _{1}\in \mathbb{R}^{+},\gamma _{2},\gamma _{3}\in \mathbb{R}\). Suppose that \(\gamma _{3}\leq \gamma _{2}\leq -\gamma _{3}\leq \gamma _{1}\) for \(\eta _{2}=1\), and \(\gamma _{3}<\gamma _{2}\leq -\gamma _{3}\leq \gamma _{1}\) for \(\eta _{2}=-1\). Define
Then \(\kappa (u)\) is decreasing on \(\mathbb{R}^{+}\).
Proof
It is easy to show that
and
For \(\eta _{2}=1,\eta _{1}=\pm 1\), since \(\gamma _{3}\leq \gamma _{2}\leq -\gamma _{3}\leq \gamma _{1}\), we can obtain \(\gamma _{2}^{2}-\gamma _{1}^{2}\leq 0\) and \(\gamma _{3}^{2}-\gamma _{1}^{2}\leq 0\). In addition, it is obvious that \(e^{(\gamma _{2}+\gamma _{1})u}+\eta _{1}e^{(\gamma _{2}-\gamma _{1})u}>0\) and \(e^{(\gamma _{3}+\gamma _{1})u}+\eta _{1}e^{(\gamma _{3}-\gamma _{1})u}>0\). Therefore \(\frac{\mathrm{d} \kappa _{1}}{\mathrm{d} u}\leq 0\) for \(\eta _{2}=1,\eta _{1}=\pm 1\).
For \(\eta _{2}=-1,\eta _{1}=-1\), write \(\kappa _{2}(t):=e^{(t+\gamma _{1})u}-e^{(t-\gamma _{1})u}\), \(t\in \mathbb{R}\), \(u>0\). Then
Therefore \(\kappa _{2}(t)\) is decreasing on \(\mathbb{R}\), and it follows that
Based on the above discussions, it follows that \(\kappa _{1}(u)\) is a decreasing function on \(\mathbb{R}^{+}\). Therefore, for \(\eta _{1}=1, \eta _{2}=1\), \(\kappa _{1}(u)<\kappa _{1}(0)=2(\gamma _{2}+\gamma _{3})\leq 0\). Similarly, we can obtain that \(\kappa _{1}(u)<\kappa _{1}(0)=-4\gamma _{1}<0\) for \(\eta _{1}=-1, \eta _{2}=1\), and \(\kappa _{1}(u)<\kappa _{1}(0)=0\) for \(\eta _{1}=-1, \eta _{2}=-1\). Applying \(\kappa _{1}(u)<0\) to (2.2), we get \(\frac{\mathrm{d} \kappa }{\mathrm{d} u}<0\), and it follows that \(\kappa (u)\) is decreasing on \(\mathbb{R}^{+}\). □
Lemma 2.2
Let \(\eta _{1},\eta _{2}\in \{1,-1\}\) and \(\eta _{2}\neq -1\) for \(\eta _{1}=1\). Let \(\beta _{1}\in \mathbb{R}^{+}\), \(\beta _{2}\in \mathbb{R}\setminus \{ 0 \} \). Assume that \(\beta \beta _{1}\leq 1\), \(\beta \geq 1\) and \(\beta \neq 1\) for \(\eta _{1}=-1\), \(\eta _{2}=1\). Let \(\gamma _{1}\in \mathbb{R}^{+},\gamma _{2},\gamma _{3}\in \mathbb{R}\), and \(\gamma _{2},\gamma _{3}\neq \gamma _{1}\). Suppose that \(\gamma _{3}\leq \gamma _{2}\leq -\gamma _{3}\leq \gamma _{1}\) for \(\eta _{2}=1\), and \(\gamma _{3}<\gamma _{2}\leq -\gamma _{3}\leq \gamma _{1}\) for \(\eta _{2}=-1\). Define
and
Then
Proof
Setting \(n^{\beta _{1}}x^{\beta _{2}}=u\), we obtain
Expanding \(\kappa (u)\) into a power series of \(e^{u}\), we have
Therefore, by the use of Lebesgue term-by-term integration theorem, we obtain
Setting \((-2\gamma _{1}j+\gamma _{2}-\gamma _{1})u=-t\), it follows that
Similarly, we can obtain
Applying (2.12) and (2.13) to (2.11), and using (2.6), we have
Plugging (2.14) into (2.9), we have (2.7).
