Skip to main content

On the refinements of some important inequalities via \((p,q)\)-calculus and their applications

Abstract

We establish some interesting refinements of the \((p,q)\)-Hölder integral inequality and the \((p,q)\)-power-mean integral inequality. As applications, we show that some existing \((p,q)\)-integral inequalities can be improved by the results obtained in this paper.

Introduction and preliminaries

Let us recall the definition of convex mappings in the classic sense: A mapping \(f :\mathcal{I}\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}\) is called a convex mapping if for all \(\upsilon _{1}, \upsilon _{2}\in \mathcal{I}\) and \(t\in [0,1]\),

$$ f \bigl(t\upsilon _{1}+(1-t)\upsilon _{2} \bigr)\leq tf( \upsilon _{1})+(1-t)f(\upsilon _{2}). $$

Based on the convexity of mappings, many mathematicians have established different classes of inequalities, such as the Hardy-type inequality [13], Ostrowski-type inequality [4], midpoint-type inequality [5], trapezoidal-type inequality [29], Simpson-type inequality [32], and so on, among which the most famous is the Hermite–Hadamard inequality

$$ f \biggl(\frac{\upsilon _{1}+\upsilon _{2}}{2} \biggr)\leq \frac{1}{\upsilon _{2}-\upsilon _{1}} \int ^{\upsilon _{2}}_{\upsilon _{1}} f(t)\,\mathrm{d}t\leq \frac{f(\upsilon _{1})+f(\upsilon _{2})}{2}, $$
(1.1)

where \(f:\mathcal{K}\subseteq \mathbb{R}\rightarrow \mathbb{R}\) is a convex mapping, and \(\upsilon _{1}, \upsilon _{2}\in \mathcal{K}\) with \(\upsilon _{1}<\upsilon _{2}\).

A number of interesting generalizations of (1.1) have been proposed in the theory of mathematical inequalities. For instance, see [79, 18, 19, 34, 35, 37] and the references therein. The application of (1.1) to the error estimates for interpolatory approximation and approximate multivariate integration can be found in [1012]. An important mathematical tool concerning inequalities related to convex mappings is the Hölder inequality, which is also used widely in many other disciplines of applied mathematics.

Theorem 1.1

(Hölder inequality for sums [21])

Let \(a=(a_{1},a_{2},\ldots ,a_{n})\) and \(b=(b_{1},b_{2}, \ldots ,b_{n})\) be two positive n-tuples, and let \(\rho ,\sigma >1\) with \(\rho ^{-1}+\sigma ^{-1}=1\). Then we have

$$ \sum^{n}_{i=1}a_{i}b_{i} \leq \Biggl(\sum^{n}_{i=1}a^{ \rho }_{i} \Biggr)^{\frac{1}{\rho }} \Biggl(\sum^{n}_{i=1}b^{\sigma }_{i} \Biggr)^{\frac{1}{\sigma }}. $$

Theorem 1.2

(Hölder inequality for integrals [21])

Let \(\sigma >1\) and \(\rho ^{-1}+\sigma ^{-1}=1\). If f and w are real mappings defined on \([\upsilon _{1},\upsilon _{2}]\) and if \(|w|^{\rho }\) and \(|f|^{\sigma }\) are integrable on \([\upsilon _{1},\upsilon _{2}]\), then

$$ \int _{\upsilon _{1}}^{\upsilon _{2}} \bigl\vert w(x)f(x) \bigr\vert \,\mathrm{d}x\leq \biggl( \int _{\upsilon _{1}}^{\upsilon _{2}} \bigl\vert w(x) \bigr\vert ^{\rho }\,\mathrm{d}x \biggr)^{\frac{1}{\rho }} \biggl( \int _{\upsilon _{1}}^{ \upsilon _{2}} \bigl\vert f(x) \bigr\vert ^{\sigma }\,\mathrm{d}x \biggr)^{ \frac{1}{\sigma }}. $$

A different form of Hölder inequality was given as follows.

