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Abstract
By the introduction of a new half-discrete kernel which is composed of several
exponent functions, and using the method of weight coefficient, a Hilbert-type
inequality and its equivalent forms involving multiple parameters are established. In
addition, it is proved that the constant factors of the newly obtained inequalities are
the best possible. Furthermore, by the use of the rational fraction expansion of the
tangent function and introducing the Bernoulli numbers, some interesting and
special half-discrete Hilbert-type inequalities are presented at the end of the paper.
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1 Introduction
Let an,μn > 0, a = {an}∞n=1, and p > 1. Define

lp,μ :=

{
a : ‖a‖p,μ :=

( ∞∑
k=1

μkap
k

) 1
p

< ∞
}

.

In particular, if μn = 1, then we have the abbreviated notations ‖a‖p := ‖a‖p,μ and lp := lp,μ.
Let p > 1 and consider measurable functions f (x),ν(x) > 0. Define

Lp,ν
(
R

+)
:=

{
f : ‖f ‖p,ν :=

(∫
R+

ν(x)f p(x) dx
) 1

p
< ∞

}
.

For ν(x) = 1, we have the abbreviations as follows: ‖f ‖p := ‖f ‖p,ν and Lp(R+) := Lp,ν(R+).
Consider two sequences of real numbers, a = {an}∞n=1 ∈ l2 and b = {bn}∞n=1 ∈ l2. Then

∞∑
n=1

∞∑
m=1

ambn

m + n
< π‖a‖2‖b‖2, (1.1)

where the constant factor π is the best possible. Inequality (1.1) was first proved by the
German mathematician D. Hilbert in 1908 in his lectures on integral equations, and is
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usually known as Hilbert’s double series inequality [1]. Three years later, Schur established
the integral analogue of (1.1), that is[1],

∫ ∞

0

∫ ∞

0

f (x)g(y)
x + y

dx dy < π‖f ‖2‖g‖2, (1.2)

where f , g ≥ 0 are two real-valued functions, and f , g ∈ L2(R+).
In 1925, by the introduction of a pair of conjugate parameters p and q, p > 1, 1

p + 1
q = 1,

Hardy and Riesz generalized (1.1) as follows:

∞∑
n=1

∞∑
m=1

ambn

m + n
<

π

sin π
p

‖a‖p‖b‖q, (1.3)

where a = {an}∞n=1 ∈ lp and b = {bn}∞n=1 ∈ lq.
Since the 1990s, by the introduction of parameters and special functions, researchers

established quite a few generalizations of (1.3) (see [2–11]).
It should be noted that there is a sharper form of (1.3) (see [1, Theorem 323]):

∞∑
n=0

∞∑
m=0

ambn

m + n + 1
<

π

sin π
p

‖a‖p‖b‖q. (1.4)

Regarding extensions of (1.4), we can refer to [12–16]. In addition, some extensions of (1.2)
were also established in the past 20 years (see [10, 11, 17–20]). Furthermore, by construct-
ing new kernel functions, introducing parameters, and considering coefficient refinement,
reverse form, and multi-dimensional extension, a large number of new inequalities similar
to (1.1) and (1.2) were established in the past several decades (see [21–31]). These newly
constructed inequalities are generally called Hilbert-type inequalities.

In addition to integral and discrete forms, Hilbert-type inequalities also appear in half-
discrete form. The first half-discrete Hilbert-type inequality was proved by Hardy et al.
[1, Theorem 351], but the constant factor was not proved to be the best possible. In 2011,
Yang [32] proved that

∫ ∞

0
f (x)

∞∑
n=1

an

n + x
dx < π‖f ‖2‖a‖2, (1.5)

where the constant factor π is the best possible. With regard to the related results of half-
discrete Hilbert inequality, we can refer to [33–40].

The main objective of this paper is to establish a half-discrete Hilbert-type inequality
with the kernel function, in particular exponential or hyperbolic function. We first present
some relevant results in the literature. For example, Yang [41] proved that

∫ ∞

0

∫ ∞

0
e– x

y f (x)g(y) dy < ‖f ‖2,ν1‖g‖2,ν2 , (1.6)

where ν1(x) = x–1 and ν2(y) = y3.
In 2013, Liu [42] established the following inequality involving hyperbolic secant func-

tion:∫ ∞

0

∫ ∞

0
sech(xy)f (x)g(y) dx dy < 2c0‖f ‖2,ν‖g‖2,ν , (1.7)
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where sech(u) = 2
eu+e–u , ν(x) = x–3, and c0 =

∑∞
k=0

(–1)k

(2k+1)2 = 0.915965+ is the Catalan con-
stant.

Another Hilbert-type inequality with a half-discrete kernel involving hyperbolic secant
function was established by Zhong [43] in 2012. It reads

∫ ∞

0
f (x)

∞∑
n=1

an sech

(
n
x

)
dx <

π

2
‖f ‖2,ν‖a‖2,μ, (1.8)

where ν(x) = x3, μn = 1
n .

