Skip to main content

The boundedness of commutators of rough p-adic fractional Hardy type operators on Herz-type spaces


In this paper, we obtain some inequalities about commutators of a rough p-adic fractional Hardy-type operator on Herz-type spaces when the symbol functions belong to two different function spaces.

1 Introduction

During the last several decades, the p-adic analysis has cemented its role in the field of mathematical physics (see, for example, [1, 22, 32, 33]). That stimulates researchers to pay attention to harmonic analysis on p-adic fields [1821, 24, 30, 31, 35], which has direct implications in the stochastic process [2, 3], theoretical biology [6], and p-adic pseudo-differential equations [23, 34]. In continuation of the ongoing research, the present paper considers an extension of the investigation of p-adic Hardy-type operators discussed in [1921, 25, 36, 37].

For every non-zero rational number x there is a unique \(\gamma =\gamma (x)\in \mathbb{Z}\) such that \(x=p^{\gamma }m/n\), where \(p\geq 2\) is a fixed prime number which is coprime to \(m,n\in \mathbb{Z}\). We define a mapping \(|\cdot |_{p}:\mathbb{Q}\rightarrow \mathbb{R_{+}}\) as follows:

$$ \vert x \vert _{p}= \textstyle\begin{cases} p^{-\gamma } & \text{if } x\neq 0, \\ 0 & \text{if } x=0. \end{cases} $$

The p-adic absolute value \(|\cdot |_{p}\) has many properties of the usual real norm \(|\cdot |\) with an additional non-Archimedean property,

$$ \vert x+y \vert _{p}\le \max \bigl\{ \vert x \vert _{p}, \vert y \vert _{p}\bigr\} . $$

The field of p-adic numbers, denoted by \(\mathbb{Q}_{p}\), is the completion of rational numbers with respect to the p-adic absolute value \(|\cdot |_{p}\). A p-adic number \(x\in \mathbb{Q}_{p}\) can be written in the formal power series as [34]:

$$ x=p^{\gamma }\bigl(\beta _{0}+\beta _{1}p+\beta _{2}p^{2}+\cdots \bigr), $$

where \(\gamma \in \mathbb{Z}\) and \(\beta _{i}\in \{0,1,\ldots ,p-1\}\), \(i=0,1,2,\ldots \) . The p-adic absolute value ensures the convergence of series (1.2) in \(\mathbb{Q}_{p}\), because the inequality \(|p^{\gamma }\beta _{i}p^{i}|_{p}\leq p^{-\gamma -i}\) holds for all \(\gamma \in \mathbb{Z}\) and \(i \in \mathbb{N}\).

The n-dimensional vector space \(\mathbb{Q}_{p}^{n}\), \(n \geq 1\), consists of the vectors \(\mathbf{x} = (x_{1}, x_{2}, \ldots ,x_{n})\), where \(x_{j}\in \mathbb{Q}_{p}\) and \(j=1,2,\ldots ,n\), with the following absolute value:

$$ \vert \mathbf{x} \vert _{p}=\max _{1\leq k \leq n} \vert x_{k} \vert _{p}. $$

For \(\gamma \in \mathbb{Z}\) and \(\mathbf{a}=(a_{1}, a_{2}, \ldots , a_{n}) \in \mathbb{Q}_{p}^{n}\), we denote by

$$ B_{\gamma }(\mathbf{a})=\bigl\{ \mathbf{x} \in \mathbb{Q}_{p}^{n} \colon \vert \mathbf{x}-\mathbf{a} \vert _{p} \leq p^{\gamma }\bigr\} $$

the closed ball with the center a and radius \(p^{\gamma }\) and by

$$ S_{\gamma }(\mathbf{a})=\bigl\{ \mathbf{x} \in \mathbb{Q}_{p}^{n} \colon \vert \mathbf{x}-\mathbf{a} \vert _{p} = p^{\gamma }\bigr\} $$

the corresponding sphere. For \(\mathbf{a}=\mathbf{0}\), we write \(B_{\gamma }(\mathbf{0})=B_{\gamma }\), and \(S_{\gamma }(\mathbf{0})=S_{\gamma }\). It is easy to see that the equalities

$$ \mathbf{a}_{0} + B_{\gamma }=B_{\gamma }( \mathbf{a}_{0}) \quad \text{and} \quad \mathbf{a}_{0} + S_{\gamma }= S_{\gamma }(\mathbf{a}_{0}) = B_{\gamma }(\mathbf{a}_{0}) \setminus B_{\gamma -1}( \mathbf{a}_{0}) $$

hold for all \(\mathbf{a}_{0}\in \mathbb{Q}_{p}^{n}\) and \(\gamma \in \mathbb{Z}\).

Since \(\mathbb{Q}_{p}^{n}\) is a locally compact commutative group under addition, there exists a unique Haar measure dx on \(\mathbb{Q}_{p}^{n}\), such that

$$ \int _{B_{0}}d\mathbf{x}= \vert B_{0} \vert _{h} =1, $$

where \(|B|_{h}\) denotes the Haar measure of measurable subset B of \(\mathbb{Q}_{p}^{n}\). Furthermore, a simple calculation shows that

$$ \bigl\vert B_{\gamma }(\mathbf{a}) \bigr\vert _{h} = p^{n\gamma } \quad \text{and}\quad \bigl\vert S_{ \gamma }(\mathbf{a}) \bigr\vert _{h} = p^{n\gamma }\bigl(1-p^{-n}\bigr) $$

hold for all \(\mathbf{a}\in \mathbb{Q}_{p}^{n}\) and \(\gamma \in \mathbb{Z}\).

The one-dimensional Hardy operator

$$ \mathcal{H}f(x)=\frac{1}{x} \int _{0}^{x}f(y)\,dy,\quad x>0, $$

where \(f \colon \mathbb{R}^{+} \to \mathbb{R}^{+}\) is a measurable functions, was introduced by Hardy in [13]. This operator satisfies the inequality:

$$ \Vert \mathcal{H} f \Vert _{L^{q}(\mathbb{R}^{+})}\leq \frac{q}{q-1} \Vert f \Vert _{L^{q}( \mathbb{R}^{+})},\quad 1< q< \infty , $$

where the constant \(q/(q-1)\) is sharp. In [7], Faris proposed an extension of the operator \(\mathcal{H}\) on higher dimensional Euclidean space \(\mathbb{R}^{n}\) which is given by

$$ Hf(\mathbf{x}) = \frac{1}{ \vert \mathbf{x} \vert ^{n}} \int _{ \vert \mathbf{y} \vert \leq \vert \mathbf{x} \vert } f(\mathbf{y}) \,d\mathbf{y}, $$

for \(\mathbf{x} = (x_{1}, \ldots , x_{n})\). In addition, Christ and Grafakos [4] obtained the exact value of the norm of operator H defined by (1.5). For boundedness results for these operators on function spaces we refer to some recent publications including [8, 10, 16, 17, 28, 29, 38].

On the other hand, the n-dimensional fractional p-adic Hardy operator

$$ H^{p}_{\alpha } f(\mathbf{x}) = \frac{1}{ \vert \mathbf{x} \vert _{p}^{n-\alpha }} \int _{ \vert \mathbf{y} \vert _{p}\leq \vert \mathbf{x} \vert _{p}}f(\mathbf{y})\,d\mathbf{y} $$

was defined and studied for \(f\in L_{1}^{\mathrm{loc}}(\mathbb{Q}_{p}^{n})\) and \(0\le \alpha < n\) in [36]. When \(\alpha =0\), the operator \(H^{p}_{\alpha }\) transfers to the p-adic Hardy-type operator (see [10] for more details). Fu et al. in [9], fixed the optimal bounds of p-adic Hardy operator on \(L^{q}(\mathbb{Q}_{p}^{n})\). On the central Morrey space the p-adic Hardy-type operators and their commutators were discussed in [37]. In this connection see also [19, 21, 25].

There is still zero attention towards the rough Hardy operators on the p-adic linear spaces. Motivated by papers cited above and results of Fu et al. in [8], we define the special kind of p-adic rough fractional Hardy operator \(H^{p}_{\Omega ,\alpha }\) and its commutators as follows.

