- Research
- Open access
- Published:
The dual Brunn–Minkowski inequality for log-volume of star bodies
Journal of Inequalities and Applications volume 2021, Article number: 112 (2021)
Abstract
This paper aims to consider the dual Brunn–Minkowski inequality for log-volume of star bodies, and the equivalent Minkowski inequality for mixed log-volume.
1 Introduction
The classical Brunn–Minkowski theory, also known as the theory of mixed volumes, is the core theory in convex geometric analysis. It originated with Minkowski when he combined his concept of mixed volume with the Brunn–Minkowski inequality. The Brunn–Minkowski theory has been extended to the \(L_{p}\) Brunn–Minkowski theory, which combines volume with a generalized vector addition of compact convex sets introduced by Fiery in the early 1996s (see [3]) and now called \(L_{p}\) addition. Thirty years after Fiery introduced his new \(L_{p}\) addition, the new \(L_{p}\) Brunn–Minkowski theory was born in Lutwak’s papers (see [8, 9]).
Lutwak’s dual Brunn–Minkowski theory, introduced in the 1970s, helped achieving a major breakthrough in the solution of the Busemann–Petty problem in the 1990s. In contrast to the Brunn–Minkowski theory, in the dual theory, convex bodies are replaced with star-shaped sets, and projections onto subspaces are replaced with intersections with subspaces.
The Orlicz–Brunn–Minkowski theory originated with the work of Lutwak, Yang, and Zhang [10, 11]. By introducing the Orlicz–Minkowski addition, Gardner, Hug, and Weil [5], and Xi, Jin, and Leng [15] proved the Orlicz–Brunn–Minkowski inequality and Orlicz–Minkowski inequality. It is a natural extension of the \(L_{p}\)-Brunn–Minkowski theory for \(p\geq 1\). For dual Orlicz–Brunn–Minkowski theory, see [6, 16].
The well-known classic Minkowski problem is: given a finite Borel measure μ on \(S^{n-1}\), what are the necessary and sufficient conditions on μ such that μ is the surface area measure \(S(K,\cdot )\) of a convex body K on \(\mathbb{R}^{n}\)? The Minkowski problem was first studied by Minkowski, who demonstrated both existence and uniqueness of solutions for the problem when given measure is either discrete or has a continuous density. Aleksandrov and Fenchel–Jensen independently solved the problem in 1938 for arbitrary measure. The \(L_{p}\) Minkowski problem, posed by Lutwak in 1993, has developed quickly. Recently, the dual Minkowski problem was introduced by Huang et al. [7]. In [7] new links were established between the Brunn–Minkowski theory and the dual Brunn–Minkowski theory by making critical use of the radial Gauss image.
In [2], Boroczky et al. introduced the Gauss image problem: Suppose that λ is a submeasure defined on the Lebesgue measurable subsets of \(S^{n-1}\), and μ is a Borel submeasure on \(S^{n-1}\). What are the necessary and sufficient conditions on λ and μ, so that there exists a convex body \(K\in \mathcal{K}^{n}_{o}\) such that
on the Borel subsets of \(S^{n-1}\)? And if such a body exists, to what extent is it unique?
Let μ be a Borel measure on \(S^{n-1}\). The log-volume \(\mu (K)\) of a star body \(K\in \mathcal{S}^{n}_{0}\) with respect to μ is defined by
The log-volume \(\mu (K)\) of a convex body K with respect to μ plays a very important role in solving the Gauss image problem.
In this paper, we establish the Brunn–Minkowski theory of the log-volume. Concretely, we prove the dual Brunn–Minkowski inequality for the log-volume \(\mu (K)\) of the star body K, and the equivalent Minkowski inequality for mixed log-volume.
2 Preliminaries
In this section, some notations and some basic facts for convex bodies and star bodies are listed. More detailed references to the theory of these bodies can be found in [13].