In this work, we will establish the following half-discrete Hilbert-type inequalities with
the kernels involving hyperbolic tangent and cotangent functions:

∫ ∞

0
f (x)

∞∑
n=1

an
[
coth 2m√nx – 1

]
dx < Bmπ2m‖f ‖p,ν‖a‖q,μ, (1.9)

∫ ∞

0
f (x)

∞∑
n=1

an
[
1 – tanh 2m√nx

]
dx <

(
1 –

1
22m–1

)
Bmπ2m‖f ‖p,ν‖a‖q,μ, (1.10)

where ν(x) = 1
x , μn = 1

n , m ∈N
+.

It is of interest that we also present some other half-discrete inequalities involving hyper-
bolic functions. More generally, we construct a kernel function with multiple parameters,
which unifies the homogeneous and nonhomogeneous kernels, and then a half-discrete
Hilbert-type inequality and its equivalent forms are established.

2 Some lemmas
Lemma 2.1 Let η1,η2 ∈ {1, –1}, and η2 �= –1 for η1 = 1. Let γ1 ∈ R

+,γ2,γ3 ∈ R. Suppose
that γ3 ≤ γ2 ≤ –γ3 ≤ γ1 for η2 = 1, and γ3 < γ2 ≤ –γ3 ≤ γ1 for η2 = –1. Define

κ(u) :=
eγ2u + η2eγ3u

eγ1u + η1e–γ1u , u > 0. (2.1)

Then κ(u) is decreasing on R
+.

Proof It is easy to show that

dκ

du
=

[
(γ2 – γ1)e(γ2+γ1)u + η1(γ2 + γ1)e(γ2–γ1)u (2.2)

+ η2(γ3 – γ1)e(γ3+γ1)u + η1η2(γ3 + γ1)e(γ3–γ1)u]
× (

eγ1u + η1e–γ1u)–2 := κ1(u)
(
eγ1u + η1e–γ1u)–2

and

dκ1

du
=

{(
γ 2

2 – γ 2
1
)[

e(γ2+γ1)u + η1e(γ2–γ1)u] (2.3)

+ η2
(
γ 2

3 – γ 2
1
)[

e(γ3+γ1)u + η1e(γ3–γ1)u]}.

For η2 = 1,η1 = ±1, since γ3 ≤ γ2 ≤ –γ3 ≤ γ1, we can obtain γ 2
2 –γ 2

1 ≤ 0 and γ 2
3 –γ 2

1 ≤ 0. In
addition, it is obvious that e(γ2+γ1)u + η1e(γ2–γ1)u > 0 and e(γ3+γ1)u + η1e(γ3–γ1)u > 0. Therefore
dκ1
du ≤ 0 for η2 = 1,η1 = ±1.
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For η2 = –1,η1 = –1, write κ2(t) := e(t+γ1)u – e(t–γ1)u, t ∈R, u > 0. Then

dκ2

dt
= ue(t+γ1)u – ue(t–γ1)u > 0.

Therefore κ2(t) is decreasing on R, and it follows that

dκ1

du
≤ {(

γ 2
2 – γ 2

1
)[

e(γ2+γ1)u – e(γ2–γ1)u] (2.4)

–
(
γ 2

3 – γ 2
1
)[

e(γ2+γ1)u – e(γ2–γ1)u]}
=

(
γ 2

2 – γ 2
3
)[

e(γ2+γ1)u – e(γ2–γ1)u] ≤ 0.

Based on the above discussions, it follows that κ1(u) is a decreasing function on R
+.

Therefore, for η1 = 1,η2 = 1, κ1(u) < κ1(0) = 2(γ2 + γ3) ≤ 0. Similarly, we can obtain that
κ1(u) < κ1(0) = –4γ1 < 0 for η1 = –1,η2 = 1, and κ1(u) < κ1(0) = 0 for η1 = –1,η2 = –1. Ap-
plying κ1(u) < 0 to (2.2), we get dκ

du < 0, and it follows that κ(u) is decreasing on R
+. �

Lemma 2.2 Let η1,η2 ∈ {1, –1} and η2 �= –1 for η1 = 1. Let β1 ∈ R
+, β2 ∈ R \ {0}. Assume

that ββ1 ≤ 1, β ≥ 1 and β �= 1 for η1 = –1, η2 = 1. Let γ1 ∈ R
+,γ2,γ3 ∈ R, and γ2,γ3 �= γ1.

Suppose that γ3 ≤ γ2 ≤ –γ3 ≤ γ1 for η2 = 1, and γ3 < γ2 ≤ –γ3 ≤ γ1 for η2 = –1. Define

K(n, x) :=
eγ2nβ1 xβ2 + η2eγ3nβ1 xβ2

eγ1nβ1 xβ2 + η1e–γ1nβ1 xβ2
, n ∈ N

+, x ∈R
+, (2.5)

and

C(γ1,γ2,γ3,η1,η2,β) =
∞∑
j=0

[
(–η1)j

(2γ1j – γ2 + γ1)β
+

η2(–η1)j

(2γ1j – γ3 + γ1)β

]
. (2.6)

Then

ω(n) :=
∫ ∞

0
K(n, x)xββ2–1 dx =

n–ββ1

|β2| 	(β)C(γ1,γ2,γ3,η1,η2,β), (2.7)


 (x) :=
∞∑

n=1

K(n, x)nββ1–1 <
x–ββ2

β1
	(β)C(γ1,γ2,γ3,η1,η2,β). (2.8)