Theorem 1.3

(Power-mean integral inequality)

Let \(\sigma \geq 1\). If f and w are real mappings defined on \([\upsilon _{1},\upsilon _{2}]\) and if \(|w|\) and \(|w||f|^{\sigma }\) are integrable on \([\upsilon _{1},\upsilon _{2}]\), then

$$ \int _{\upsilon _{1}}^{\upsilon _{2}} \bigl\vert w(x)f(x) \bigr\vert \,\mathrm{d}x\leq \biggl( \int _{\upsilon _{1}}^{\upsilon _{2}} \bigl\vert w(x) \bigr\vert \mathrm{d}x \biggr)^{1-\frac{1}{\sigma }} \biggl( \int _{\upsilon _{1}}^{ \upsilon _{2}} \bigl\vert w(x) \bigr\vert \bigl\vert f(x) \bigr\vert ^{\sigma }\,\mathrm{d}x \biggr)^{ \frac{1}{\sigma }}. $$

In 2019, İşcan [14] established an improved version of the Hölder inequality.

Theorem 1.4

(Hölder–İşcan integral inequality)

Let \(\sigma >1\) and \(\rho ^{-1}+\sigma ^{-1}=1\). If f and w are real mappings defined on \([\upsilon _{1},\upsilon _{2}]\) and if \(|w|^{\rho }\) and \(|f|^{\sigma }\) are integrable on \([\upsilon _{1},\upsilon _{2}]\), then

$$\begin{aligned} \int _{\upsilon _{1}}^{\upsilon _{2}} \bigl\vert w(x)f(x) \bigr\vert \,\mathrm{d}x&\leq \frac{1}{\upsilon _{2}-\upsilon _{1}} \biggl\{ \biggl( \int _{\upsilon _{1}}^{\upsilon _{2}}(\upsilon _{2}-x) \bigl\vert w(x) \bigr\vert ^{\rho }\,\mathrm{d}x \biggr)^{\frac{1}{\rho }} \biggl( \int _{\upsilon _{1}}^{ \upsilon _{2}}(\upsilon _{2}-x) \bigl\vert f(x) \bigr\vert ^{\sigma }\,\mathrm{d}x \biggr)^{\frac{1}{\sigma }} \\ &\quad {}+ \biggl( \int _{\upsilon _{1}}^{\upsilon _{2}}(x-\upsilon _{1}) \bigl\vert w(x) \bigr\vert ^{\rho }\,\mathrm{d}x \biggr)^{\frac{1}{\rho }} \biggl( \int _{ \upsilon _{1}}^{\upsilon _{2}}(x-\upsilon _{1}) \bigl\vert f(x) \bigr\vert ^{\sigma }\,\mathrm{d}x \biggr)^{\frac{1}{\sigma }} \biggr\} \\ &\leq \biggl( \int _{\upsilon _{1}}^{\upsilon _{2}} \bigl\vert w(x) \bigr\vert ^{\rho }\,\mathrm{d}x \biggr)^{\frac{1}{\rho }} \biggl( \int _{\upsilon _{1}}^{ \upsilon _{2}} \bigl\vert f(x) \bigr\vert ^{\sigma }\,\mathrm{d}x \biggr)^{ \frac{1}{\sigma }}. \end{aligned}$$

In [15], a different version of Hölder–İşcan inequality was provided as follows.

Theorem 1.5

(Improved power-mean integral inequality)

Let \(\sigma \geq 1\). If f and w are real mappings defined on \([\upsilon _{1},\upsilon _{2}]\) and if \(|w|\) and \(|w||f|^{\sigma }\) are integrable on \([\upsilon _{1},\upsilon _{2}]\), then