Furthermore, observing that \(\beta _{1}>0\) and \(\beta \beta _{1}-1<0\), by Lemma 2.1, it’s easy to see that \(K(n,x)n^{\beta \beta _{1}-1}\) is monotonically decreasing with respect to n. Therefore,
Setting \(u^{\beta _{1}}x^{\beta _{2}}=t\), and using (2.14), we obtain
Combining (2.15) and (2.16), we have (2.8). The proof of Lemma 2.2 is completed. □
Lemma 2.3
Let \(\eta _{1},\eta _{2}\in \{1,-1\}\) and \(\eta _{2}\neq -1\) for \(\eta _{1}=1\). Let \(\beta _{1}\in \mathbb{R}^{+}\), \(\beta _{2}\in \mathbb{R}\setminus \{ 0 \} \). Assume that \(\beta \beta _{1}\leq 1\), \(\beta \geq 1\) and \(\beta \neq 1\) for \(\eta _{1}=-1\), \(\eta _{2}=1\). Let \(\gamma _{1}\in \mathbb{R}^{+},\gamma _{2},\gamma _{3}\in \mathbb{R}\), and \(\gamma _{2},\gamma _{3}\neq \gamma _{1}\). Suppose that \(\gamma _{3}\leq \gamma _{2}\leq -\gamma _{3}\leq \gamma _{1}\) for \(\eta _{2}=1\), and \(\gamma _{3}<\gamma _{2}\leq -\gamma _{3}\leq \gamma _{1}\) for \(\eta _{2}=-1\). Let \(K(n,x)\) and \(C (\gamma _{1},\gamma _{2},\gamma _{3},\eta _{1},\eta _{2}, \beta )\) be defined via (2.5) and (2.6), respectively. For a sufficiently small positive number ε, setting
and
where \(\Omega = \{ x: x>0, x^{\frac{\beta _{2}}{ \vert \beta _{2} \vert }}<1 \} \). Then
Proof
By Lemma 2.1, we have
Setting \(y^{\beta _{1}}x^{\beta _{2}}=u\), we get
For \(\beta _{2}>0\) or \(\beta _{2}<0\), by Fubini’s theorem, it follows that
Applying (2.22) to (2.21), and using (2.14), we obtain (2.19). The proof of Lemma 2.3 is completed. □
Lemma 2.4
Let \(-1< z<1\), \(\psi _{1}(u)=\tan u\), \(\psi _{2}(u)=\sec u\), and \(m\in \mathbb{N}\). Then
Proof
The rational fraction expansion of \(\psi _{1}(u)=\tan u\) can be written as follows [44, 45]:
Finding the \((2m)\)th derivative of \(\psi _{1}(u)=\tan u\), we have
Letting \(u=\frac{z\pi }{2}\) in (2.27), we obtain (2.23). Finding the first derivative of (2.27) and letting \(u=\frac{z\pi }{2}\), we arrive at (2.24). In view of
and finding the \((2m)\)th derivative of (2.28), we obtain
Letting \(u=\frac{z\pi }{4}\) in (2.29), and using (2.23), we have
Lemma 2.4 is proved. □
3 Main results
Theorem 3.1
Let \(\eta _{1},\eta _{2}\in \{1,-1\}\) and \(\eta _{2}\neq -1\) for \(\eta _{1}=1\). Let \(\beta _{1}\in \mathbb{R}^{+}\), \(\beta _{2}\in \mathbb{R}\setminus \{ 0 \} \). Assume that \(\beta \beta _{1}\leq 1\), \(\beta \geq 1\) and \(\beta \neq 1\) for \(\eta _{1}=-1\), \(\eta _{2}=1\). Let \(\gamma _{1}\in \mathbb{R}^{+},\gamma _{2},\gamma _{3}\in \mathbb{R}\), and \(\gamma _{2},\gamma _{3}\neq \gamma _{1}\). Suppose that \(\gamma _{3}\leq \gamma _{2}\leq -\gamma _{3}\leq \gamma _{1}\) for \(\eta _{2}=1\), and \(\gamma _{3}<\gamma _{2}\leq -\gamma _{3}\leq \gamma _{1}\) for \(\eta _{2}=-1\). Let \(\mu _{n}= n^{q(1-\beta \beta _{1})-1}\) and \(\nu (x)= x^{p(1-\beta \beta _{2})-1}\). Let \(a_{n}\), \(f(x)\geq 0\) with \(a=\{a_{n}\}_{n=1}^{\infty }\in l_{q,\mu }\) and \(f(x)\in L_{p,\nu }(\mathbb{R}^{+})\). Consider \(K(n,x)\) and \(C (\gamma _{1},\gamma _{2},\gamma _{3},\eta _{1},\eta _{2}, \beta )\) defined via (2.5) and (2.6), respectively. Then the following equivalent inequalities hold true:
where the constant factors
and \(\beta _{1}^{-\frac{1}{p}} \vert \beta _{2} \vert ^{-\frac{1}{q}}\Gamma ( \beta )C (\gamma _{1},\gamma _{2},\gamma _{3},\eta _{1},\eta _{2}, \beta )\) are the best possible.
Proof
By Hölder’s inequality and (2.7), we have
Therefore, by Lebesgue term-by-term integration theorem and (2.8), we obtain
Hence (3.1) is proved. Similarly, by Hölder’s inequality in the form of series and (2.8), we have
Plugging (3.6) into the left-hand side of (3.2), and using Lebesgue term-by-term integration theorem again, as well as (2.7), we obtain
The proof of (3.2) is completed.
By the use of Lebesgue term-by-term integration theorem, it is obvious that there exist two forms of J. Using Hölder’s inequality and (3.1), we have
Therefore, we obtained (3.3) via (3.1). It will be proved that (3.3) can also be obtained via (3.2). In fact, it follows from Hölder’s inequality and (3.2) that
In order to prove the equivalence of (3.1), (3.2), and (3.3), we will show that both (3.1) and (3.2) hold when (3.3) is true. Let
It follows from (3.3) that
Therefore,
Hence, (3.1) is proved via (3.3). Similarly, let
By the use of (3.3), we have
It follows from (3.9) that
Inequality (3.2) is also proved via (3.3). According to the above discussions, (3.1), (3.2), and (3.3) are equivalent.
At last, it will be proved that the constant factors on the right-hand side of (3.1), (3.2), and (3.3) are the best possible. Assuming that the constant factor \(\beta _{1}^{-\frac{1}{p}} \vert \beta _{2} \vert ^{-\frac{1}{q}}\Gamma ( \beta )C (\gamma _{1},\gamma _{2},\gamma _{3},\eta _{1}, \eta _{2}, \beta )\) in (3.3) is not the best possible, there must be a positive number c such that (3.3) still holds if \(\beta _{1}^{-\frac{1}{p}} \vert \beta _{2} \vert ^{-\frac{1}{q}}\Gamma ( \beta )C (\gamma _{1},\gamma _{2},\gamma _{3},\eta _{1},\eta _{2}, \beta )\) is replaced with c. That is,
Replacing \(a_{n}\) and \(f(x)\) with \(a_{n}(\varepsilon )\) and \(f_{\varepsilon }(x)\) defined in Lemma 2.3, respectively, and using (2.19), we have
Let \(\varepsilon \to 0^{+}\), then we obtain \(\beta _{1}^{-\frac{1}{p}} \vert \beta _{2} \vert ^{-\frac{1}{q}}\Gamma ( \beta )C (\gamma _{1},\gamma _{2},\gamma _{3},\eta _{1},\eta _{2}, \beta )\leq c\), which contradicts the assumption, obviously. Therefore, the constant factor on the right-hand side of inequality (3.3) is the best possible. From the equivalence of (3.1), (3.2), and (3.3), the constant factors in (3.1) and (3.2) are obviously the best possible. Theorem 3.1 is proved. □
4 Corollaries
Let \(\eta _{1}=\eta _{2}=-1\), \(\gamma _{3}=-\gamma _{2}\) and \(\beta =2m+1\) \((m\in \mathbb{N})\) in Theorem 3.1. By the use of (2.23), we obtain the following corollary.