Definition 1.1

Let \(f \colon \mathbb{Q}_{p}^{n} \to \mathbb{R}\), \(b \colon \mathbb{Q}_{p}^{n} \to \mathbb{R}\) be measurable mappings and let \(0<\alpha <n\). Then, for \(\mathbf{x} \in \mathbb{Q}_{p}^{n} \setminus \{\mathbf{0}\}\), we define the rough p-adic fractional Hardy operator \(H^{p}_{\Omega , \alpha }\) by

$$ H^{p}_{\Omega , \alpha } f(\mathbf{x}) = \frac{1}{ \vert \mathbf{x} \vert _{p}^{n-\alpha }} \int _{ \vert \mathbf{y} \vert _{p} \leq \vert \mathbf{x} \vert _{p}} \Omega \bigl( \vert \mathbf{y} \vert _{p} \mathbf{y} \bigr) f( \mathbf{y}) \,d\mathbf{y}, $$

and its commutator \(H^{p,b}_{\Omega ,\alpha }\) by

$$ H^{p,b}_{\Omega ,\alpha } f(\mathbf{x}) = \frac{1}{ \vert \mathbf{x} \vert _{p}^{n-\alpha }} \int _{ \vert \mathbf{y} \vert _{p} \leq \vert \mathbf{x} \vert _{p}} \bigl(b (\mathbf{x}) -b(\mathbf{y} )\bigr) \Omega \bigl( \vert \mathbf{y} \vert _{p} \mathbf{y} \bigr) f( \mathbf{y})\,d\mathbf{y}, $$


$$ \int _{ \vert \mathbf{y} \vert _{p} \leq \vert \mathbf{x} \vert _{p}} \bigl\vert \Omega \bigl( \vert \mathbf{y} \vert _{p} \mathbf{y} \bigr) f(\mathbf{y}) \bigr\vert \,d\mathbf{y} < \infty $$


$$ \int _{ \vert \mathbf{y} \vert _{p} \leq \vert \mathbf{x} \vert _{p}} \bigl\vert b(\mathbf{y}) \Omega \bigl( \vert \mathbf{y} \vert _{p} \mathbf{y} \bigr) f(\mathbf{y}) \bigr\vert \,d\mathbf{y} < \infty , $$

where \(\Omega \in L^{s}(S_{0}(\mathbf{0}))\), \(1\leq s<\infty \).

Remark 1.2


$$ \bigl\{ \vert \mathbf{y} \vert _{p} \colon \mathbf{y} \in \mathbb{Q}_{p}^{n}\bigr\} = \bigl\{ p^{ \gamma } \colon \gamma \in \mathbb{Z}\bigr\} \cup \{0\} $$

holds for every integer \(n \geq 1\) and prime \(p \geq 2\). Since the inclusion

$$ \{0\} \cup \bigl\{ p^{\gamma } \colon \gamma \in \mathbb{Z}\bigr\} \subseteq \mathbb{Q}_{p} $$

holds and \(\mathbb{Q}_{p}^{n}\) is a linear space over field \(\mathbb{Q}_{p}\), the product \(|\mathbf{y}|_{p} \mathbf{y}\) is well defined. Moreover, if a non-zero \(\mathbf{y} \in \mathbb{Q}_{p}^{n}\) has the form \(\mathbf{y} = (y_{1}, \ldots , y_{n})\) and

$$ y_{i} = p^{\gamma _{i}} \bigl(\beta _{0, i} + \beta _{1, i} p + \beta _{2, i} p^{2} + \cdots \bigr),\quad i = 1, \ldots , n $$

(see (1.2)), then there is \(i_{0} \in \{1, \ldots , n\}\) such that

$$ \vert y_{i_{0}} \vert _{p} = p^{-\gamma _{i_{0}}} \geq p^{-\gamma _{i}} = \vert y_{i} \vert _{p} $$

whenever \(y_{i} \neq 0\). Using (1.3) we obtain \(|\mathbf{y}|_{p} = p^{-\gamma _{i_{0}}}\). Now from (1.10) and (1.11) it follows that

$$ \bigl\vert \vert \mathbf{y}|_{p} \mathbf{y}\bigr|_{p} = \max _{ \substack{1 \leq i \leq n \\ y_{i} \neq 0}} \bigl\vert p^{\gamma _{i} - \gamma _{i_{0}}} \bigr\vert _{p} = \max_{\substack{1 \leq i \leq n \\ y_{i} \neq 0}} p^{\gamma _{i_{0}} - \gamma _{i}} = p^{\gamma _{i_{0}} - \gamma _{i_{0}}} = 1. $$

Thus, for every non-zero \(\mathbf{y} \in \mathbb{Q}_{p}^{n}\), the vector \(|\mathbf{y}|_{p} \mathbf{y}\) belongs to the sphere

$$ S_{0}(\mathbf{0}) = \bigl\{ \mathbf{y} \in \mathbb{Q}_{p}^{n} \colon \vert \mathbf{y} \vert _{p} = 1\bigr\} . $$

From (1.8) it directly follows that \(H^{p}_{\Omega , \alpha } \in \mathbb{R}\) for every non-zero \(\mathbf{x} \in \mathbb{Q}_{p}^{n}\) and using (1.8), (1.9) we have

$$\begin{aligned} \bigl\vert H^{p, b}_{\Omega , \alpha } f(\mathbf{x}) \bigr\vert & \leq \frac{ \vert b(\mathbf{x}) \vert }{ \vert \mathbf{x} \vert _{p}^{n-\alpha }} \int _{ \vert \mathbf{y} \vert _{p} \leq \vert \mathbf{x} \vert _{p}} \bigl\vert \Omega \bigl( \vert \mathbf{y} \vert _{p} \mathbf{y} \bigr) f(\mathbf{y}) \bigr\vert \,d\mathbf{y} \\ & \quad {}+ \frac{1}{ \vert \mathbf{x} \vert _{p}^{n-\alpha }} \int _{ \vert \mathbf{y} \vert _{p} \leq \vert \mathbf{x} \vert _{p}} \bigl\vert b(\mathbf{y}) \Omega \bigl( \vert \mathbf{y} \vert _{p} \mathbf{y} \bigr) f(\mathbf{y}) \bigr\vert \,d\mathbf{y} < \infty \end{aligned}$$

for every \(\mathbf{x} \in \mathbb{Q}_{p}^{n} \setminus \{\mathbf{0}\}\). Consequently, the operators \(H^{p}_{\Omega , \alpha }\) and \(H^{p,b}_{\Omega ,\alpha }\) are well defined.

The aim of the current paper is to study the boundedness of \(H^{p,b}_{\Omega ,\alpha }\) on p-adic Herz-type spaces by considering the symbol function b belonging to the p-adic CMO and Lipschitz spaces. In Euclidean space \(\mathbb{R}^{n}\), Herz spaces and Morrey–Herz spaces were firstly introduced in [14] and [26], respectively. For more recent developments in the said spaces we mention the articles [15, 27, 39] and the references therein. Also, some operators with rough kernels defined on Euclidian space were recently studied on function spaces; see for example [11, 12]. Before turning to our main results, let us recall the definitions of p-adic function spaces first.

Definition 1.3


Suppose \(1< q<\infty \). The p-adic central bounded mean oscillation (CBMO) space \(C\dot{M}O^{q}(\mathbb{Q}_{p}^{n})\) is the set of all measurable functions \(f \colon \mathbb{Q}_{p}^{n} \to \mathbb{R}\) which satisfy

$$ \Vert f \Vert _{\mathit{CMO}^{q}(\mathbb{Q}_{p}^{n})} = \sup _{\gamma \in \mathbb{Z}} \biggl(\frac{1}{ \vert B_{\gamma } \vert _{h}} \int _{B_{\gamma }} \bigl\vert f(\mathbf{x}) - f_{B_{ \gamma }} \bigr\vert ^{q} \,d\mathbf{x} \biggr)^{1/q} < \infty , $$

where \(f_{B_{\gamma }}=\frac{1}{|B_{\gamma }|_{h}} \int _{B_{\gamma }} f( \mathbf{x}) \,d\mathbf{x}\), \(|B_{\gamma }|_{h}\) is the Haar measure of \(B_{\gamma }\).