Proof Setting nβ1 xβ2 = u, we obtain

ω(n) =
n–ββ1

|β2|
∫ ∞

0
κ(u)uβ–1 du. (2.9)

Expanding κ(u) into a power series of eu, we have

κ(u) =
e(γ2–γ1)u + η2e(γ3–γ1)u

1 + η1e–2γ1u (2.10)

=
∞∑
j=0

(–η1)j[e(–2γ1j+γ2–γ1)u + η2e(–2γ1j+γ3–γ1)u].
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Therefore, by the use of Lebesgue term-by-term integration theorem, we obtain

∫ ∞

0
κ(u)uβ–1 du =

∞∑
j=0

{
(–η1)j

[∫ ∞

0
e(–2γ1j+γ2–γ1)uuβ–1 du

]
(2.11)

+ η2(–η1)j
[∫ ∞

0
e(–2γ1j+γ3–γ1)uuβ–1 du

]}
.

Setting (–2γ1j + γ2 – γ1)u = –t, it follows that

∫ ∞

0
e(–2γ1j+γ2–γ1)uuβ–1 du =

∫ ∞
0 e–ttβ–1 dt

(2γ1j – γ2 + γ1)β
=

	(β)
(2γ1j – γ2 + γ1)β

. (2.12)

Similarly, we can obtain

∫ ∞

0
e(–2γ1j+γ3–γ1)uuβ–1 du =

∫ ∞
0 e–ttβ–1 dt

(2γ1j – γ3 + γ1)β
=

	(β)
(2γ1j – γ3 + γ1)β

. (2.13)

Applying (2.12) and (2.13) to (2.11), and using (2.6), we have
∫ ∞

0
κ(u)uβ–1 du = 	(β)C(γ1,γ2,γ3,η1,η2,β). (2.14)

Plugging (2.14) into (2.9), we have (2.7).
Furthermore, observing that β1 > 0 and ββ1 – 1 < 0, by Lemma 2.1, it’s easy to see that

K(n, x)nββ1–1 is monotonically decreasing with respect to n. Therefore,

∞∑
n=1

K(n, x)nββ1–1 <
∫ ∞

0
K(u, x)uββ1–1 du. (2.15)

Setting uβ1 xβ2 = t, and using (2.14), we obtain

∫ ∞

0
K(u, x)uββ1–1 du =

x–ββ2

β1

∫ ∞

0
κ(t)tβ–1 dt (2.16)

=
x–ββ2

β1
	(β)C(γ1,γ2,γ3,η1,η2,β).

Combining (2.15) and (2.16), we have (2.8). The proof of Lemma 2.2 is completed. �

Lemma 2.3 Let η1,η2 ∈ {1, –1} and η2 �= –1 for η1 = 1. Let β1 ∈ R
+, β2 ∈ R \ {0}. Assume

that ββ1 ≤ 1, β ≥ 1 and β �= 1 for η1 = –1, η2 = 1. Let γ1 ∈ R
+,γ2,γ3 ∈ R, and γ2,γ3 �= γ1.

Suppose that γ3 ≤ γ2 ≤ –γ3 ≤ γ1 for η2 = 1, and γ3 < γ2 ≤ –γ3 ≤ γ1 for η2 = –1. Let K(n, x)
and C(γ1,γ2,γ3,η1,η2,β) be defined via (2.5) and (2.6), respectively. For a sufficiently small
positive number ε, setting

a(ε) :=
{

an(ε)
}∞

n=1 :=
{

n
q(ββ1–1)–β1ε

q
}∞

n=1, (2.17)

and

fε(x) :=

⎧⎨
⎩x

p(ββ2–1)+β2ε
p , x ∈ �,

0, x ∈R
+ \ �,

(2.18)
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where � = {x : x > 0, x
β2|β2| < 1}. Then

J̃ :=
∞∑

n=1

an(ε)
∫

�

K(n, x)fε(x) dx =
∫

�

fε(x)
∞∑

n=1

an(ε)K(n, x) dx (2.19)

>
1

|β1β2|
[
	(β)C(γ1,γ2,γ3,η1,η2,β) + o(1)

]
.

Proof By Lemma 2.1, we have

J̃ >
∫

�

x
p(ββ2–1)+β2ε

p

[∫ ∞

1
y

q(ββ1–1)–β1ε
q

eγ2yβ1 xβ2 + η2eγ3yβ1 xβ2

eγ1yβ1 xβ2 + η1e–γ1yβ1 xβ2
dy

]
dx. (2.20)

Setting yβ1 xβ2 = u, we get

J̃ >
1
β1

∫
�

xβ2ε–1
[∫ ∞

xβ2
κ(u)uβ– ε

q –1 du
]

dx (2.21)

=
1
β1

∫
�

xβ2ε–1
[∫ ∞

1
κ(u)uβ– ε

q –1 du
]

dx

+
1
β1

∫
�

xβ2ε–1
[∫ 1

xβ2
κ(u)uβ– ε

q –1 du
]

dx

=
1

|β1β2|ε
∫ ∞

1
κ(u)uβ– ε

q –1 du +
1
β1

∫
�

xβ2ε–1
[∫ 1

xβ2
κ(u)uβ– ε

q –1 du
]

dx.