Corollary 4.1
Let \(\beta _{1}\in \mathbb{R}^{+}\), \(\beta _{2}\in \mathbb{R}\setminus \{ 0 \} \), and \((2m+1)\beta _{1}\leq 1\) \((m\in \mathbb{N})\). Let \(0<\gamma _{2}<\gamma _{1}\). Suppose that \(\mu _{n}= n^{q[1-(2m+1)\beta _{1}]-1}\), \(\nu (x)= x^{p[1-(2m+1)\beta _{2}]-1}\), and \(\psi _{1}(u)=\tan u\). Let \(a_{n}\), \(f(x)\geq 0\) with \(a=\{a_{n}\}_{n=1}^{\infty }\in l_{q,\mu }\) and \(f(x)\in L_{p,\nu }(\mathbb{R}^{+})\). Then
In particular, let \(\gamma _{1}=2\gamma \), \(\gamma _{2}=\gamma \) \((\gamma >0)\) in (4.1), then it follows that
Setting \(\gamma =1\), \(\beta _{1}=1\), \(\beta _{2}=-1\), \(m=0\) in (4.2), we obtain (1.8).
In addition, let \(\gamma _{1}=4\gamma \), \(\gamma _{2}=\gamma \) \((\gamma >0)\) in (4.1), then we have
Setting \(\beta _{1}=\beta _{2}=\gamma =1\), \(m=0\) in (4.2) and (4.3), we obtain
where \(\mu _{n}=\frac{1}{n}\), \(\nu (x)=\frac{1}{x}\).
Let \(\eta _{1}=-1\), \(\eta _{2}=1\), \(\gamma _{3}=-\gamma _{2}\) and \(\beta =2m+2\) \((m\in \mathbb{N})\) in Theorem 3.1. By the use of (2.24), we obtain the following corollary.
Corollary 4.2
Let \(\beta _{1}\in \mathbb{R}^{+}\), \(\beta _{2}\in \mathbb{R}\setminus \{ 0 \} \), and \((2m+2)\beta _{1}\leq 1\) \((m\in \mathbb{N})\). Let \(0\leq \gamma _{2}<\gamma _{1}\). Suppose that \(\mu _{n}= n^{q[1-(2m+2)\beta _{1}]-1}\), \(\nu (x)= x^{p[1-(2m+2)\beta _{2}]-1}\), and \(\psi _{1}(u)=\tan u\). Let \(a_{n}\), \(f(x)\geq 0\) with \(a=\{a_{n}\}_{n=1}^{\infty }\in l_{q,\mu }\) and \(f(x)\in L_{p,\nu }(\mathbb{R}^{+})\). Then
Particularly, let \(\gamma _{1}=\gamma >0\), \(\gamma _{2}=0\) in (4.6), then it follows that
Additionally, letting \(\gamma _{1}=2\gamma \), \(\gamma _{2}=\gamma \) \((\gamma >0)\) in (4.6), we have
Compare (4.7) with (4.8). By (2.24), it is easy to show that \(\psi _{1}^{(2m+1)} (0 )=\frac{1}{2^{2m+1}}\psi _{1}^{(2m+1)} (\frac{\pi }{4} )\). Therefore, (4.7) and (4.8) are equivalent. Setting \(\beta _{1}=\beta _{2}=\frac{1}{2}\), \(\gamma =1\), \(m=0\) in (4.7), we obtain
where \(\mu _{n}=\frac{1}{n}\), \(\nu (x)=\frac{1}{x}\).
Furthermore, letting \(\gamma _{1}=4\gamma \), \(\gamma _{2}=\gamma \) \((\gamma >0)\) in (4.6), we have
Let \(\eta _{1}=-1\), \(\eta _{2}=1\), \(\gamma _{1}=\gamma \), \(\gamma _{2}=\gamma _{3}=-\gamma \), and \(\beta =2m+2\) \((m\in \mathbb{N})\) in Theorem 3.1. By the following equality
where \(B_{m+1}\) is Bernoulli number, \(B_{1}=\frac{1}{6}, B_{2}=\frac{1}{30}, B_{3}=\frac{1}{42},\dots \) Then, the following corollary holds.