\(\mathbb{R}^{n}\) denotes the usual n-dimensional Euclidean space with the usual inner product \(\langle \cdot ,\cdot \rangle \). \(S^{n-1}\) denotes the unit sphere of \(\mathbb{R}^{n}\). A compact convex subset of \(\mathbb{R}^{n}\) with nonempty interior is called a convex body. The set of convex bodies in \(\mathbb{R}^{n}\) is denoted by \(\mathcal{K}^{n}\), and the set of convex bodies in \(\mathbb{R}^{n}\) containing the origin in their interiors is denoted by \(\mathcal{K}^{n}_{0}\).
If K is a compact convex subset of \(\mathbb{R}^{n}\), then its support function \(h_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is defined by
The support function is positively homogeneous of degree 1 and convex. Note that a compact convex subset of \(\mathbb{R}^{n}\) is uniquely determined by its support function.
Suppose that \(K\subset \mathbb{R}^{n}\) is a compact star-shaped set with respect to the origin, that is, the line segment joining each point of K to the origin is contained completely in K. The radial function \(\rho _{K} : \mathbb{R}^{n}\setminus \{0\} \rightarrow \mathbb{R}\) of K is given by
The radial function is positively homogeneous of degree −1, and a compact star-shaped set (with respect to the origin) is uniquely determined by its radial function. If \(\rho _{K}\) is positive and continuous, then K is called a star body (with respect to the origin). Write \(\mathcal{S}_{o}^{n}\) for the set of star bodies with respect to the origin in \(\mathbb{R}^{n}\).
Two star bodies K and L are dilates (of one other) if \(\rho _{K}(u)\setminus \rho _{L}(u)\) is independent of \(u\in S^{n-1}\).
If \(s>0\), we have
More generally, from the definition of the radial function, it follows immediately that for \(A\in GL(n)\) the radial function of the image \(AK=\{Ay:y\in K\}\) of K is given by
If K and L are star bodies, and \(\alpha , \beta \geq 0\) (not both zero), then for \(p\neq 0\), the radial p-combination \(\alpha \cdot K \tilde{+}_{p}\beta \cdot L\) is a star body and is defined by (see [4])
The set \(\mathcal{K}_{0}^{n}\) can be endowed with the Hausdorff metric, which means the distance between \(K, L \in \mathcal{K}^{n}\) is defined by
The set \(\mathcal{S}_{0}^{n}\) can be endowed with the radial metric, which means the distance between \(K, L \in \mathcal{S}_{0}^{n}\) is defined by
For each \(K \in \mathcal{K}_{0}^{n}\), its polar body \(K^{*}\) is given by
It follows that \(K^{*} \in \mathcal{K}_{0}^{n}\) and \(K = (K^{*})^{*}\). By the definition, there exists an important fact between K and \(K^{*}\) as follows:
3 Properties of \(\mu (K)\)
Lemma 3.1
Let μ be the spherical Lebesgue measure of \(S^{n-1}\). If \(K \in \mathcal{S}_{o}^{n}\), then for \(A\in O(n)\), we have \(\mu (AK)=\mu (K)\).
Proof
By the definition of \(\mu _{0}(K)\), we have
□
Theorem 3.2
If \(K \in \mathcal{K}_{o}^{n}\), then
When μ is a spherical Lebesgue measure of \(S^{n-1}\), the equality holds if and only if K is an Euclidean ball.
Proof
By the definition of \(K^{*}\) and the fact that \(\frac{\rho _{K}(u)}{h_{K}(u)} \leq 1\), for all \(u\in S^{n-1} \), we obtain
When μ is a spherical Lebesgue measure of \(S^{n-1}\), then \(\frac{\rho _{K}(u)}{h_{K}(u)} = 1\) for all \(u\in S^{n-1} \) if and only if K is an Euclidean ball. □
4 \(L_{p}\)-Brunn–Minkowski inequality for \(\mu (K)\) in the case \(p\neq 0\)
In this section, we establish the \(L_{p}\)-Minkowski inequality and \(L_{p}\)-Brunn–Minkowski inequality as follows.