For β2 > 0 or β2 < 0, by Fubini’s theorem, it follows that

∫
�

xβ2ε–1
[∫ 1

xβ2
κ(u)uβ– ε

q –1 du
]

dx =
1

|β2|ε
∫ 1

0
κ(u)uβ+ ε

p –1 du. (2.22)

Applying (2.22) to (2.21), and using (2.14), we obtain (2.19). The proof of Lemma 2.3 is
completed. �

Lemma 2.4 Let –1 < z < 1, ψ1(u) = tan u, ψ2(u) = sec u, and m ∈N. Then

ψ
(2m)
1

(
zπ
2

)
=

22m+1(2m)!
π2m+1

∞∑
j=0

[
1

(2j + 1 – z)2m+1 –
1

(2j + 1 + z)2m+1

]
, (2.23)

ψ
(2m+1)
1

(
zπ
2

)
=

22m+2(2m + 1)!
π2m+2

∞∑
j=0

[
1

(2j + 1 – z)2m+2 +
1

(2j + 1 + z)2m+2

]
, (2.24)

ψ
(2m)
2

(
zπ
2

)
=

22m+1(2m)!
π2m+1

∞∑
j=0

[
(–1)j

(2j + 1 – z)2m+1 +
(–1)j

(2j + 1 + z)2m+1

]
. (2.25)

Proof The rational fraction expansion of ψ1(u) = tan u can be written as follows [44, 45]:

ψ1(u) = tan u = 2
∞∑
j=0

[
1

(2j + 1)π – 2u
–

1
(2j + 1)π + 2u

]
. (2.26)
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Finding the (2m)th derivative of ψ1(u) = tan u, we have

ψ
(2m)
1 (u) = 22m+1(2m)!

∞∑
j=0

{
1

[(2j + 1)π – 2u]2m+1 –
1

[(2j + 1)π + 2u]2m+1

}
. (2.27)

Letting u = zπ
2 in (2.27), we obtain (2.23). Finding the first derivative of (2.27) and letting

u = zπ
2 , we arrive at (2.24). In view of

2ψ2(2u) = ψ1

(
π

4
+ u

)
+ ψ1

(
π

4
– u

)
, (2.28)

and finding the (2m)th derivative of (2.28), we obtain

22m+1ψ
(2m)
2 (2u) = ψ

(2m)
1

(
π

4
+ u

)
+ ψ

(2m)
1

(
π

4
– u

)
. (2.29)

Letting u = zπ
4 in (2.29), and using (2.23), we have

ψ
(2m)
2

(
zπ
2

)
=

22m+1(2m)!
π2m+1

∞∑
j=0

[
1

(4j + 1 – z)2m+1 –
1

(4j + 3 + z)2m+1

]
(2.30)

+
22m+1(2m)!

π2m+1

∞∑
j=0

[
1

(4j + 1 + z)2m+1 –
1

(4j + 3 – z)2m+1

]

=
22m+1(2m)!

π2m+1

∞∑
j=0

[
(–1)j

(2j + 1 – z)2m+1 +
(–1)j

(2j + 1 + z)2m+1

]
.

Lemma 2.4 is proved. �

3 Main results
Theorem 3.1 Let η1,η2 ∈ {1, –1} and η2 �= –1 for η1 = 1. Let β1 ∈R

+, β2 ∈R \ {0}. Assume
that ββ1 ≤ 1, β ≥ 1 and β �= 1 for η1 = –1, η2 = 1. Let γ1 ∈ R

+,γ2,γ3 ∈ R, and γ2,γ3 �= γ1.
Suppose that γ3 ≤ γ2 ≤ –γ3 ≤ γ1 for η2 = 1, and γ3 < γ2 ≤ –γ3 ≤ γ1 for η2 = –1. Let μn =
nq(1–ββ1)–1 and ν(x) = xp(1–ββ2)–1. Let an, f (x) ≥ 0 with a = {an}∞n=1 ∈ lq,μ and f (x) ∈ Lp,ν(R+).
Consider K(n, x) and C(γ1,γ2,γ3,η1,η2,β) defined via (2.5) and (2.6), respectively. Then the
following equivalent inequalities hold true:

I1 :=
∞∑

n=1

npββ1–1
[∫ ∞

0
K(n, x)f (x) dx

]p

(3.1)

<
[
β

– 1
p

1 |β2|–
1
q 	(β)C(γ1,γ2,γ3,η1,η2,β)

]p‖f ‖p
p,ν ,

I2 :=
∫ ∞

0
xqββ2–1

[ ∞∑
n=1

K(n, x)an

]q

dx (3.2)

<
[
β

– 1
p

1 |β2|–
1
q 	(β)C(γ1,γ2,γ3,η1,η2,β)

]q‖a‖q
q,μ,

J :=
∞∑

n=1

an

∫ ∞

0
K(n, x)f (x) dx =

∫ ∞

0
f (x)

∞∑
n=1

K(n, x)an dx (3.3)
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< β
– 1

p
1 |β2|–

1
q 	(β)C(γ1,γ2,γ3,η1,η2,β)‖f ‖p,ν‖a‖q,μ,

where the constant factors

[
β

– 1
p

1 |β2|–
1
q 	(β)C(γ1,γ2,γ3,η1,η2,β)

]p,

[
β

– 1
p

1 |β2|–
1
q 	(β)C(γ1,γ2,γ3,η1,η2,β)

]q,

and β
– 1

p
1 |β2|–

1
q 	(β)C(γ1,γ2,γ3,η1,η2,β) are the best possible.