Definition 1.4


Suppose \(0< r<\infty \), \(0< q<\infty \) and \(\beta \in \mathbb{R}\). The homogeneous p-adic Herz space \(\dot{K}^{\beta ,r}_{q}(\mathbb{Q}_{p}^{n})\) is defined by

$$ \dot{K}^{\beta ,r}_{q}\bigl(\mathbb{Q}_{p}^{n} \bigr)=\bigl\{ f\in L^{q}\bigl(\mathbb{Q}_{p}^{n} \bigr): \Vert f \Vert _{\dot{K}^{\beta ,r}_{q}(\mathbb{Q}_{p}^{n})}< \infty \bigr\} , $$


$$ \Vert f \Vert _{\dot{K}^{\beta ,r}_{q}(\mathbb{Q}_{p}^{n})}= \Biggl(\sum_{k=- \infty }^{\infty }p^{k\beta r} \Vert f\chi _{k} \Vert ^{r}_{L^{q}(\mathbb{Q}_{p}^{n})} \Biggr)^{1/r}, $$

and \(\chi _{k}\) is the characteristic function of \(S_{k}\).

Obviously, the equalities \(\dot{K}^{0,q}_{q}(\mathbb{Q}_{p}^{n})=L^{q}(\mathbb{Q}_{p}^{n})\) and \(\dot{K}^{\beta /q,q}_{q}(\mathbb{Q}_{p}^{n})=L^{q}(|\mathbf{x}|_{p}^{ \beta })\) hold.

Definition 1.5


Suppose \(0< r<\infty \), \(0< q<\infty \), \(\beta \in \mathbb{R}\) and \(\lambda \geq 0\). The homogeneous p-adic Morrey–Herz space is defined by

$$ M\dot{K}^{\beta ,\lambda }_{q,r}\bigl(\mathbb{Q}_{p}^{n} \bigr)=\bigl\{ f\in L^{q}_{\mathrm{loc}}\bigl( \mathbb{Q}_{p}^{n} \setminus \{0\}\bigr): \Vert f \Vert _{M\dot{K}^{\beta ,\lambda }_{r,q}( \mathbb{Q}_{p}^{n})}< \infty \bigr\} , $$


$$ \Vert f \Vert _{M\dot{K}^{\beta ,\lambda }_{r,q}(\mathbb{Q}_{p}^{n})}=\sup_{k_{0} \in \mathbb{Z}}p^{-k_{0}\lambda } \Biggl(\sum_{k=-\infty }^{k_{0}}p^{k \beta r} \Vert f\chi _{k} \Vert ^{r}_{L^{q}(\mathbb{Q}_{p}^{n})} \Biggr)^{1/r}. $$

It is evident that \(M\dot{K}^{\beta ,0}_{r,q}(\mathbb{Q}_{p}^{n})=\dot{K}^{\beta ,r}_{q}( \mathbb{Q}_{p}^{n})\) and \(M\dot{K}^{\beta /q,0}_{q,q}(\mathbb{Q}_{p}^{n})=L^{q}(|\mathbf{x}|_{p}^{ \alpha })\).

Definition 1.6


Suppose δ is a positive real number. The Lipschitz space \(\Lambda _{\delta }(\mathbb{Q}_{p}^{n})\) is defined to be the space of all measurable function f on \(\mathbb{Q}_{p}^{n}\) such that

$$ \Vert f \Vert _{\Lambda _{\delta }(\mathbb{Q}_{p}^{n})}=\sup_{\mathbf{x}, \mathbf{h}\in \mathbb{Q}_{p}^{n},\mathbf{h}\neq 0} \frac{ \vert f(\mathbf{x}+\mathbf{h})-f(\mathbf{x}) \vert }{ \vert \mathbf{h} \vert _{p}^{\delta }}< \infty . $$

2 CBMO estimates for commutators of p-adic rough fractional Hardy operator

The present section discusses the boundedness of p-adic rough fractional Hardy operator on p-adic Herz-type spaces. We begin this section with the following useful lemma.

Lemma 2.1


Suppose b is a \(\mathit{CMO}^{1}(\mathbb{Q}_{p}^{n})\) function and suppose \(i, j\in \mathbb{Z}\). Then the inequality

$$ \bigl\vert b(\mathbf{y})-b_{B_{j}} \bigr\vert \leq \bigl\vert b( \mathbf{y})-b_{B_{i}} \bigr\vert +p^{n} \vert i-j \vert \Vert b \Vert _{\mathit{CMO}^{1}(\mathbb{Q}_{p}^{n})}, $$


Remark 2.2

From now on the letter C indicates a positive constant which may vary from line to line.

Theorem 2.3

Let \(0< r_{1}\leq r_{2}<\infty \), \(1\leq q_{1}\), \(q_{2}<\infty \). Also, let \(\frac{1}{q_{1}}-\frac{1}{q_{2}}=\frac{\alpha }{n}\), \(q_{1}'< s< \infty \), \(\frac{1}{q_{1}'}-\frac{1}{t}=\frac{1}{s} \). If \(\beta <\frac{n}{t}\), then the inequality

$$ \bigl\Vert H^{p,b}_{\Omega ,\alpha }f \bigr\Vert _{\dot{K}^{\beta ,r_{2}}_{q_{2}}( \mathbb{Q}_{p}^{n})}\leq C \Vert f \Vert _{\dot{K}^{\beta ,r_{1}}_{q_{1}}( \mathbb{Q}_{p}^{n})}, $$

holds for all \(\Omega \in L^{s}(S_{\mathbf{0}}(\mathbf{0}))\), \(b\in \mathit{CMO}^{\max \{q_{2},t\}}(\mathbb{Q}_{p}^{n})\), and \(f\in L_{\mathrm{loc}}^{q_{1}}(\mathbb{Q}_{p}^{n})\).

Proof of Theorem 2.3

For the sake of brevity, we write

$$ \sum_{j=-\infty }^{\infty }f(\mathbf{x})\chi _{j}(\mathbf{x})=\sum_{j=- \infty }^{\infty }f_{j}( \mathbf{x}).$$


$$\begin{aligned} \bigl\Vert \bigl(H^{p,b}_{\Omega ,\alpha }f\bigr) \chi _{k} \bigr\Vert ^{q_{2}}_{L^{q_{2}}( \mathbb{Q}_{p}^{n})} &= \int _{S_{k}} \vert \mathbf{x} \vert _{p}^{-q_{2}(n-\alpha )} \biggl\vert \int _{ \vert \mathbf{y} \vert _{p} \leq \vert \mathbf{x} \vert _{p}} \Omega \bigl( \vert \mathbf{y} \vert _{p}\mathbf{y}\bigr)f(\mathbf{y}) \bigl(b(\mathbf{x}) -b(\mathbf{y}) \bigr) \,d\mathbf{y} \biggr\vert ^{q_{2}} \,d\mathbf{x} \\ &\leq Cp^{-kq_{2}(n-\alpha )} \int _{S_{k}} \biggl( \int _{ \vert \mathbf{y} \vert _{p} \leq p^{k}} \bigl\vert \Omega \bigl( \vert \mathbf{y} \vert _{p}\mathbf{y}\bigr) f(\mathbf{y}) \bigl(b( \mathbf{x}) -b( \mathbf{y})\bigr) \bigr\vert \,d\mathbf{y} \biggr)^{q_{2}} \,d\mathbf{x} \\ &=Cp^{-kq_{2}(n-\alpha )} \int _{S_{k}} \Biggl(\sum_{j=-\infty }^{k} \int _{S_{j}} \bigl\vert f(\mathbf{y}) \Omega \bigl(p^{j}\mathbf{y}\bigr) \bigl(b(\mathbf{x})-b( \mathbf{y})\bigr)\bigr| \,d\mathbf{y} \Biggr)^{q_{2}}\,d\mathbf{x} \\ &\leq Cp^{-kq_{2}(n-\alpha )} \int _{S_{k}} \Biggl(\sum_{j=-\infty }^{k} \int _{S_{j}} \bigl\vert f(\mathbf{y}) \Omega \bigl(p^{j} \mathbf{y}\bigr) \bigl(b(\mathbf{x})-b_{B_{k}} \bigr) \bigr\vert \,d\mathbf{y} \Biggr)^{q_{2}}\,d\mathbf{x} \\ &\quad {} +Cp^{-kq_{2}(n-\alpha )} \int _{S_{k}} \Biggl(\sum_{j=-\infty }^{k} \int _{S_{j}} \bigl\vert f(\mathbf{y}) \Omega \bigl(p^{j}\mathbf{y}\bigr) \bigl(b(\mathbf{y})-b_{B_{k}} \bigr) \bigr\vert \,d\mathbf{y} \Biggr)^{q_{2}}\,d\mathbf{x} \\ &=I+\mathit{II}. \end{aligned}$$