Corollary 4.3
Let \(\gamma,\beta _{1}\in \mathbb{R}^{+}\), \(\beta _{2}\in \mathbb{R}\setminus \{ 0 \} \), and \((2m+2)\beta _{1}\leq 1\) \((m\in \mathbb{N})\). Suppose that \(\mu _{n}= n^{q[1-(2m+2)\beta _{1}]-1}\), \(\nu (x)= x^{p[1-(2m+2)\beta _{2}]-1}\), and \(\psi _{2}(u)=\sec u\). Let \(a_{n}\), \(f(x)\geq 0\) with \(a=\{a_{n}\}_{n=1}^{\infty }\in l_{q,\mu }\) and \(f(x)\in L_{p,\nu }(\mathbb{R}^{+})\). Then
Setting \(\beta _{1}=\beta _{2}=\frac{1}{2m+2}\), \(\gamma =1\), and replacing \(m+1\) with m, we obtain (1.9).
Let \(\eta _{1}=\eta _{2}=1\), \(\gamma _{3}=-\gamma _{2}\) and \(\beta =2m+1\) \((m\in \mathbb{N})\) in Theorem 3.1. By the use of (2.25), we obtain Corollary 4.4.
Corollary 4.4
Let \(\beta _{1}\in \mathbb{R}^{+}\), \(\beta _{2}\in \mathbb{R}\setminus \{ 0 \} \), and \((2m+1)\beta _{1}\leq 1\) \((m\in \mathbb{N})\). Let \(0\leq \gamma _{2}<\gamma _{1}\). Suppose that \(\mu _{n}= n^{q[1-(2m+1)\beta _{1}]-1}\), \(\nu (x)= x^{p[1-(2m+1)\beta _{2}]-1}\), and \(\psi _{2}(u)=\sec u\). Let \(a_{n}\), \(f(x)\geq 0\) with \(a=\{a_{n}\}_{n=1}^{\infty }\in l_{q,\mu }\) and \(f(x)\in L_{p,\nu }(\mathbb{R}^{+})\). Then
Let \(\gamma _{1}=\gamma >0\), \(\gamma _{2}=0\) in (4.12), we have
Comparing (4.2) with (4.13), it can be shown that (4.2) and (4.13) are equivalent. In fact, in view of
and using (2.23) and (2.25), we have \(\psi _{1}^{(2m)} (\frac{\pi }{4} )=2^{2m}\psi _{2}^{(2m)}(0)\). Therefore, (4.2) is equivalent to (4.13).
Additionally, letting \(\gamma _{1}=2\gamma \), \(\gamma _{2}=\gamma \) \((\gamma >0)\) in (4.12), we have
Let \(\eta _{1}=\eta _{2}=1\), \(\gamma _{1}=\gamma \), \(\gamma _{2}=\gamma _{3}=-\gamma \), and \(\beta =2m+2 \) \((m\in \mathbb{N})\). Due to the following equality [44, 45]:
the following corollary holds.
Corollary 4.5
Let \(\gamma,\beta _{1}\in \mathbb{R}^{+}\), \(\beta _{2}\in \mathbb{R}\setminus \{ 0 \} \), and \((2m+2)\beta _{1}\leq 1\) \((m\in \mathbb{N})\). Suppose that \(\mu _{n}= n^{q[1-(2m+2)\beta _{1}]-1}\), \(\nu (x)= x^{p[1-(2m+2)\beta _{2}]-1}\), and \(\psi _{2}(u)=\sec u\). Let \(a_{n}\), \(f(x)\geq 0\) with \(a=\{a_{n}\}_{n=1}^{\infty }\in l_{q,\mu }\) and \(f(x)\in L_{p,\nu }(\mathbb{R}^{+})\). Then
Setting \(\beta _{1}=\beta _{2}=\frac{1}{2m+2}\), \(\gamma =1\), and replacing \(m+1\) with m, we arrive at (1.10).