Definition 4.1
([4])
For arbitrary \(p\in \mathbb{R}\setminus \{0\}\), \(\alpha ,\beta \geq 0\) (not both zero), the radial p-combination of \(K,L\in \mathcal{S}_{o}^{n}\) is defined by
Lemma 4.1
Suppose \(K,L\in \mathcal{S}_{o}^{n}\) and \(\alpha ,\beta \geq 0\) (not both zero). Then, for \(A \in GL(n)\),
Proof
For \(u \in S^{n-1}\), by Definition 4.1, we have
Thus, we obtain \(A(\alpha \cdot K\tilde{+}_{p}\beta \cdot L)=\alpha \cdot AK\tilde{+}_{p} \beta \cdot AL\). □
Definition 4.2
For \(p\neq 0 \), we define the \(L_{p}\)-dual mixed log-volume \(\mu _{p}(K,L)\) of \(K,L\in \mathcal{S}_{o}^{n}\) by
We are ready to derive the variational formula of \(\mu (K)\) for the radial p-sum.
Theorem 4.1
Let \(p\neq 0\). If \(K,L\in \mathcal{S}_{o}^{n}\), then
Proof
Suppose \(\varepsilon > 0\), \(K,L\in \mathcal{S}_{o}^{n}\), and \(u\in S^{n-1}\). It follows that
uniformly on \(S^{n-1}\).
Hence
We complete the proof of Theorem 4.1. □
Lemma 4.2
Suppose that μ is a spherical Lebesgue measure of \(S^{n-1}\). Let \(p\neq 0\) and \(K,L\in \mathcal{S}_{o}^{n}\). Then, for \(A\in O(n)\),
Proof
From Theorem 4.1 and Lemma 3.1, we have
□
The following is the \(L_{p}\)-Minkowski inequality for dual mixed log-volume.
Theorem 4.2
Let \(p\neq 0\) and \(K,L\in \mathcal{S}_{o}^{n}\). Then
When μ is a spherical Lebesgue measure of \(S^{n-1}\), the equality holds if and only if K and L are dilates of each other.
Proof
By the definitions of \(\mu _{p}(K,L)\), \(\mu (K)\), and \(\mu (L)\), we have
and
(1) If \(p>0\), then we have
which implies that \(\mu _{p}(K,L)\geq \mu (L)^{p}\mu (K)^{1-p}\).
(2) If \(p<0\), then we have
which also implies that \(\mu _{p}(K,L)\geq \mu (L)^{p}\mu (K)^{1-p}\).
When μ is a spherical Lebesgue measure of \(S^{n-1}\), the equality holds if and only if K and L are dilates of each other. □
Remark 4.1
When \(p=1\), the \(L_{1}\)-dual mixed log-volume \(\mu _{1}(K,L)\) is written as \(\mu (K,L)\), so we have
When μ is a spherical Lebesgue measure of \(S^{n-1}\), the equality holds if and only if K and L are dilates of each other.
Lemma 4.3
Suppose \(p\neq 0\) and \(\mathcal{M}\in \mathcal{S}_{o}^{n}\) such that \(K,L\in \mathcal{M}\). If \(\mu _{p}(M,K)=\mu _{p}(M,L)\) for all \(M\in \mathcal{M}\), then \(K=L\).
Proof
Set \(M=K\), then we have
so, \(1\geq \frac{\mu (L)^{p}}{\mu (K)^{p}}\). Set \(M=L\), we have
so, \(1\geq \frac{\mu (K)^{p}}{\mu (L)^{p}}\). Hence \(\mu (K)=\mu (L)\), which implies that the inequalities above are all equalities. By the equality condition of \(L_{p}\)-dual mixed log-volume, we have K and L are dilates. Since \(\mu (K)=\mu (L)\), we get \(K=L\). □
By the \(L_{p}\)-Minkowski inequality for dual mixed log-volume, we have the following \(L_{p}\)-Brunn–Minkowski inequality for log-volume.
Theorem 4.3
Suppose \(p\neq 0\), \(\alpha , \beta > 0\). If \(K,L\in \mathcal{S}_{o}^{n}\), then
When μ is a spherical Lebesgue measure of \(S^{n-1}\), the equality holds if and only if K and L are dilates of each other.