For \(j,k\in \mathbb{Z}\) with \(j\leq k\), we get

$$ \int _{S_{j}} \bigl\vert \Omega \bigl(p^{j} \mathbf{y}\bigr) \bigr\vert ^{s}\,d\mathbf{y}= \int _{ \vert \mathbf{z} \vert _{p}=1} \bigl\vert \Omega (\mathbf{z}) \bigr\vert ^{s}p^{jn}\,d\mathbf{z}\leq Cp^{kn}. $$

Note that \(\frac{1}{q_{1}}+\frac{1}{q_{2}}=\frac{\alpha }{n}\) and \(\frac{1}{q_{1}}+\frac{1}{s}+\frac{1}{t}=1\), where \(\frac{1}{t}=\frac{1}{q_{1}'}-\frac{1}{s}\). Applying Hölder’s inequality we have

$$\begin{aligned} I&\leq Cp^{-kq_{2}(n-\alpha )} \int _{B_{k}} \bigl\vert b(\mathbf{x})-b_{B_{k}} \bigr\vert ^{q_{2}} \\ & \quad {}\times \Biggl\{ \sum_{j=-\infty }^{k} \biggl( \int _{S_{j}} \bigl\vert f( \mathbf{y}) \bigr\vert ^{q_{1}}\,d\mathbf{y} \biggr)^{1/q_{1}} \biggl( \int _{S_{j}} \bigl\vert \Omega \bigl(p^{j} \mathbf{y}\bigr) \bigr\vert ^{s}\,d\mathbf{y} \biggr)^{1/s}p^{jn(1/q_{1}'-1/s)} \Biggr\} ^{q_{2}}\,d\mathbf{x} \\ &\leq C \Vert b \Vert ^{q_{2}}_{\mathit{CMO}^{q_{2}}(\mathbb{Q}_{p}^{n})}p^{kn-kq_{2}(n- \alpha )} \Biggl\{ \sum_{j=-\infty }^{k}p^{jn(1/q_{1}'-1/s)}p^{kn/s} \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})} \Biggr\} ^{q_{2}} \\ &=C \Vert b \Vert ^{q_{2}}_{\mathit{CMO}^{q_{2}}(\mathbb{Q}_{p}^{n})} \Biggl\{ \sum _{j=- \infty }^{k}p^{(j-k)n(1/q_{1}'-1/s)} \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})} \Biggr\} ^{q_{2}}. \end{aligned}$$

Lemma 2.1 will be helpful for estimating II. Thus

$$\begin{aligned} \mathit{II}&\leq Cp^{-kq_{2}(n-\alpha )} \int _{S_{k}} \Biggl(\sum_{j=-\infty }^{k} \int _{S_{j}} \bigl\vert f(\mathbf{y}) \Omega \bigl(p^{j}\mathbf{y}\bigr) \bigl(b(\mathbf{y})-b_{B_{j}} \bigr) \bigr\vert \,d\mathbf{y} \Biggr)^{q_{2}}\,d\mathbf{x} \\ &\quad {} +C \Vert b \Vert ^{q_{2}}_{\mathit{CMO}^{1}(\mathbb{Q}_{p}^{n})}p^{-kq_{2}(n- \alpha )} \int _{S_{k}} \Biggl(\sum_{j=-\infty }^{k}(k-j) \int _{S_{j}} \bigl\vert f( \mathbf{y})\Omega \bigl(p^{j}\mathbf{y}\bigr) \bigr\vert \,d\mathbf{y} \Biggr)^{q_{2}}\,d\mathbf{x} \\ &=I_{1}+\mathit{II}_{2}. \end{aligned}$$

We use Hölder’s inequality to estimate \(I_{1}\). We have

$$\begin{aligned} I_{1}&\leq Cp^{-kq_{2}(n-\alpha )} \int _{S_{k}} \Biggl\{ \sum_{j=- \infty }^{k} \biggl( \int _{S_{j}} \bigl\vert b(\mathbf{y})-b_{B_{j}} \bigr\vert ^{t}\,d\mathbf{y} \biggr)^{1/t} \\ &\quad {} \times \biggl( \int _{S_{j}} \bigl\vert \Omega \bigl(p^{j} \mathbf{y}\bigr) \bigr\vert ^{s}\,d\mathbf{y} \biggr)^{1/s} \biggl( \int _{S_{j}} \bigl\vert f(\mathbf{y}) \bigr\vert ^{q_{1}} \,d\mathbf{y} \biggr)^{1/q_{1}} \Biggr\} ^{q_{2}} \,d\mathbf{x} \\ &\leq \Vert b \Vert ^{q_{2}}_{\mathit{CMO}^{t}(\mathbb{Q}_{p}^{n})}\sum _{j=-\infty }^{k} \biggl\{ p^{-kn/q_{1}'}p^{kn/s}p^{jn/t} \biggl(\frac{1}{ \vert B_{j} \vert _{H}} \int _{B_{j}} \bigl\vert b(\mathbf{y})-b_{B_{j}} \bigr\vert ^{t} \biggr)^{1/t} \Vert f_{j} \Vert _{L^{q_{1}}( \mathbb{Q}_{p}^{n})} \biggr\} ^{q_{2}} \\ &=C \Vert b \Vert ^{q_{2}}_{\mathit{CMO}^{t}(\mathbb{Q}_{p}^{n})} \Biggl\{ \sum _{j=-\infty }^{k}p^{(j-k)n(1/q_{1}'-1/s)} \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})} \Biggr\} ^{q_{2}}. \end{aligned}$$

In a similar fashion we can estimate \(\mathit{II}_{2}\). Using Hölder’s inequality we have

$$\begin{aligned} \mathit{II}_{2}&\leq C \Vert b \Vert ^{q_{2}}_{\mathit{CMO}^{1}(\mathbb{Q}_{p}^{n})}p^{-kq_{2}(n- \alpha )} \\ &\quad {} \times \int _{S_{k}} \Biggl\{ \sum_{j=-\infty }^{k}(k-j) \biggl( \int _{S_{j}} \bigl\vert f(\mathbf{y}) \bigr\vert ^{q_{1}}\,d\mathbf{y} \biggr)^{1/q_{1}} \biggl( \int _{S_{j}} \bigl\vert \Omega \bigl(p^{j} \mathbf{y}\bigr) \bigr\vert ^{s}\,d\mathbf{y} \biggr)^{1/s}p^{jn/t} \Biggr\} ^{q_{2}}\,d\mathbf{x} \\ &=C \Vert b \Vert ^{q_{2}}_{\mathit{CMO}^{1}(\mathbb{Q}_{p}^{n})} \Biggl(\sum _{j=-\infty }^{k}(k-j)p^{(j-k)n(1/q_{1}'-1/s)} \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})} \Biggr)^{q_{2}}. \end{aligned}$$