Availability of data and materials
Not applicable.
References
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, London (1952)
Yang, B.C.: On an extension of Hardy–Hilbert’s inequality. Chin. Ann. Math., Ser. A 23(2), 247–254 (2002)
Yang, B.C., Debnath, L.: On the extended Hardy–Hilbert’s inequality. J. Math. Anal. Appl. 272(1), 187–199 (2002)
Yang, B.C., Debnath, L.: On a new generalization of Hardy–Hilbert’s inequality and its application. J. Math. Anal. Appl. 23(2), 484–497 (1999)
Yang, B.C.: On new extensions of Hilbert’s inequality. Acta Math. Hung. 104(4), 291–299 (2004)
You, M.H.: On an extension of the discrete Hilbert inequality and applications. J. Wuhan Univ. Natur. Sci. Ed. 67(2), 179–184 (2021)
Gao, M.Z., Yang, B.C.: On the extended Hilbert’s inequality. Proc. Am. Math. Soc. 126(3), 751–759 (1998)
Krnić, M., Pečarić, J.: Extension of Hilbert’s inequality. J. Math. Anal. Appl. 324, 150–160 (2006)
Krnić, M., Pečarić, J., Vuković, P.: Discrete Hilbert-type inequalities with general homogeneous kernels. Rend. Circ. Mat. Palermo 60(1), 161–171 (2011)
Krnić, M., Pečarić, J., Perić, I., et al.: Advances in Hilbert-Type Inequalities. Element Press, Zagreb (2012)
Yang, B.C.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)
Yang, B.C.: On a new extension of Hardy–Hilbert’s inequality with some parameters. Acta Math. Hung. 108(4), 337–350 (2005)
Chen, Z., Xu, J.: New extensions of Hardy–Hilbert’s inequality with multiple parameters. Acta Math. Hung. 117(4), 383–400 (2007)
Yang, B.C.: On a dual Hardy–Hilbert’s inequality and its generalization. Anal. Math. 31(2), 151–161 (2005)
Kuang, J.C., Debnath, L.: On new generalizations of Hilbert’s inequality and their applications. J. Math. Anal. Appl. 245(1), 248–265 (2002)
You, M.H.: On a new discrete Hilbert-type inequality and application. Math. Inequal. Appl. 18(4), 1575–1578 (2015)
Yang, B.C.: On an extension of Hilbert’s integral inequality with some parameters. Aust. J. Math. Anal. Appl. 1(1), 1–8 (2004)
Yang, B.C.: A note on Hilbert’s integral inequalities. Chin. Q. J. Math. 13(4), 83–85 (1998)
Yang, B.C.: On Hilbert’s integral inequality. J. Math. Anal. Appl. 220(2), 778–785 (1998)
Krnić, M., Pečarić, J.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(4), 29–51 (2005)
Rassias, M.T., Yang, B.C.: On a Hilbert-type integral inequality in the whole plane related to the extended Riemann zeta function. Complex Anal. Oper. Theory 13(4), 1765–1782 (2019)
Rassias, M.T., Yang, B.C.: On a Hilbert-type integral inequality related to the extended Hurwitz zeta function in the whole plane. Acta Appl. Math. 160(1), 67–80 (2019)
Rassias, M.T., Yang, B.C.: A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta function. J. Math. Anal. Appl. 428(2), 1286–1308 (2015)
Rassias, M.T., Yang, B.C.: On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz zeta function. J. Math. Inequal. 13(2), 315–334 (2019)
Rassias, M.T., Yang, B.C., Raigorodskii, A.: On a more accurate reverse Hilbert-type inequality in the whole plane. J. Math. Inequal. 14(4), 1359–1374 (2020)
Rassias, M.T., Yang, B.C., Raigorodskii, A.: Two kinds of the reverse Hardy-type integral inequalities with the equivalent forms related to the extended Riemann zeta function. Appl. Anal. Discrete Math. 12(2), 273–296 (2018)
Hong, Y., He, B., Yang, B.C.: Necessary and sufficient conditions for the validity of Hilbert-type inequalities with a class of quasi-homogeneous kernels and its applications in operator theory. J. Math. Inequal. 12(3), 777–788 (2018)