Proof
From the \(L_{p}\)-Minkowski inequality of \(\mu _{p}(K,L)\), it follows that
Let \(Q=\alpha \cdot K\tilde{+}_{p}\beta \cdot L\), we have \(\mu _{p}(\alpha \cdot K\tilde{+}_{p}\beta \cdot L,\alpha \cdot K \tilde{+}_{p}\beta \cdot L)=\mu (\alpha \cdot K\tilde{+}_{p}\beta \cdot L)\), so
When μ is a spherical Lebesgue measure of \(S^{n-1}\), by the equality condition of \(L_{p}\)-Minkowski inequality, we have that the equality holds if and only if K and L are dilates of each other. □
Theorem 4.4
The \(L_{p}\)-Brunn–Minkowski inequality is equivalent to the \(L_{p}\)-Minkowski inequality.
Proof
Since we have proved the \(L_{p}\)-Brunn–Minkowski inequality by the \(L_{p}\)-Minkowski inequality, we only need to prove the \(L_{p}\)-Minkowski inequality by the \(L_{p}\)-Brunn–Minkowski inequality.
We first consider the case \(p>0\). From the variational formula of \(\mu (K)\) and the \(L_{p}\)-Brunn–Minkowski inequality, for \(\varepsilon > 0\), we have
Thus, we obtain \(\mu _{p}(K,L)\geq \mu (L)^{p}\mu (K)^{1-p}\).
Now we consider the case \(p<0\). From the variational formula of \(\mu (K)\) and the \(L_{p}\)-Brunn–Minkowski inequality, for \(\varepsilon > 0\), we have
Thus, we obtain \(\mu _{p}(K,L)\geq \mu (L)^{p}\mu (K)^{1-p}\). □
5 The log-Brunn–Minkowski inequality for \(\mu (K)\)
In the \(L_{p}\)-Brunn–Minkowski theory, \(L_{p}\)-Brunn–Minkowski inequality plays a core role. Among \(L_{P}\)-Brunn–Minkowski inequality for \(p\geq 0\), the \(L_{0}\)-Brunn–Minkowski inequality, also called the log-Brunn–Minkowski inequality, is stronger than any others (see [1]).
The main purpose of this section is to establish the dual forms of the log-Minkowski inequality and the log-Brunn–Minkowski inequality as follows. In fact, we found that these inequalities are all equalities.
We first give the log radial combination of two star bodies. It was introduced in [14].
Definition 5.1
([14])
Let K and L be two star bodies in \(\mathbb{R}^{n}\) and \(0\leq \lambda \leq 1\), then the log radial combination \((1-\lambda )\cdot K\tilde{+}_{0}\lambda \cdot L\) of K, L is defined by
In particular, if \(\lambda =0\), then \((1-\lambda )\cdot K\tilde{+}_{0}\lambda \cdot L=K\). If \(\lambda =1\), then \((1-\lambda )\cdot K\tilde{+}_{0}\lambda \cdot L=L\).
From the definition of the log radial combination, we have the following two lemmas.
Lemma 5.1
Let \(0\leq \lambda \leq 1\). If \(K,L\in \mathcal{S}_{o}^{n}\), then \((1-\lambda )\cdot K\tilde{+}_{0}\lambda \cdot L\in \mathcal{S}_{o}^{n}\).
Lemma 5.2
Let \(0\leq \lambda \leq 1\). If \(K,L\in \mathcal{S}_{o}^{n}\), then for \(A\in GL(n)\),
Now we give the definition of dual log mixed log-volume \(\mu _{0}(K,L)\) of \(K,L\in \mathcal{S}_{o}^{n}\).
Definition 5.2
Let \(K,L\in \mathcal{S}_{o}^{n}\), the dual log mixed log-volume \(\mu _{0}(K,L)\) of K, L is defined by
The following is the variational formula of \(\mu (K)\) for the log radial combination.
Theorem 5.1
Let \(K,L\in \mathcal{S}_{o}^{n}\). Then
Proof
Suppose \(\varepsilon > 0\), \(K,L\in \mathcal{S}_{o}^{n}\), and \(u\in S^{n-1}\). It follows that
uniformly on \(S^{n-1}\).