Proof By Hölder’s inequality and (2.7), we have

[∫ ∞

0
K(n, x)f (x) dx

]p

(3.4)

=
[∫ ∞

0
K(n, x)

(
n

ββ1–1
p

x
ββ2–1

q
f (x)

)(
x

ββ2–1
q

n
ββ1–1

p

)
dx

]p

≤
∫ ∞

0
K(n, x)

[
nββ1–1

x
p(ββ2–1)

q
f p(x)

]
dx

{∫ ∞

0
K(n, x)

[
xββ2–1

n
q(ββ1–1)

p

]
dx

}p–1

=
∫ ∞

0
K(n, x)

[
nββ1–1

x
p(ββ2–1)

q
f p(x)

]
dx

[
ω(n)n

q(1–ββ1)
p

]p–1

=
n–pββ1+ββ1

|β2|p–1

[
	(β)C(γ1,γ2,γ3,η1,η2,β)

]p–1
∫ ∞

0
K(n, x)x

p(1–ββ2)
q f p(x) dx.

Therefore, by Lebesgue term-by-term integration theorem and (2.8), we obtain

I1 ≤
∞∑

n=1

nββ1–1

|β2|p–1

[
	(β)C(γ1,γ2,γ3,η1,η2,β)

]p–1
∫ ∞

0
K(n, x)x

p(1–ββ2)
q f p(x) dx (3.5)

=
1

|β2|p–1

[
	(β)C(γ1,γ2,γ3,η1,η2,β)

]p–1
∫ ∞

0
x

p(1–ββ2)
q f p(x)
 (x) dx

<
1

β1|β2|p–1

[
	(β)C(γ1,γ2,γ3,η1,η2,β)

]p
∫ ∞

0
xp(1–ββ2)–1f p(x) dx

=
[
β

– 1
p

1 |β2|–
1
q 	(β)C(γ1,γ2,γ3,η1,η2,β)

]p‖f ‖p
p,ν .

Hence (3.1) is proved. Similarly, by Hölder’s inequality in the form of series and (2.8), we
have

[ ∞∑
n=1

K(n, x)an

]q

(3.6)

=

[ ∞∑
n=1

K(n, x)
(

n
ββ1–1

p

x
ββ2–1

q

)(
x

ββ2–1
q

n
ββ1–1

p
an

)]q

≤ [

 (x)x

p(1–ββ2)
q

]q–1
∞∑

n=1

K(n, x)n
q(1–ββ1)

p aq
nxββ2–1
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<
x–qββ2+ββ2

β
q–1
1

[
	(β)C(γ1,γ2,γ3,η1,η2,β)

]q–1
∞∑

n=1

K(n, x)n
q(1–ββ1)

p aq
n.

Plugging (3.6) into the left-hand side of (3.2), and using Lebesgue term-by-term integra-
tion theorem again, as well as (2.7), we obtain

I2 <
1

β
q–1
1

[
	(β)C(γ1,γ2,γ3,η1,η2,β)

]q–1
∫ ∞

0
xββ2–1

∞∑
n=1

K(n, x)n
q(1–ββ1)

p aq
n dx (3.7)

=
1

β
q–1
1

[
	(β)C(γ1,γ2,γ3,η1,η2,β)

]q–1
∞∑

n=1

n
q(1–ββ1)

p aq
nω(n)

=
1

β
q–1
1 |β2|

[
	(β)C(γ1,γ2,γ3,η1,η2,β)

]q
∞∑

n=1

nq(1–ββ1)–1aq
n

=
[
β

– 1
p

1 |β2|–
1
q 	(β)C(γ1,γ2,γ3,η1,η2,β)

]q‖a‖q
q,μ.

The proof of (3.2) is completed.
By the use of Lebesgue term-by-term integration theorem, it is obvious that there exist

two forms of J . Using Hölder’s inequality and (3.1), we have

J =
∞∑

n=1

{[
nββ1– 1

p

∫ ∞

0
K(n, x)f (x) dx

](
ann–ββ1+ 1

p
)}

≤ I
1
p

1 ‖a‖q,μ < β
– 1

p
1 |β2|–

1
q 	(β)C(γ1,γ2,γ3,η1,η2,β)‖f ‖p,ν‖a‖q,μ.

Therefore, we obtained (3.3) via (3.1). It will be proved that (3.3) can also be obtained via
(3.2). In fact, it follows from Hölder’s inequality and (3.2) that

J =
∫ ∞

0

{[
xββ2– 1

q

∞∑
n=1

anK(n, x)

][
x–ββ2+ 1

q f (x)
]}

dx

≤ I
1
q

2 ‖f ‖p,ν < β
– 1

p
1 |β2|–

1
q 	(β)C(γ1,γ2,γ3,η1,η2,β)‖f ‖p,ν‖a‖q,μ.