From (2.3), (2.5) and (2.6) together with the Jensen inequality, we have

$$\begin{aligned} & \bigl\Vert H^{p,b}_{\Omega ,\alpha }f \bigr\Vert _{\dot{K}^{\beta ,r_{2}}_{q_{2}}( \mathbb{Q}_{p}^{n})} \\ &\quad = \Biggl(\sum_{k=-\infty }^{\infty }p^{k\beta r_{2}} \bigl\Vert \bigl(H^{p,b}_{\Omega , \alpha }f\bigr)\chi _{k} \bigr\Vert ^{r_{2}}_{L^{q_{2}}(\mathbb{Q}_{p}^{n})} \Biggr)^{1/r_{2}} \\ &\quad \leq \Biggl(\sum_{k=-\infty }^{\infty }p^{k\beta r_{1}} \bigl\Vert \bigl(H^{p,b}_{ \Omega ,\alpha }f\bigr)\chi _{k} \bigr\Vert ^{r_{1}}_{L^{q_{2}}(\mathbb{Q}_{p}^{n})} \Biggr)^{1/r_{1}} \\ &\quad \leq C \Vert b \Vert _{\mathit{CMO}^{q_{2}}(\mathbb{Q}_{p}^{n})} \Biggl(\sum _{k=-\infty }^{ \infty }p^{k\beta r_{1}} \Biggl(\sum _{j=-\infty }^{k}p^{(j-k)n/t} \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})} \Biggr)^{r_{1}} \Biggr)^{1/r_{1}} \\ &\qquad {} +C \Vert b \Vert _{\mathit{CMO}^{t}(\mathbb{Q}_{p}^{n})} \Biggl(\sum _{k=-\infty }^{ \infty }p^{k\beta r_{1}} \Biggl(\sum _{j=-\infty }^{k}p^{(j-k)n/t} \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})} \Biggr)^{r_{1}} \Biggr)^{1/r_{1}} \\ &\qquad {} +C \Vert b \Vert _{\mathit{CMO}^{1}(\mathbb{Q}_{p}^{n})} \Biggl(\sum _{k=-\infty }^{ \infty }p^{k\beta r_{1}} \Biggl(\sum _{j=-\infty }^{k}(k-j)p^{(j-k)n/t} \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})} \Biggr)^{r_{1}} \Biggr)^{1/r_{1}} \\ &\quad =J. \end{aligned}$$

For brevity, we may choose \(\|b\|_{\mathit{CMO}^{\max \{q_{2},t\}}(\mathbb{Q}_{p}^{n})}=1\). Consequently,

$$ J\leq C \Biggl(\sum_{k=-\infty }^{\infty }p^{k\beta r_{1}} \Biggl(\sum_{j=- \infty }^{k} (k-j)p^{(j-k)n/t} \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})} \Biggr)^{r_{1}} \Biggr)^{1/r_{1}}. $$

Case 1: When \(0< r_{1}\leq 1\), we have

$$\begin{aligned} J^{r_{1}}&=C\sum_{k=-\infty }^{\infty }p^{k\beta r_{1}} \Biggl(\sum_{j=- \infty }^{k}(k-j)p^{(j-k)n/t} \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})} \Biggr)^{r_{1}} \\ &=C\sum_{k=-\infty }^{\infty } \Biggl(\sum _{j=-\infty }^{k}p^{j\beta } \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})}(k-j)p^{(j-k)(n/t-\beta )} \Biggr)^{r_{1}} \\ &\leq C\sum_{k=-\infty }^{\infty }\sum _{j=-\infty }^{k}p^{j\beta r_{1}} \Vert f_{j} \Vert ^{r_{1}}_{L^{q_{1}}(\mathbb{Q}_{p}^{n})}(k-j)^{r_{1}}p^{(j-k)(n/t -\beta )r_{1}} \\ &=C\sum_{k=-\infty }^{\infty }p^{j\beta r_{1}} \Vert f_{j} \Vert ^{r_{1}}_{L^{q_{1}}( \mathbb{Q}_{p}^{n})}\sum _{k=j}^{\infty }(k-j)^{r_{1}}p^{(j-k)(n/t - \beta )r_{1}} \\ &=C \Vert f \Vert ^{r_{1}}_{\dot{K}^{\beta ,r_{1}}_{q_{1}}(\mathbb{Q}_{p}^{n})}. \end{aligned}$$

Case 2: When \(r_{1}>1\), applying Hölder’s inequality we get

$$\begin{aligned} J^{r_{1}}&=C\sum_{k=-\infty }^{\infty } \Biggl(\sum_{j=-\infty }^{k}p^{j \beta } \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})}(k-j)p^{(j-k)(n/t- \beta )} \Biggr)^{r_{1}} \\ &\leq C\sum_{k=-\infty }^{\infty }\sum _{j=-\infty }^{k}p^{j\beta r_{1}} \Vert f_{j} \Vert ^{r_{1}}_{L^{q_{1}}(\mathbb{Q}_{p}^{n})}p^{(j-k)(n/t -\beta )r_{1}/2} \\ &\quad {} \times \Biggl(\sum_{j=-\infty }^{k}(k-j)^{r_{1}'}p^{(j-k)(n/t - \beta )r_{1}'/2} \Biggr)^{r_{1}/r_{1}'} \\ &=C\sum_{k=-\infty }^{\infty }p^{j\beta r_{1}} \Vert f_{j} \Vert ^{r_{1}}_{L^{q_{1}}( \mathbb{Q}_{p}^{n})}\sum _{k=j}^{\infty }p^{(j-k)(n/t -\beta )r_{1}/2} \\ &=C \Vert f \Vert ^{r_{1}}_{\dot{K}^{\beta ,r_{1}}_{q_{1}}(\mathbb{Q}_{p}^{n})}. \end{aligned}$$

The proof of Theorem 2.3 is thus completed. □

Theorem 2.4

Let \(0< r_{1}\leq r_{2}<\infty \), \(1\leq q_{1}\), \(q_{2}<\infty \). Also, let \(\frac{1}{q_{1}}-\frac{1}{q_{2}}=\frac{\alpha }{n}\), \(q_{1}'< s<\infty \), \(\frac{1}{q_{1}'}-\frac{1}{t}=\frac{1}{s}\), and \(\lambda >0\). If \(\beta <\frac{n}{t}+\lambda \), then the inequality

$$ \bigl\Vert H^{p,b}_{\Omega ,\alpha }f \bigr\Vert _{M\dot{K}^{\beta ,\lambda }_{r_{2},q_{2}}( \mathbb{Q}_{p}^{n})}\leq C \Vert f \Vert _{M\dot{K}^{\beta ,\lambda }_{r_{1},q_{1}}( \mathbb{Q}_{p}^{n})}, $$

holds for all \(\Omega \in L^{s}(S_{\mathbf{0}}(\mathbf{0}))\), \(b\in \mathit{CMO}^{\max \{q_{2},t\}}(\mathbb{Q}_{p}^{n})\) and \(f\in L_{\mathrm{loc}}^{q_{1}}(\mathbb{Q}_{p}^{n})\).

Proof of Theorem 2.4

From the proof of Theorem 2.3 and

$$ \bigl\Vert \bigl(H^{p,b}_{\Omega ,\alpha }f\bigr)\chi _{k} \bigr\Vert _{L^{q_{2}}(\mathbb{Q}_{p}^{n})} \leq C\sum _{j=-\infty }^{k}(k-j)p^{\frac{(j-k)n}{t}} \Vert f_{j} \Vert _{L^{q_{1}}( \mathbb{Q}_{p}^{n})}, $$

together with the definition of a Morrey–Herz space, the Jensen inequality, \(\beta < n/t+\lambda \), \(\lambda >0\) and \(1< r_{1}<\infty \), it follows that