Therefore, we have
□
Lemma 5.3
Suppose that μ is a spherical Lebesgue measure of \(S^{n-1}\). If \(K,L\in \mathcal{S}_{o}^{n}\) and \(A\in O(n)\), then
Proof
From Theorem 5.1, Lemma 5.2, and Lemma 3.1, we have
So, \(\mu _{0}(AK,AL)=\mu _{0}(K,L)\). □
Theorem 5.2
If \(K,L\in \mathcal{S}_{o}^{n}\), then \(\mu _{0}(K,L)= \mu (L)\).
Proof
By the definitions of \(\mu (K)\) and \(\mu _{0}(K,L)\), we have
Therefore, we have \(\mu _{0}(K,L)= \mu (L)\). □
Theorem 5.3
Let \(0\leq \lambda \leq 1\). If \(K,L\in \mathcal{S}_{o}^{n}\), then
Proof
For \(0\leq \lambda \leq 1\), we obtain
Therefore, we have \(\mu ((1-\lambda )\cdot K\tilde{+}_{0}\lambda \cdot L)=\mu (K)^{1- \lambda }\mu (L)^{\lambda }\). □
6 Dual Orlicz–Brunn–Minkowski inequality for \(\mu (K)\)
Let Φ be the set of strictly increasing functions \(\phi : (0,\infty )\rightarrow (0,\infty )\) which are continuously differentiable on \((0,\infty )\) with positive derivative and satisfy that \(\phi (\infty )=\infty \) and that \(\log \circ \phi ^{-1}\) is concave. Notice that whenever \(\phi \in \Phi \) is convex, the composite function \(\log \circ \phi ^{-1}\) is concave. The collection of convex functions from Φ shall be denoted by \(\mathcal{C}\). There are many fundamental examples of the functions \(\phi \in \Phi \). Convex examples in Φ include the power function \(\phi (t)=t^{p}\) with \(p\geq 1\); the logistic function \(\phi (t)=t+2\log (1+e^{-t})\); the Laplace function \(\phi (t)=e^{-t}\), and so on. Nonconvex examples of Φ include \(\phi (t)=t^{p}\) with \(0< p<1\) and \(\phi (t)=\frac{1}{q}\log (1+t)\) with \(0< q<1\) (see [12]).
Let Ψ be the set of strictly decreasing functions \(\psi : (0,\infty )\rightarrow (0,\infty )\) which are continuously differentiable on \((0,\infty )\) with negative derivative and satisfy that \(\psi (0^{+})=\infty \), \(\psi (\infty )=0\) and that \(\log \circ \psi ^{-1}\) is convex. Notice that \(\psi (t)=t^{p}\) with \(p<0\) belong to Ψ.
Definition 6.1
Let \(\phi \in \Phi \cup \Psi \) and \(\alpha , \beta \geq 0\) (not both zero), the Orlicz radial combination \(\alpha \cdot K\tilde{+}_{\phi } \beta \cdot L\) of \(K, L\in \mathcal{S}^{n}_{o}\) is defined by
From Definition 6.1, we have the following lemma.
Lemma 6.1
Suppose \(\phi \in \Phi \cup \Psi \) and \(\alpha , \beta \geq 0\) (not both zero). If \(K,L\in \mathcal{S}_{o}^{n}\), \(A\in GL(n)\), then \(A(\alpha \cdot K\tilde{+}_{\phi }\beta \cdot L)=\alpha \cdot AK \tilde{+}_{\phi }\beta \cdot AL\).
Lemma 6.2
Suppose \(\phi \in \Phi \cup \Psi \). If \(K,L\in \mathcal{S}_{o}^{n}\), then
uniformly for all \(u\in S^{n-1}\).