In order to prove the equivalence of (3.1), (3.2), and (3.3), we will show that both (3.1) and
(3.2) hold when (3.3) is true. Let

an := npββ1–1
[∫ ∞

0
K(n, x)f (x) dx

]p–1

.

It follows from (3.3) that

0 <
(‖a‖q,μ

)pq =

{ ∞∑
n=1

npββ1–1
[∫ ∞

0
K(n, x)f (x) dx

]p
}p

=

[ ∞∑
n=1

an

∫ ∞

0
K(n, x)f (x) dx

]p

<
[
β

– 1
p

1 |β2|–
1
q 	(β)C(γ1,γ2,γ3,η1,η2,β)

]p‖f ‖p
p,ν‖a‖p

q,μ.
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Therefore,

0 <
∞∑

n=1

npββ1–1
[∫ ∞

0
K(n, x)f (x) dx

]p

(3.8)

=
(‖a‖q,μ

)q

<
[
β

– 1
p

1 |β2|–
1
q 	(β)C(γ1,γ2,γ3,η1,η2,β)

]p‖f ‖p
p,ν .

Hence, (3.1) is proved via (3.3). Similarly, let

f (x) := xqββ2–1

[ ∞∑
n=1

K(n, x)an

]q–1

.

By the use of (3.3), we have

0 <
(‖f ‖p,ν

)pq =

{∫ ∞

0
xqββ2–1

[ ∞∑
n=1

K(n, x)an

]q

dx

}q

(3.9)

=

[∫ ∞

0
f (x)

∞∑
n=1

K(n, x)an dx

]q

<
[
β

– 1
p

1 |β2|–
1
q 	(β)C(γ1,γ2,γ3,η1,η2,β)

]q‖f ‖q
p,ν‖a‖q

q,μ.

It follows from (3.9) that

0 <
∫ ∞

0
xqββ2–1

[ ∞∑
n=1

K(n, x)an

]q

dx =
(‖f ‖p,ν

)p (3.10)

<
[
β

– 1
p

1 |β2|–
1
q 	(β)C(γ1,γ2,γ3,η1,η2,β)

]q‖a‖q
q,ν .

Inequality (3.2) is also proved via (3.3). According to the above discussions, (3.1), (3.2),
and (3.3) are equivalent.

At last, it will be proved that the constant factors on the right-hand side of (3.1), (3.2), and

(3.3) are the best possible. Assuming that the constant factor β
– 1

p
1 |β2|–

1
q 	(β)C(γ1,γ2,γ3,η1,

η2,β) in (3.3) is not the best possible, there must be a positive number c such that (3.3)

still holds if β
– 1

p
1 |β2|–

1
q 	(β)C(γ1,γ2,γ3,η1,η2,β) is replaced with c. That is,

∞∑
n=1

an

∫ ∞

0
K(n, x)f (x) dx =

∫ ∞

0
f (x)

∞∑
n=1

anK(n, x) dx < c‖f ‖p,ν‖a‖q,μ. (3.11)

Replacing an and f (x) with an(ε) and fε(x) defined in Lemma 2.3, respectively, and using
(2.19), we have

1
|β1β2|	(β)C(γ1,γ2,γ3,η1,η2,β) + o(1) (3.12)

< εc‖fε‖p,ν
∥∥a(ε)

∥∥
q,μ = εc

(∫
�

xβ2ε–1 dx
) 1

p
(

1 +
∞∑

n=2

n–β1ε–1

) 1
q
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< εc
(∫

�

xβ2ε–1 dx
) 1

p
(

1 +
∫ ∞

1
x–β1ε–1 dx

) 1
q

= c|β2|–
1
p
(
ε + β–1

1
) 1

q .

Let ε → 0+, then we obtain β
– 1

p
1 |β2|–

1
q 	(β)C(γ1,γ2,γ3,η1,η2,β) ≤ c, which contradicts

the assumption, obviously. Therefore, the constant factor on the right-hand side of
inequality (3.3) is the best possible. From the equivalence of (3.1), (3.2), and (3.3),
the constant factors in (3.1) and (3.2) are obviously the best possible. Theorem 3.1 is
proved. �

4 Corollaries
Let η1 = η2 = –1, γ3 = –γ2 and β = 2m + 1 (m ∈ N) in Theorem 3.1. By the use of (2.23), we
obtain the following corollary.

Corollary 4.1 Let β1 ∈ R
+, β2 ∈ R \ {0}, and (2m + 1)β1 ≤ 1 (m ∈ N). Let 0 < γ2 < γ1.

Suppose that μn = nq[1–(2m+1)β1]–1, ν(x) = xp[1–(2m+1)β2]–1, and ψ1(u) = tan u. Let an, f (x) ≥ 0
with a = {an}∞n=1 ∈ lq,μ and f (x) ∈ Lp,ν(R+). Then

∞∑
n=1

an

∫ ∞

0
sinh

(
γ2nβ1 xβ2

)
csch

(
γ1nβ1 xβ2

)
f (x) dx (4.1)

=
∫ ∞

0
f (x)

∞∑
n=1

an sinh
(
γ2nβ1 xβ2

)
csch

(
γ1nβ1 xβ2

)
dx

< β
– 1

p
1 |β2|–

1
q

(
π

2γ1

)2m+1

ψ
(2m)
1

(
γ2π

2γ1

)
‖f ‖p,ν‖a‖q,μ.