$$\begin{aligned} & \int _{\upsilon _{1}}^{\upsilon _{2}} \bigl\vert w(x)f(x) \bigr\vert \,\mathrm{d}x\\ &\quad \leq \frac{1}{\upsilon _{2}-\upsilon _{1}} \biggl\{ \biggl( \int _{\upsilon _{1}}^{\upsilon _{2}}(\upsilon _{2}-x) \bigl\vert w(x) \bigr\vert \,\mathrm{d}x \biggr)^{1-\frac{1}{\sigma }} \biggl( \int _{\upsilon _{1}}^{ \upsilon _{2}}(\upsilon _{2}-x) \bigl\vert w(x) \bigr\vert \bigl\vert f(x) \bigr\vert ^{\sigma }\,\mathrm{d}x \biggr)^{\frac{1}{\sigma }} \\ &\qquad {}+ \biggl( \int _{\upsilon _{1}}^{\upsilon _{2}}(x-\upsilon _{1}) \bigl\vert w(x) \bigr\vert \mathrm{d}x \biggr)^{1-\frac{1}{\sigma }} \biggl( \int _{ \upsilon _{1}}^{\upsilon _{2}}(x-\upsilon _{1}) \bigl\vert w(x) \bigr\vert \bigl\vert f(x) \bigr\vert ^{\sigma }\,\mathrm{d}x \biggr)^{\frac{1}{\sigma }} \biggr\} \\ &\quad \leq \biggl( \int _{\upsilon _{1}}^{\upsilon _{2}} \bigl\vert w(x) \bigr\vert \,\mathrm{d}x \biggr)^{1-\frac{1}{\sigma }} \biggl( \int _{\upsilon _{1}}^{ \upsilon _{2}} \bigl\vert w(x) \bigr\vert \bigl\vert f(x) \bigr\vert ^{\sigma }\,\mathrm{d}x \biggr)^{ \frac{1}{\sigma }}. \end{aligned}$$

In the rest of this section, we review some preliminaries of \((p,q)\)-calculus. Throughout this paper, let \([a,b]\subset \mathbb{R}\), and let p, q be two constants such that \(0< q< p\leq 1\). The existence of \((p,q)\)-derivatives and \((p,q)\)-integrals is required, and the convergence of the corresponding series mentioned later in the proofs are assumed. Now we recall the theory of \((p,q)\)-calculus. These concepts and results related to the \((p,q)\)-derivative and \((p,q)\)-integral are mainly due to Tunç and Göv [30].

Definition 1.1

([30])

Let \(f:[a,b]\rightarrow \mathbb{R}\) be a continuous mapping. The \((p,q)\)-derivative of f at \(x\in [a,b]\) is defined as

$$ {}_{a}D_{p,q}f(x)= \frac{f(px+(1-p)a)-f(qx+(1-q)a)}{(p-q)(x-a)},\quad x\neq a,\qquad {}_{a}D_{p,q}f(a)={ \lim_{x\to a}} {}_{a}D_{p,q}f(x). $$

Example 1.1

Define the mapping \(f:[a,b]\rightarrow \mathbb{R}\) by \(f(x)=x^{2}\). Let \(0< q< p\leq 1\). For \(x\neq a\), we have

$$\begin{aligned} {}_{a}D_{p,q}x^{2}&= \frac{(px+(1-p)a)^{2}-(qx+(1-q)a)^{2}}{(p-q)(x-a)} \\ &=\frac{(p+q)x^{2}+(1-(p+q))2ax+(p+q-2)a^{2}}{x-a} \\ &=(p+q)x+(2-p-q)a. \end{aligned}$$

For \(x=a\), we have \({}_{a}D_{p,q}a^{2}={\lim_{x\to a}}({}_{a}D_{p,q}x^{2})=2a\).

Definition 1.2

([30])

Let \(f:[a,b]\rightarrow \mathbb{R}\) be a continuous mapping. If \({}_{a}D_{p,q}f\) is \((p,q)\)-differentiable on \([a,b]\), then the second-order \((p,q)\)-derivative of f is defined as \({}_{a}D^{2}_{p,q}f\) together with \({}_{a}D_{p,q}({}_{a}D_{p,q}f):[a,b]\rightarrow \mathbb{R}\). Similarly, the higher-order \((p,q)\)-derivatives of f are defined as \({}_{a}D^{n}_{p,q}f:[a,b]\rightarrow \mathbb{R}\).