Proof
Let \(\rho _{K_{\varepsilon }}(u)=\rho _{K\tilde{+}_{\phi }\varepsilon \cdot L}(u)\). Then \(\rho _{K_{\varepsilon }}(u)\rightarrow \rho _{K}(u)\) uniformly on \(S^{n-1}\) as \(\varepsilon \rightarrow 0^{+}\). By the definition of \(K\tilde{+}_{\phi }\varepsilon \cdot L\), we have
Let \(s=\phi ^{-1}(\phi (1)-\varepsilon \phi ( \frac{\rho _{L}(u)}{\rho _{K_{\varepsilon }}(u)})\). Then we have \(\frac{\rho _{K_{\varepsilon }}(u)-\rho _{K}(u)}{\rho _{K_{\varepsilon }}(u)}=1-s\). Note that \(s\rightarrow 1\) as \(\varepsilon \rightarrow 0^{+}\). Hence, we have
Since \(\rho _{K_{\varepsilon }}(u)\rightarrow \rho _{K}(u)\) uniformly on \(S^{n-1}\) as \(\varepsilon \rightarrow 0^{+}\), we have
uniformly for all \(u\in S^{n-1}\). □
Remark 6.1
The ideal of the proof of Theorem 6.2 is introduced by [16].
Definition 6.2
Suppose \(\phi \in \Phi \cup \Psi \). The Orlicz dual mixed log-volume \(\mu _{\phi }(K,L)\) of \(K,L\in \mathcal{S}_{o}^{n}\) is defined by
The following is the variational formula of \(\mu (K)\) for the Orlicz radial sum.
Theorem 6.1
Suppose \(\phi \in \Phi \cup \Psi \). If \(K,L\in \mathcal{S}_{o}^{n}\), then
Proof
Suppose \(\varepsilon > 0\), \(K,L\in \mathcal{S}_{o}^{n}\), and \(u\in S^{n-1}\). By Lemma 6.2, it follows that
uniformly on \(S^{n-1}\).
Hence
□
Lemma 6.3
Suppose μ is a spherical Lebesgue measure of \(S^{n-1}\). If \(\phi \in \Phi \cup \Psi \), \(A\in O(n)\), and \(K,L\in \mathcal{S}_{o}^{n}\), then \(\mu _{\phi }(AK,AL)=\mu _{\phi }(K,L)\).
Proof
From Theorem 6.1, we have
Thus, we obtain \(\mu _{\phi }(AK,AL)=\mu _{\phi }(K,L)\). □
The following is the dual Orlicz–Minkowski inequality for the mixed log-volume.
Theorem 6.2
Let \(\phi \in \Phi \cup \Psi \) and \(K,L\in \mathcal{S}_{o}^{n}\). Then
When μ is a spherical Lebesgue measure of \(S^{n-1}\), the equality holds if and only if K and L are dilates.
Proof
If \(\phi \in \Phi \), then ϕ and \(\phi ^{-1}\) are increasing. Since \(\phi ^{-1}\) is log-concave, by Jensen’s inequality, we have
Thus, by \(\phi ^{-1}\) is increasing, we have \(\mu _{\phi }(K,L)\geq \mu (K)\phi (\frac{\mu (L)}{\mu (K)})\).
If \(\phi \in \Psi \), then ϕ and \(\phi ^{-1}\) are decreasing. Since \(\phi ^{-1}\) is log-convex, we have
Thus, by \(\phi ^{-1}\) is decreasing, we have \(\mu _{\phi }(K,L)\geq \mu (K)\phi (\frac{\mu (L)}{\mu (K)})\).
When μ is a spherical Lebesgue measure of \(S^{n-1}\), by the equality condition of Jensen’s inequality, if the equality holds, then there is \(\lambda >0\) such that \(\rho _{L}(u)=\lambda \rho _{K}(u)\) for all \(u\in S^{n-1}\), that means K and L are dilates. Conversely, if K and L are dilates, it is easy to check that the equality holds. □
By the dual Orlicz–Minkowski inequality for mixed log-volume, we get the following dual Orlicz–Brunn–Minkowski inequality for log-volume.
Theorem 6.3
Suppose \(\alpha ,\beta >0\) and \(K,L\in \mathcal{S}_{o}^{n}\). If \(\phi \in \Phi \cup \Psi \), then
When μ is the spherical Lebesgue measure of \(S^{n-1}\), the equality holds if and only if K and L are dilates.