In particular, let γ1 = 2γ , γ2 = γ (γ > 0) in (4.1), then it follows that

∞∑
n=1

an

∫ ∞

0
sech

(
γ nβ1 xβ2

)
f (x) dx (4.2)

< β
– 1

p
1 |β2|–

1
q

1
24m+1

(
π

γ

)2m+1

ψ
(2m)
1

(
π

4

)
‖f ‖p,ν‖a‖q,μ.

Setting γ = 1, β1 = 1, β2 = –1, m = 0 in (4.2), we obtain (1.8).
In addition, let γ1 = 4γ , γ2 = γ (γ > 0) in (4.1), then we have

∞∑
n=1

an

∫ ∞

0
sech

(
γ nβ1 xβ2

)
sech

(
2γ nβ1 xβ2

)
f (x) dx (4.3)

< β
– 1

p
1 |β2|–

1
q

1
26m+1

(
π

γ

)2m+1

ψ
(2m)
1

(
π

8

)
‖f ‖p,ν‖a‖q,μ.

Setting β1 = β2 = γ = 1, m = 0 in (4.2) and (4.3), we obtain

∞∑
n=1

an

∫ ∞

0
sech(nx)f (x) dx <

π

2
‖f ‖p,ν‖a‖q,μ, (4.4)
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∞∑
n=1

an

∫ ∞

0
sech(nx)sech(2nx)f (x) dx <

(
√

2 – 1)π
2

‖f ‖p,ν‖a‖q,μ, (4.5)

where μn = 1
n , ν(x) = 1

x .
Let η1 = –1, η2 = 1, γ3 = –γ2 and β = 2m + 2 (m ∈N) in Theorem 3.1. By the use of (2.24),

we obtain the following corollary.

Corollary 4.2 Let β1 ∈ R
+, β2 ∈ R \ {0}, and (2m + 2)β1 ≤ 1 (m ∈ N). Let 0 ≤ γ2 < γ1.

Suppose that μn = nq[1–(2m+2)β1]–1, ν(x) = xp[1–(2m+2)β2]–1, and ψ1(u) = tan u. Let an, f (x) ≥ 0
with a = {an}∞n=1 ∈ lq,μ and f (x) ∈ Lp,ν(R+). Then

∞∑
n=1

an

∫ ∞

0
cosh

(
γ2nβ1 xβ2

)
csch

(
γ1nβ1 xβ2

)
f (x) dx (4.6)

=
∫ ∞

0
f (x)

∞∑
n=1

cosh
(
γ2nβ1 xβ2

)
csch

(
γ1nβ1 xβ2

)
an dx

< β
– 1

p
1 |β2|–

1
q

(
π

2γ1

)2m+2

ψ
(2m+1)
1

(
γ2π

2γ1

)
‖f ‖p,ν‖a‖q,μ.

Particularly, let γ1 = γ > 0, γ2 = 0 in (4.6), then it follows that

∞∑
n=1

an

∫ ∞

0
csch

(
γ nβ1 xβ2

)
f (x) dx (4.7)

< β
– 1

p
1 |β2|–

1
q

(
π

2γ

)2m+2

ψ
(2m+1)
1 (0)‖f ‖p,ν‖a‖q,μ.

Additionally, letting γ1 = 2γ , γ2 = γ (γ > 0) in (4.6), we have

∞∑
n=1

an

∫ ∞

0
csch

(
γ nβ1 xβ2

)
f (x) dx (4.8)

< β
– 1

p
1 |β2|–

1
q

1
24m+3

(
π

γ

)2m+2

ψ
(2m+1)
1

(
π

4

)
‖f ‖p,ν‖a‖q,μ.

Compare (4.7) with (4.8). By (2.24), it is easy to show that ψ
(2m+1)
1 (0) = 1

22m+1 ψ
(2m+1)
1 ( π

4 ).
Therefore, (4.7) and (4.8) are equivalent. Setting β1 = β2 = 1

2 , γ = 1, m = 0 in (4.7), we
obtain

∞∑
n=1

an

∫ ∞

0
csch(

√
nx)f (x) dx <

π2

2
‖f ‖p,ν‖a‖q,μ, (4.9)

where μn = 1
n , ν(x) = 1

x .
Furthermore, letting γ1 = 4γ , γ2 = γ (γ > 0) in (4.6), we have

∞∑
n=1

an

∫ ∞

0
csch

(
γ nβ1 xβ2

)
sech

(
2γ nβ1 xβ2

)
f (x) dx (4.10)

< β
– 1

p
1 |β2|–

1
q

1
26m+3

(
π

γ

)2m+2

ψ
(2m+1)
1

(
π

8

)
‖f ‖p,ν‖a‖q,μ.
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Let η1 = –1, η2 = 1, γ1 = γ , γ2 = γ3 = –γ , and β = 2m + 2 (m ∈ N) in Theorem 3.1. By the
following equality

∞∑
j=0

1
(j + 1)2m+2 =

22m+1

(2m + 2)!
π2m+2Bm+1,

where Bm+1 is Bernoulli number, B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , . . . Then, the following corollary

holds.