Hong, Y., Liao, J.Q., Yang, B.C., et al.: A class of Hilbert-type multiple integral inequalities with the kernel of generalized homogeneous function and its applications. J. Inequal. Appl. 2020, 140 (2020). https://doi.org/10.1186/s13660-020-02401-0
Mo, H.M., Yang, B.C.: On a new Hilbert-type integral inequality involving the upper limit functions. J. Inequal. Appl. 2020, 5 (2020). https://doi.org/10.1186/s13660-019-2280-7
Liu, Q.: A Hilbert-type integral inequality under configuring free power and its applications. J. Inequal. Appl. 2019), 91 (2019). https://doi.org/10.1186/s13660-019-2039-1
You, M.H.: On a class of Hilbert-type inequalities in the whole plane related to exponent function. J. Inequal. Appl. 2021, 33 (2021). https://doi.org/10.1186/s13660-021-02563-5
Yang, B.C.: A half-discrete Hilbert’s inequality. J. Guangdong Univ. Educ. 31(3), 1–7 (2011)
Rassias, M.T., Yang, B.C.: On half-discrete Hilbert’s inequality. Appl. Math. Comput. 220, 75–93 (2013)
Rassias, M.T., Yang, B.C., Raigorodskii, A.: On a half-discrete Hilbert-type inequality in the whole plane with the kernel of hyperbolic secant function related to the Hurwitz zeta function. In: Trigonometric Sums and Their Applications, pp. 229–259. Springer, Berlin (2020)
Yang, B.C., Chen, Q.: A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension. J. Inequal. Appl. 2011, 124 (2011). https://doi.org/10.1186/1029-242X-2011-124
He, B., Yang, B.C., Chen, Q.: A new multiple half-discrete Hilbert-type inequality with parameters and a best possible constant factor. Mediterr. J. Math. 12, 1227–1244 (2015). https://doi.org/10.1007/s00009-014-0468-0
Yang, B.C., Wu, S.H., Wang, A.Z.: On a reverse half-discrete Hardy–Hilbert’s inequality with parameters. Mathematics 7(11), 1054 (2019). https://doi.org/10.3390/math7111054
Yang, B.C.: A mixed Hilbert-type inequality with a best constant factor. Int. J. Pure Appl. Math. 20(3), 319–328 (2005)
Yang, B.C., Debnath, L.: Half-Discrete Hilbert-Type Inequalities. World Scientific, Singapore (2014)
Krnić, M., Pečarić, J., Vuković, P.: A unified treatment of half-discrete Hilbert-type inequalities with a homogeneous kernel. Mediterr. J. Math. 10, 1697–1716 (2013)
Yang, B.C.: A new Hilbert-type integral inequality with the homogeneous kernel of degree 0. J. Zhejiang Univ. Sci. Ed. 39(4), 390–392 (2012)
Liu, Q., Long, S.C.: A Hilbert-type integral inequality with the kernel of hyperbolic secant function. J. Zhejiang Univ. Sci. Ed. 40(3), 255–259 (2013)
Zhong, J.H., Chen, Q.: A half-discrete Hilbert-type inequality with the deceasing and homogeneous kernel of degree 0. J. Zhejiang Univ. Sci. Ed. 42(1), 77–81 (2015)
Richard, C.F.J.: Introduction to Calculus and Analysis. Springer, New York (1989)
Wang, Z.X., Guo, D.R.: Introduction to Special Functions. Higher Education Press, Beijing (2012)
Acknowledgements
The author is indebted to the anonymous referees for their valuable suggestions and comments that helped improve the paper significantly.
Funding
This research was supported by the incubation foundation of Zhejiang Institute of Mechanical and Electrical Engineering (A-0271-21-206).
Author information
Authors and Affiliations
Contributions
The author carried out the results, and read and approved the current version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declares that he has no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
You, M. On a half-discrete Hilbert-type inequality related to hyperbolic functions. J Inequal Appl 2021, 153 (2021). https://doi.org/10.1186/s13660-021-02688-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-021-02688-7