Considering Example 1.1 again, for \(x\neq a\), we have

$$\begin{aligned} {}_{a}D^{2}_{p,q}x^{2}&= \frac{{}_{a}D_{p,q}(px+(1-p)a)^{2}-{}_{a}D_{p,q}(qx+(1-q)a)^{2}}{(p-q)(x-a)} \\ &= \frac{q(p^{2}x+(1-p^{2})a)^{2}-(p+q)(pqx+(1-pq)a)^{2}+p(q^{2}x+(1-q^{2})a)^{2}}{pq(p-q)^{2}(x-a)^{2}} \\ &=p+q. \end{aligned}$$

Again, for \(x=a\), we have \({}_{a}D^{2}_{p,q}a^{2}={\lim_{x\to a}}({}_{a}D^{2}_{p,q}x^{2})=p+q\).

Definition 1.3

([30])

Let \(f:[a,b]\rightarrow \mathbb{R}\) be a continuous mapping. The \((p,q)\)-integral on \([a,b]\) is defined as

$$ \int ^{x}_{a}f(t)\,{}_{a}\mathrm{d}_{p,q}t=(p-q) (x-a)\sum^{ \infty }_{n=0} \frac{q^{n}}{p^{n+1}}f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) $$

for \(x\in [a,b]\). Moreover, if \(c\in (a,x)\), then the \((p,q)\)-integral on \([c,x]\) is defined as

$$ \int ^{x}_{c}f(t)\,{}_{a}\mathrm{d}_{p,q}t= \int ^{x}_{a}f(t)\,{}_{a}\mathrm{d}_{p,q}t- \int ^{c}_{a}f(t)\,{}_{a}\mathrm{d}_{p,q}t. $$

Example 1.2

Define the mapping \(f:[a,b]\rightarrow \mathbb{R}\) by \(f(x)=x-\lambda \) with a constant \(\lambda \in [a,b]\). Let \(0< q< p\leq 1\). Then

$$\begin{aligned} \int ^{b}_{\lambda }(x-\lambda )\,{}_{a}\mathrm{d}_{p,q}x&= \int ^{b}_{a}(x-\lambda )\,{}_{a}\mathrm{d}_{p,q}x- \int ^{\lambda }_{a}(x- \lambda )\,{}_{a}\mathrm{d}_{p,q}x \\ &\quad =(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl( \frac{q^{n}}{p^{n+1}}b+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a- \lambda \biggr) \\ &\qquad {}-(p-q) (\lambda -a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl(\frac{q^{n}}{p^{n+1}}\lambda + \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a-\lambda \biggr) \\ &\quad = \frac{(b+(p+q-1)a-(p+q)\lambda )(b-a)+(p+q-1)(\lambda -a)^{2}}{p+q}. \end{aligned}$$

Note that when \(p=1\) and \(q\rightarrow 1^{-}\), the above integral reduces to the classic integral

$$ \int ^{b}_{\lambda }(t-\lambda )\,\mathrm{d}t= \frac{(b-\lambda )^{2}}{2}. $$

Theorem 1.6

([30])

Let \(f,g: [a,b]\rightarrow \mathbb{R}\) be two continuous mappings. Then

$$ \int ^{x}_{a} \bigl\vert f(u) \bigr\vert \bigl\vert g(u) \bigr\vert \,{}_{a}\mathrm{d}_{p,q}u\leq \biggl( \int ^{x}_{a} \bigl\vert f(u) \bigr\vert ^{\rho }\,{}_{a}\mathrm{d}_{p,q}u \biggr)^{\frac{1}{\rho }} \biggl( \int ^{x}_{a} \bigl\vert g(u) \bigr\vert ^{\sigma }\,{}_{a}\mathrm{d}_{p,q}u \biggr)^{\frac{1}{\sigma }} $$

for all \(x\in [a,b]\) and \(\rho ,\sigma >1\) with \(\rho ^{-1}+\sigma ^{-1}=1\).

In 2018, Kunt et al. [17]generalized the Hermite–Hadamard inequality to \((p,q)\)-integrals as follows.