Corollary 4.3 Let γ ,β1 ∈R
+, β2 ∈R \ {0}, and (2m + 2)β1 ≤ 1 (m ∈N). Suppose that μn =

nq[1–(2m+2)β1]–1, ν(x) = xp[1–(2m+2)β2]–1, and ψ2(u) = sec u. Let an, f (x) ≥ 0 with a = {an}∞n=1 ∈
lq,μ and f (x) ∈ Lp,ν(R+). Then

∞∑
n=1

an

∫ ∞

0

[
coth

(
γ nβ1 xβ2

)
– 1

]
f (x) dx (4.11)

=
∫ ∞

0
f (x)

∞∑
n=1

[
coth

(
γ nβ1 xβ2

)
– 1

]
an dx

< β
– 1

p
1 |β2|–

1
q

Bm+1

2m + 2

(
π

γ

)2m+2

‖f ‖p,ν‖a‖q,μ.

Setting β1 = β2 = 1
2m+2 , γ = 1, and replacing m + 1 with m, we obtain (1.9).

Let η1 = η2 = 1, γ3 = –γ2 and β = 2m + 1 (m ∈ N) in Theorem 3.1. By the use of (2.25),
we obtain Corollary 4.4.

Corollary 4.4 Let β1 ∈ R
+, β2 ∈ R \ {0}, and (2m + 1)β1 ≤ 1 (m ∈ N). Let 0 ≤ γ2 < γ1.

Suppose that μn = nq[1–(2m+1)β1]–1, ν(x) = xp[1–(2m+1)β2]–1, and ψ2(u) = sec u. Let an, f (x) ≥ 0
with a = {an}∞n=1 ∈ lq,μ and f (x) ∈ Lp,ν(R+). Then

∞∑
n=1

an

∫ ∞

0
cosh

(
γ2nβ1 xβ2

)
sech

(
γ1nβ1 xβ2

)
f (x) dx (4.12)

=
∫ ∞

0
f (x)

∞∑
n=1

cosh
(
γ2nβ1 xβ2

)
sech

(
γ1nβ1 xβ2

)
an dx

< β
– 1

p
1 |β2|–

1
q

(
π

2γ1

)2m+1

ψ
(2m)
2

(
γ2π

2γ1

)
‖f ‖p,ν‖a‖q,μ.

Let γ1 = γ > 0, γ2 = 0 in (4.12), we have

∞∑
n=1

an

∫ ∞

0
sech

(
γ nβ1 xβ2

)
f (x) dx (4.13)

< β
– 1

p
1 |β2|–

1
q

(
π

2γ

)2m+1

ψ
(2m)
2 (0)‖f ‖p,ν‖a‖q,μ.
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Comparing (4.2) with (4.13), it can be shown that (4.2) and (4.13) are equivalent. In fact,
in view of

∞∑
j=0

[
1

(4j + 1)2m+1 –
1

(4j + 3)2m+1

]
=

∞∑
j=0

(–1)j

(2j + 1)2m+1 , (4.14)

and using (2.23) and (2.25), we have ψ
(2m)
1 ( π

4 ) = 22mψ
(2m)
2 (0). Therefore, (4.2) is equivalent

to (4.13).
Additionally, letting γ1 = 2γ , γ2 = γ (γ > 0) in (4.12), we have

∞∑
n=1

an

∫ ∞

0
csch

(
γ1nβ1 xβ2

)
tanh

(
2γ1nβ1 xβ2

)
f (x) dx (4.15)

< β
– 1

p
1 |β2|–

1
q

1
24m+1

(
π

γ

)2m+1

ψ
(2m)
1

(
π

4

)
‖f ‖p,ν‖a‖q,μ.

Let η1 = η2 = 1, γ1 = γ , γ2 = γ3 = –γ , and β = 2m + 2 (m ∈N). Due to the following equality
[44, 45]:

∞∑
j=0

(–1)j

(j + 1)2m+2 =
22m+1 – 1
(2m + 2)!

π2m+2Bm+1,

the following corollary holds.

Corollary 4.5 Let γ ,β1 ∈R
+, β2 ∈R \ {0}, and (2m + 2)β1 ≤ 1 (m ∈N). Suppose that μn =

nq[1–(2m+2)β1]–1, ν(x) = xp[1–(2m+2)β2]–1, and ψ2(u) = sec u. Let an, f (x) ≥ 0 with a = {an}∞n=1 ∈
lq,μ and f (x) ∈ Lp,ν(R+). Then

∞∑
n=1

an

∫ ∞

0

[
1 – tanh

(
γ nβ1 xβ2

)]
f (x) dx (4.16)

=
∫ ∞

0
f (x)

∞∑
n=1

an
[
1 – tanh

(
γ nβ1 xβ2

)]
dx

< β
– 1

p
1 |β2|–

1
q

22m+1 – 1
m + 1

(
π

2γ

)2m+2

Bm+1‖f ‖p,ν‖a‖q,μ.

Setting β1 = β2 = 1
2m+2 , γ = 1, and replacing m + 1 with m, we arrive at (1.10).
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