$$ \begin{aligned} & \bigl\Vert H^{p,b}_{\Omega ,\alpha }f \bigr\Vert _{M\dot{K}^{\beta ,\lambda }_{r_{2},q_{2}}( \mathbb{Q}_{p}^{n})} \\ &\quad =\sup_{k_{0}\in \mathbb{Z}}p^{-k_{0}\lambda } \Biggl(\sum _{k=-\infty }^{k_{0}}p^{k \beta r_{2}} \bigl\Vert \bigl(H^{p,b}_{\Omega ,\alpha }f\bigr)\chi _{k} \bigr\Vert ^{r_{2}}_{L^{q_{2}}( \mathbb{Q}_{p}^{n})} \Biggr)^{1/r_{2}} \\ &\quad \leq \sup_{k_{0}\in \mathbb{Z}}p^{-k_{0}\lambda } \Biggl(\sum _{k=- \infty }^{k_{0}}p^{k\beta r_{1}} \bigl\Vert \bigl(H^{p,b}_{\Omega ,\alpha }f\bigr)\chi _{k} \bigr\Vert ^{r_{1}}_{L^{q_{2}}(\mathbb{Q}_{p}^{n})} \Biggr)^{1/r_{1}} \\ &\quad \leq C\sup_{k_{0}\in \mathbb{Z}}p^{-k_{0}\lambda } \Biggl(\sum _{k=- \infty }^{k_{0}}p^{k\beta r_{1}} \Biggl(\sum _{j=-\infty }^{k}(k-j)p^{ \frac{(j-k)n}{t}} \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})} \Biggr)^{r_{1}} \Biggr)^{1/r_{1}} \\ &\quad \leq C\sup_{k_{0}\in \mathbb{Z}}p^{-k_{0}\lambda } \Biggl(\sum _{k=- \infty }^{k_{0}} \Biggl(\sum _{j=-\infty }^{k}p^{k\beta }(k-j)p^{ \frac{(j-k)n}{t}}p^{-j\beta }p^{j\lambda }p^{j\lambda } \\ &\qquad {} \times \Biggl(\sum_{l=-\infty }^{j}p^{l\beta r_{1}} \Vert f_{j} \Vert ^{r_{1}}_{L^{q_{1}}( \mathbb{Q}_{p}^{n})} \Biggr)^{1/r_{1}} \Biggr)^{r_{1}} \Biggr)^{1/r_{1}} \\ &\quad \leq C\sup_{k_{0}\in \mathbb{Z}}p^{-k_{0}\lambda } \Biggl(\sum _{k=- \infty }^{k_{0}}p^{k\lambda r_{1}} \Biggl(\sum _{j=-\infty }^{k}(k-j)p^{(j-k)(n/t- \beta +\lambda )} \Vert f \Vert _{M\dot{K}^{\beta ,\lambda }_{r_{1},q_{1}}( \mathbb{Q}_{p}^{n})} \Biggr)^{r_{1}} \Biggr)^{1/r_{1}} \\ &\quad \leq C \Vert f \Vert _{M\dot{K}^{\beta ,\lambda }_{r_{1},q_{1}}(\mathbb{Q}_{p}^{n})}. \end{aligned} $$


3 Lipschitz estimates for commutators of p-adic rough fractional Hardy operator

The current section deals with the boundedness for the commutators of p-adic rough fractional Hardy operator on homogeneous p-adic Herz-type spaces by considering the symbol function from Lipschitz space. We open the discussion for this section from the following lemma.

Lemma 3.1

Suppose \(f\in \Lambda _{\delta }(\mathbb{Q}_{p}^{n})\) and \(0<\delta <1\), then

$$ \bigl\vert f(\mathbf{x})-f(\mathbf{y}) \bigr\vert \leq \vert \mathbf{x}- \mathbf{y} \vert _{p}^{\delta } \Vert f \Vert _{\Lambda _{\delta }(\mathbb{Q}_{p}^{n})}. $$


Proof immediately follows from Definition 1.6. □

Theorem 3.2

Let \(1\leq q_{1}\), \(q_{2}<\infty \), \(0< r_{1}\leq r_{2}<\infty \). Also, let \(\frac{1}{q_{1}}-\frac{1}{q_{2}}=\frac{\delta +\alpha }{n}\), \(q_{1}'< s<\infty \), \(\frac{1}{q_{1}'}-\frac{1}{t}=\frac{1}{s}\), and \(0<\delta <1\). If \(\beta < n(\frac{1}{q_{1}'}-\frac{1}{s})\), then the inequality

$$ \bigl\Vert H^{p,b}_{\Omega ,\alpha }f \bigr\Vert _{\dot{K}^{\beta ,r_{2}}_{q_{2}}( \mathbb{Q}_{p}^{n})}\leq C \Vert f \Vert _{\dot{K}^{\beta ,r_{1}}_{q_{1}}( \mathbb{Q}_{p}^{n})} $$

holds for all \(\Omega \in L^{s}(S_{\mathbf{0}}(\mathbf{0}))\), \(b\in \Lambda _{\delta }(\mathbb{Q}_{p}^{n})\), and \(f\in L_{\mathrm{loc}}^{q_{1}}(\mathbb{Q}_{p}^{n})\).

Proof of Theorem 3.2

By Hölder’s inequality along with Lemma 3.1, we have

$$ \begin{aligned}[b] &\bigl\Vert \bigl(H^{p,b}_{\Omega ,\alpha }f\bigr)\chi _{k} \bigr\Vert ^{q_{2}}_{L^{q_{2}}( \mathbb{Q}_{p}^{n})} \\ &\quad = \int _{S_{k}} \vert \mathbf{x} \vert _{p}^{-q_{2}(n-\alpha )} \biggl\vert \int _{ \vert \mathbf{y} \vert _{p}\leq \vert \mathbf{x} \vert _{p}}\Omega \bigl( \vert \mathbf{y} \vert _{p} \mathbf{y}\bigr)f(\mathbf{y}) \bigl(b(\mathbf{x})-b(\mathbf{y}) \bigr)\,d\mathbf{y} \biggr\vert ^{q_{2}}\,d\mathbf{x} \\ &\quad \leq Cp^{-kq_{2}(n-\alpha )} \int _{S_{k}} \biggl( \int _{ \vert \mathbf{y} \vert _{p} \leq p^{k}} \bigl\vert \Omega \bigl( \vert \mathbf{y} \vert _{p}\mathbf{y}\bigr)f(\mathbf{y}) \bigl(b( \mathbf{x})-b( \mathbf{y})\bigr) \bigr\vert \,d\mathbf{y} \biggr)^{q_{2}}\,d\mathbf{x} \\ &\quad \leq Cp^{-kq_{2}(n-\alpha )} \Vert b \Vert ^{q_{2}}_{\Lambda _{\delta }( \mathbb{Q}_{p}^{n})} \int _{S_{k}} \Biggl(\sum_{j=-\infty }^{k} \int _{S_{j}} \bigl\vert \Omega \bigl(p^{j} \mathbf{y}\bigr)f(\mathbf{y}) \bigr\vert \vert \mathbf{x}-\mathbf{y} \vert _{p}^{ \delta }\,d\mathbf{y} \Biggr)^{q_{2}}\,d\mathbf{x} \\ &\quad \leq Cp^{-kq_{2}(n-\alpha -\delta )} \Vert b \Vert ^{q_{2}}_{\Lambda _{\delta }( \mathbb{Q}_{p}^{n})} \int _{S_{k}} \Biggl(\sum_{j=-\infty }^{k} \int _{S_{j}} \bigl\vert \Omega \bigl(p^{j} \mathbf{y}\bigr)f(\mathbf{y}) \bigr\vert \,d\mathbf{y} \Biggr)^{q_{2}}\,d\mathbf{x} \\ &\quad \leq C \Vert b \Vert ^{q_{2}}_{\Lambda _{\delta }(\mathbb{Q}_{p}^{n})} p^{-kq_{2}(n- \alpha -\delta )+kn} \Biggl(\sum_{j=-\infty }^{k} \biggl( \int _{S_{j}} \bigl\vert \Omega \bigl(p^{j} \mathbf{y}\bigr) \bigr\vert ^{s}\,d\mathbf{y} \biggr)^{1/s} \\ &\qquad {} \times \biggl( \int _{S_{j}} \bigl\vert f(\mathbf{y}) \bigr\vert ^{q_{1}}\,d\mathbf{y} \biggr)^{1/q_{1}} \biggl( \int _{S_{j}}\,d\mathbf{y} \biggr)^{1-1/q-1/s} \Biggr)^{q_{2}} \\ &\quad =I. \end{aligned} $$