Theorem 1.7

([17])

Let \(f:[a,b]\rightarrow \mathbb{R}\) be convex and \((p,q)\)-differentiable on \([a,b]\). Then we have

$$ f \biggl(\frac{qa+pb}{p+q} \biggr)\leq \frac{1}{p(b-a)} \int _{a}^{pb+(1-p)a}f(x)\,{}_{a}\mathrm{d}_{p,q}x\leq \frac{qf(a)+pf(b)}{p+q}. $$
(1.2)

For more details on the \((p,q)\)-integrals, we refer the interested readers to [2, 16, 27, 31]. Note that if we take \(p=1\) in Theorem 1.7, then we have the q-Hermite–Hadamard inequality; for more detail, see [20, 22, 23, 25, 26]. Besides, we are also directed to some recent work related to other type quantum integral inequalities; see, for instance, [1, 3, 6, 24, 28, 33, 36] and the references therein.

This paper is mainly devoted to investigating \((p,q)\)-integral inequalities via \((p,q)\)-calculus. For this purpose, we extend some of important integral inequalities of analysis to \((p,q)\)-calculus such as Hermite–Hadamard, Hölder, and the power-mean integral inequalities. To present some applications of our main results, we establish an identity to express the difference between the middle part and the right-hand side of the analogue of \((p,q)\)-Hermite–Hadamard inequality (1.2). Based on this identity, we give several estimates for \((p,q)\)-integral inequalities via convexity. Meanwhile, we compare some of the derived results in this paper, in an interesting way, with the known works.

Main results

In this section, we establish several integral inequalities concerning the quantum version of \((p,q)\)-Hermite–Hadamard inequality, the improved \((p,q)\)-Hölder–İşcan integral inequality, and the refinement of \((p,q)\)-power-mean integral inequality. The first result is as follows.

Theorem 2.1

Let \(f:[a,b]\rightarrow \mathbb{R}\) be convex and \((p,q)\)-differentiable on \([a,b]\), and let m be an integer. Then we have

$$ \begin{aligned} f \biggl(\frac{(p+q-p^{m})a+p^{m}b}{p+q} \biggr)&\leq \frac{1}{p^{m}(b-a)} \int _{a}^{p^{m}b+(1-p^{m})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x \\ &\leq \frac{(p+q-p^{m})f(a)+p^{m}f(b)}{p+q}. \end{aligned} $$
(2.1)

Proof

Using the identity \(\sum_{n=0}^{\infty }(1-\frac{q}{p})\frac{q^{n}}{p^{n}}=1\), \(0< q< p\leq 1\), Jensen’s inequality for infinite sums, and Definition 1.3, we have that

$$\begin{aligned} &f \biggl(\frac{(p+q-p^{m})a+p^{m}b}{p+q} \biggr) \\ &\quad =f \Biggl( \sum _{n=0}^{\infty } \biggl(1-\frac{q}{p} \biggr) \frac{q^{n}}{p^{n}} \biggl(\frac{q^{n}}{p^{n-m+1}}b+ \biggl(1-\frac{q^{n}}{p^{n-m+1}} \biggr)a \biggr) \Biggr) \\ &\quad \leq \sum_{n=0}^{\infty } \biggl(1- \frac{q}{p} \biggr) \frac{q^{n}}{p^{n}}f \biggl(\frac{q^{n}}{p^{n-m+1}}b+ \biggl(1- \frac{q^{n}}{p^{n-m+1}} \biggr)a \biggr) \\ &\quad =\frac{1}{p^{m}(b-a)} \int _{a}^{p^{m}b+(1-p^{m})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x. \end{aligned}$$