Proof
Let \(K_{\phi }=\alpha \cdot K\tilde{+}_{\phi }\beta \cdot L\). From Definition 6.1 and Theorem 6.2, it follows that
When μ is a spherical Lebesgue measure of \(S^{n-1}\), by the equality condition of Theorem 6.2, we get that the equality holds if and only if K and L are dilates. □
Now we show that the dual Orlicz–Minkowski inequality for the mixed log-volume and the dual Orlicz–Brunn–Minkowski inequality are equivalent.
Theorem 6.4
The dual Orlicz–Minkowski inequality for the mixed log-volume is equivalent to the dual Orlicz–Brunn–Minkowski inequality for the log-volume.
Proof
We have proved the dual Orlicz–Brunn–Minkowski inequality by the dual Orlicz–Minkowski inequality. Thus, we only need to prove the dual Orlicz–Minkowski inequality by the dual Orlicz–Brunn–Minkowski inequality.
For \(\varepsilon \geq 0\), let \(K_{\varepsilon }=K\tilde{+}_{\phi }\varepsilon \cdot L\), by the Orlicz–Brunn–Minkowski inequality, the following function
is nonpositive. Then
Let \(s=\frac{\mu (K)}{\mu (K_{\varepsilon })}\) and note that \(s\rightarrow 1^{+}\) as \(\varepsilon \rightarrow 0^{+}\). Consequently,
and
From \(G(\varepsilon )\) is nonpositive, we have
Hence, we have \(\mu _{\phi }(K,L)\geq \mu (K)\phi (\frac{\mu (L)}{\mu (K)})\). □
Availability of data and materials
The data that support the findings of this study are: K.J. Böröczky, E. Lutwak, D. Yang, G. Zhang, Y. Zhao, The Gauss Image Problem, Comm. Pure Appl. Math., 73, 1406–1452 (2020).
References
Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn–Minkowski inequality. Adv. Math. 231, 1974–1997 (2012)
Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G., Zhao, Y.: The Gauss image problem. Commun. Pure Appl. Math. 73, 1406–1452 (2020)
Firey, W.J.: p-means of convex bodies. Math. Scand. 10, 17–24 (1962)
Gardner, R.J.: Geometric Tomography, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 58. Cambridge University Press, New York (2006)
Gardner, R.J., Hug, D., Weil, W.: The Orlicz–Brunn–Minkowski theory: a general framework, additions, and inequalities. J. Differ. Geom. 97, 427–476 (2014)
Gardner, R.J., Hug, D., Weil, W., Ye, D.: The dual Orlicz–Brunn–Minkowski theory. J. Math. Anal. Appl. 430, 810–829 (2015)
Huang, Y., Lutwak, E., Yang, D., Zhang, G.: Geometric measures in the dual Brunn–Minkowski theory and their associated Minkowski problems. Acta Math. 216, 325–388 (2016)
Lutwak, E.: The Brunn–Minkowski–Firey theory. I. mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)
Lutwak, E.: The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)
Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)
Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)
Lv, S.: The ϕ-Brunn–Minkowski inequality. Acta Math. Hung. 156, 226–239 (2018)
Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Cambridge University Press, Cambridge (2014)
Wang, W., Liu, L.: The dual log-Brunn–Minkowski inequalities. Taiwan. J. Math. 20, 909–919 (2016)
Xi, D., Jin, H., Leng, G.: The Orlicz Brunn–Minkowski inequality. Adv. Math. 264, 350–374 (2014)
Zhu, B., Zhou, J., Xu, W.: Dual Orlicz–Brunn–Minkowski theory. Adv. Math. 264, 700–725 (2014)
Acknowledgements
Thanks to Professor Guoqi for the idea of this article.
Funding
Project supported by Postgraduate Research and Practice Innovation Program of Jiangsu Province No. KYCX20_2745, and N.S.F. of China No. 12071334.
Author information
Authors and Affiliations
Contributions
All authors contributed the same value. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Lai, D., Jin, H. The dual Brunn–Minkowski inequality for log-volume of star bodies. J Inequal Appl 2021, 112 (2021). https://doi.org/10.1186/s13660-021-02649-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-021-02649-0