By virtue of (2.2), inequality (3.1) takes the following form:

$$ \begin{aligned} I&\leq C \Vert b \Vert ^{q_{2}}_{\Lambda _{\delta }(\mathbb{Q}_{p}^{n})}p^{-kq_{2}(n- \alpha -\delta )+kn} \Biggl(\sum _{j=-\infty }^{k}p^{kn/s+jn(1/q_{1}'-1/s)} \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})} \Biggr)^{q_{2}} \\ &\leq C \Vert b \Vert ^{q_{2}}_{\Lambda _{\delta }(\mathbb{Q}_{p}^{n})} \Biggl( \sum _{j=-\infty }^{k}p^{(j-k)n(1/q'-1/s)} \Vert f_{j} \Vert _{L^{q_{1}}( \mathbb{Q}_{p}^{n})} \Biggr)^{q_{2}}. \end{aligned} $$

For the sake of brevity, we take \(\|b\|^{q_{2}}_{\Lambda _{\delta }(\mathbb{Q}_{p}^{n})}=1\). Now, by definition of Herz spaces and the Jensen inequality, it follows that

$$ \begin{aligned} \bigl\Vert H^{p,b}_{\Omega ,\alpha }f \bigr\Vert ^{r_{1}}_{\dot{K}^{\beta ,r_{2}}_{q_{2}}( \mathbb{Q}_{p}^{n})}&= \Biggl(\sum _{k=-\infty }^{\infty }p^{k\beta r_{2}} \bigl\Vert \bigl(H^{p,b}_{\Omega ,\alpha }f\bigr)\chi _{k} \bigr\Vert ^{r_{2}}_{L^{q_{2}}( \mathbb{Q}_{p}^{n})} \Biggr)^{r_{1}/r_{2}} \\ &\leq \sum_{k=-\infty }^{\infty }p^{k\beta r_{1}} \bigl\Vert \bigl(H^{p,b}_{\Omega , \alpha }f\bigr)\chi _{k} \bigr\Vert ^{r_{1}}_{L^{q_{2}}(\mathbb{Q}_{p}^{n})} \\ &\leq C\sum_{k=-\infty }^{\infty }p^{k\beta r_{1}} \Biggl(\sum_{j=- \infty }^{k}p^{(j-k)n(1/q_{1}'-1/s)} \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})} \Biggr)^{r_{1}} \\ &=C\sum_{k=-\infty }^{\infty } \Biggl(\sum _{j=-\infty }^{k}p^{j\beta }p^{(j-k)(n/q_{1}'-n/s- \beta )} \Vert f_{j} \Vert _{L^{q_{1}}(\mathbb{Q}_{p}^{n})} \Biggr)^{r_{1}}. \end{aligned} $$

Case 1: If \(0< r_{1}\leq 1\), then

$$ \begin{aligned} \bigl\Vert H^{p,b}_{\Omega ,\alpha }f \bigr\Vert ^{r_{1}}_{\dot{K}^{\beta ,r_{2}}_{q_{2}}( \mathbb{Q}_{p}^{n})}&\leq C\sum _{k=-\infty }^{\infty }\sum_{j=-\infty }^{k}p^{j \beta r_{1}}p^{(j-k)(n/q_{1}'-n/s-\beta )r_{1}} \Vert f_{j} \Vert _{L^{q_{1}}( \mathbb{Q}_{p}^{n})}^{r_{1}} \\ &=C\sum_{j=-\infty }^{\infty }p^{j\beta r_{1}} \Vert f_{j} \Vert _{L^{q_{1}}( \mathbb{Q}_{p}^{n})}^{r_{1}}\sum _{k=j}^{\infty }p^{(j-k)(n/q_{1}'-n/s- \beta )r_{1}} \\ &\leq C \Vert f \Vert ^{r_{1}}_{\dot{K}^{\beta ,r_{1}}_{q_{2}}(\mathbb{Q}_{p}^{n})}. \end{aligned} $$

Case 2: When \(r_{1}>1\), applying Hölder’s inequality, we have

$$ \begin{aligned} \bigl\Vert H^{p,b}_{\Omega ,\alpha }f \bigr\Vert ^{r_{1}}_{\dot{K}^{\beta ,r_{2}}_{q_{2}}( \mathbb{Q}_{p}^{n})}&\leq C\sum _{k=-\infty }^{\infty } \Biggl(\sum _{j=- \infty }^{k}p^{j\beta }p^{(j-k)(n/q_{1}'-n/s-\beta )} \Vert f_{j} \Vert ^{r_{1}}_{L^{q_{1}}( \mathbb{Q}_{p}^{n})} \Biggr)^{r_{1}} \\ &\leq C\sum_{k=-\infty }^{\infty }\sum _{j=-\infty }^{k}p^{j\beta r_{1}} \Vert f_{j} \Vert ^{r_{1}}_{L^{q_{1}}(\mathbb{Q}_{p}^{n})}p^{(j-k)(n/q_{1}'-n/s- \beta )r_{1}/2} \\ &\quad {} \times \Biggl(\sum_{j=-\infty }^{k}p^{(j-k)(n/q_{1}'-n/s-\beta )r_{1}'/2} \Biggr)^{r_{1}/r_{1}'} \\ &\leq C\sum_{j=-\infty }^{\infty }p^{j\beta r_{1}} \Vert f_{j} \Vert ^{r_{1}}_{L^{q_{1}}( \mathbb{Q}_{p}^{n})}\sum _{k=j}^{\infty }p^{(j-k)(n/q_{1}'-n/s-\beta )r_{1}/2} \\ &\leq C \Vert f \Vert ^{r_{1}}_{\dot{K}^{\beta ,r_{1}}_{q_{1}}(\mathbb{Q}_{p}^{n})}. \end{aligned} $$


Theorem 3.3

Let \(1\leq q_{1}\), \(q_{2}<\infty \), \(0< r_{1}\leq r_{2}<\infty \). Also, let \(\frac{1}{q_{1}}-\frac{1}{q_{2}}=\frac{\delta +\alpha }{n}\), \(s>q_{1}'\), \(\frac{1}{q_{1}'}-\frac{1}{t}=\frac{1}{s}\), \(\lambda \geq 0\) and \(0<\delta <1\). If \(n(\frac{1}{q_{1}'}-\frac{1}{s})+\lambda >\beta \), then the inequality

$$ \bigl\Vert H^{p,b}_{\Omega ,\alpha }f \bigr\Vert _{M\dot{K}^{\beta ,\lambda }_{r_{2},q_{2}}( \mathbb{Q}_{p}^{n})}\leq C \Vert f \Vert _{M\dot{K}^{\beta ,\lambda }_{r_{1},q_{1}}( \mathbb{Q}_{p}^{n})}, $$

holds for all \(\Omega \in L^{s}(S_{\mathbf{0}}(\mathbf{0}))\), \(b\in \Lambda _{\delta }(\mathbb{Q}_{p}^{n})\), and \(f\in L_{\mathrm{loc}}^{q_{1}}(\mathbb{Q}_{p}^{n})\).

Proof of Theorem 3.3

The proof follows from standard analysis performed in our previous theorems. So, we omit the details. □

Availability of data and materials

Data sharing not applicable to this article as no data-sets were generated or analysed during the current study.


  1. Albeverio, S., Karwowshi, W.: A random walk on p-adics—the generator and its spectrum. Stoch. Process. Appl. 53(1), 1–22 (1994)

    Article  MathSciNet  Google Scholar 

  2. Avestisov, A.V., Bikulov, A.H., Kozyrev, S.V., Osipov, V.A.: p-Adic models of ultrametric diffusion constrained by hierarchical energy landscape. J. Phys. A, Math. Gen. 35, 177–189 (2002)

    Article  MathSciNet  Google Scholar 

  3. Avestisov, A.V., Bikulov, A.H., Osipov, V.A.: p-Adic description of characteristic relaxation in complex systems. J. Phys. A, Math. Gen. 36, 4239–4246 (2003)

    Article  MathSciNet  Google Scholar 

  4. Christ, M., Grafakos, L.: Best constants for two non convolution inequalities. Proc. Am. Math. Soc. 123, 1687–1693 (1995)

    Article  Google Scholar 

  5. Chuong, N.M., Duong, D.V.: Weighted Hardy–Littlewood operators and commutators on p-adic function spaces. P-Adic Numb. Ultrametr. Anal. Appl. 5, 65–82 (2013)

    Article  Google Scholar 

  6. Dubischar, D., Gundlach, V.M., Steinkamp, O., Khrennikov, A.: A p-adic model for the process of thinking disturbed by physiological and information noise. J. Theor. Biol. 197(4), 451–467 (1999)

    Article  Google Scholar 

  7. Faris, W.G.: Weak Lebesgue spaces and quantum mechanical binding. Duke Math. J. 43, 365–373 (1976)

    Article  MathSciNet  Google Scholar 

  8. Fu, Z.W., Lu, S.Z., Zhao, F.Y.: Commutators of n-dimensional rough Hardy operator. Sci. China Math. 54(1), 95–104 (2011)

    Article  MathSciNet  Google Scholar 

  9. Fu, Z.W., Wu, Q.Y., Lu, S.Z.: Sharp estimates of p-adic Hardy and Hardy–Littlewood–Pólya operators. Acta Math. Sin. 29, 137–150 (2013)

    Article  MathSciNet  Google Scholar 

  10. Gao, G., Zhong, Y.: Some estimates of Hardy operators and their commutators on Morrey–Herz spaces. J. Math. Inequal. 11(1), 49–58 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gürbüz, F.: Sublinear operators with rough kernel generated by Calderón–Zygmund operators and their commutators on generalized Morrey spaces. Math. Notes 101(3), 429–442 (2017)

    Article  MathSciNet  Google Scholar 

  12. Gürbüz, F.: Parabolic local Campanato estimates for commutators of parabolic fractional maximal and integral operators with rough kernel. Filomat 34(4), 1147–1156 (2020)

    Article  MathSciNet  Google Scholar 

  13. Hardy, G.H.: Note on a theorem of Hilbert. Math. Z. 6, 314–317 (1920)

    Article  MathSciNet  Google Scholar 

  14. Herz, C.S.: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283–323 (1968/69)

  15. Ho, K.-P.: Extrapolation to Herz spaces with variable exponents and applications. Rev. Mat. Complut. 33, 437–463 (2020)

    Article  MathSciNet  Google Scholar 

  16. Hussain, A., Ahmed, M.: Weak and strong type estimates for the commutators of Hausdorff operator. Math. Inequal. Appl. 20(1), 49–56 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Hussain, A., Gao, G.: Multidimensional Hausdorff operators and commutators on Herz-type spaces. J. Inequal. Appl. 2013, 594 (2013)

    Article  MathSciNet  Google Scholar 

  18. Hussain, A., Sarfraz, N.: The Hausdorff operator on weighted p-adic Morrey and Herz type spaces. P-Adic Numb. Ultrametr. Anal. Appl. 11(2), 151–162 (2019)

    Article  MathSciNet  Google Scholar 

  19. Hussain, A., Sarfraz, N.: Optimal weak type estimates for p-adic Hardy operator. P-Adic Numb. Ultrametr. Anal. Appl. 12(1), 12–21 (2020)

    Article  MathSciNet  Google Scholar 

  20. Hussain, A., Sarfraz, N.: Boundedness of weighted multilinear p-adic Hardy operator on Herz type spaces. arXiv:2003.02009 [math.CA]

  21. Hussain, A., Sarfraz, N., Gürbüz, F.: Sharp weak bounds for p-adic Hardy operators on p-adic linear spaces. arXiv:2002.08045 [math.CA]

  22. Khrennikov, A.: p-Adic Valued Distributions in Mathematical Physics and Its Applications, vol. 309. Kluwer Academic, Dordrecht (1994)

    Book  Google Scholar 

  23. Kochubei, A.N.: Stochastic integrals and stochastic differential equations over the field of p-adic numbers. Potential Anal. 6, 105–125 (1997)

    Article  MathSciNet  Google Scholar 

  24. Kozyrev, S.V.: Methods and applications of ultrametric and p-adic analysis: from wavelet theory to biophysics. Proc. Steklov Inst. Math. 274, 1–84 (2011)

    Article  MathSciNet  Google Scholar 

  25. Liu, R.H., Zhou, J.: Sharp estimates for the p-adic Hardy type operator on higher-dimensional product spaces. J. Inequal. Appl. 2017, 219 (2017)

    Article  MathSciNet  Google Scholar 

  26. Lu, S., Xu, L.: Boundedness of rough singular integral operators on the homogeneous Morrey–Herz spaces. Hokkaido Math. J. 34, 299–314 (2005)

    Article  MathSciNet  Google Scholar 

  27. Lu, S., Yang, D., Hu, G.: Herz Type Spaces and Their Applications. Science Press, Beijing (2008)

    Google Scholar 

  28. Lu, S.Z., Yang, D.C., Zhao, F.Y.: Sharp bounds for Hardy type operators on higher dimensional product spaces. J. Inequal. Appl. 2013, 148 (2013)

    Article  MathSciNet  Google Scholar 

  29. Persson, L.-E., Samko, S.G.: A note on the best constants in some Hardy inequalities. J. Math. Inequal. 9(2), 437–447 (2015)

    Article  MathSciNet  Google Scholar 

  30. Sarfraz, N., Gürbüz, F.: Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutators (2019). arXiv:1911.09392v1

  31. Sarfraz, N., Hussain, A.: Estimates for the commutators of p-adic Hausdorff operator on Herz–Morrey spaces. Mathematics 7(2), 127 (2019)

    Article  Google Scholar 

  32. Varadarajan, V.S.: Path integrals for a class of p-adic Schrodinger equations. Lett. Math. Phys. 39(2), 97–106 (1997)

    Article  MathSciNet  Google Scholar 

  33. Vladimirov, V.S.: Tables of integrals of complex valued functions of p-adic arguments. Proc. Steklov Inst. Math. 284, 1–59 (2014)

    Article  MathSciNet  Google Scholar 

  34. Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-Adic Analysis and Mathematical Physics. World Scientific, Singapore (1994)

    Book  Google Scholar 

  35. Volosivets, S.S.: Weak and strong estimates for rough Hausdorff type operator defined on p-adic linear space. P-Adic Numb. Ultrametr. Anal. Appl. 9(3), 236–241 (2017)

    Article  MathSciNet  Google Scholar 

  36. Wu, Q.Y.: Boundedness for commutators of fractional p-adic Hardy operator. J. Inequal. Appl. 2012, 293 (2012)

    Article  MathSciNet  Google Scholar 

  37. Wu, Q.Y., Mi, L., Fu, Z.W.: Boundedness of p-adic Hardy operators and their commutators on p-adic central Morrey and BMO spaces. J. Funct. Spaces Appl. 2013, Article ID 359193 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Xiao, J.: \(L^{p}\) and BMO bounds of weighted Hardy–Littlewood averages. J. Math. Anal. Appl. 262, 660–666 (2001)

    Article  MathSciNet  Google Scholar 

  39. Yee, T.L., Ho, K.-P.: Hardy’s inequalities and integral operators on Herz–Morrey spaces. Open Math. 18, 106–121 (2020)

    Article  MathSciNet  Google Scholar 

Download references


Researchers supporting Project number (RSP-2020/33), King Saud University, Riyadh, Saudi Arabia.


No specific funding received for this work.

Author information

Authors and Affiliations



Formal analysis, NS, AH; investigation, NS, AH; resources, IK, AA, NNH; funding acquisition, AA, NNH; supervision, AH, IK. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Amjad Hussain or Ilyas Khan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Sarfraz, N., Khan, I. et al. The boundedness of commutators of rough p-adic fractional Hardy type operators on Herz-type spaces. J Inequal Appl 2021, 123 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • 42B35
  • 26D15
  • 46B25
  • 47G10


  • p-adic rough fractional Hardy operator
  • Commutators
  • p-adic Herz-type space
  • p-adic central BMO space
  • Lipschitz space