Using Definition 1.3 and the convexity of f, we get

$$\begin{aligned} &\frac{1}{p^{m}(b-a)} \int _{a}^{p^{m}b+(1-p^{m})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x \\ &\quad = \sum_{n=0}^{\infty } \biggl(1- \frac{q}{p} \biggr) \frac{q^{n}}{p^{n}}f \biggl(\frac{q^{n}}{p^{n-m+1}}b+ \biggl(1- \frac{q^{n}}{p^{n-m+1}} \biggr)a \biggr) \\ &\quad \leq \sum_{n=0}^{\infty } \biggl(1- \frac{q}{p} \biggr) \frac{q^{n}}{p^{n}} \biggl(\frac{q^{n}}{p^{n-m+1}}f(b)+ \biggl(1- \frac{q^{n}}{p^{n-m+1}} \biggr)f(a) \biggr) \\ &\quad =\frac{(p+q-p^{m})f(a)+p^{m}f(b)}{p+q}. \end{aligned}$$

The proof is completed. □

Remark 2.1

If we take \(m=1\) in Theorem 2.1, then we obtain Theorem 1.7 established by Kunt et al. [17].

Example 2.1

Let \(f(x)=x^{2}\) on \([1,4]\). Applying Theorem 2.1 with \(a=1\), \(b=4\), \(p=\frac{1}{2}\), \(q=\frac{1}{4}\), and \(m=3\), the left-hand side of (2.1) becomes

$$\begin{aligned} &f \biggl(\frac{(p+q-p^{m})a+p^{m}b}{p+q} \biggr)- \frac{1}{p^{m}(b-a)} \int _{a}^{p^{m}b+(1-p^{m})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x \\ &\quad = \biggl( \frac{ (\frac{1}{2}+\frac{1}{4}-\frac{1}{2^{3}} )+\frac{4}{2^{3}}}{\frac{1}{2}+\frac{1}{4}} \biggr)^{2}\\ &\qquad {}-\frac{1}{\frac{3}{2^{3}}} \times \biggl(\frac{1}{2}- \frac{1}{4} \biggr)\times (4-1)\times 2^{3}\sum_{n=0}^{\infty } \frac{4^{-n}}{2^{-n-1}} \biggl(\frac{4^{-n}}{2^{-n+3-1}}\times 3+1 \biggr)^{2} \\ &\quad =\frac{9}{4}-\frac{65}{28}=-\frac{1}{14}< 0. \end{aligned}$$

For the right-hand side of (2.1), we have

$$\begin{aligned} &\frac{1}{p^{m}(b-a)} \int _{a}^{p^{m}b+(1-p^{m})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x-\frac{(p+q-p^{m})f(a)+p^{m}f(b)}{p+q} \\ &\quad =\frac{1}{\frac{3}{2^{3}}}\times \biggl(\frac{1}{2}-\frac{1}{4} \biggr)\times (4-1)\times 2^{3}\sum_{n=0}^{\infty } \frac{4^{-n}}{2^{-n-1}} \biggl(\frac{4^{-n}}{2^{-n+3-1}}\times 3+1 \biggr)^{2}\\ &\qquad {}- \frac{ (\frac{1}{2}+\frac{1}{4}-\frac{1}{2^{3}} )+\frac{1}{2^{3}}\times 4^{2}}{\frac{1}{2}+\frac{1}{4}} \\ &\quad =\frac{65}{28}-\frac{7}{2}=-\frac{33}{28}< 0. \end{aligned}$$

We next establish an important refinement of the \((p,q)\)-Hölder inequality.

Theorem 2.2

(\((p,q)\)-Hölder–İşcan integral inequality)

Let \(\gamma _{1}>1\) and \(\gamma ^{-1}_{1}+\gamma ^{-1}_{2}=1\). If f and w are real mappings on \([a,b]\) such that \(|f|^{\gamma _{1}}\) and \(|w|^{\gamma _{2}}\) are integrable on \([a,b]\), then

$$ \begin{aligned} & \int _{a}^{b} \bigl\vert w(x)f(x) \bigr\vert \,{}_{a}\mathrm{d}_{p,q}x \\ &\quad \leq \frac{1}{b-a} \biggl\{ \biggl( \int _{a}^{b}(b-x) \bigl\vert f(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{ \frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b}(b-x) \bigl\vert w(x) \bigr\vert ^{\gamma _{2}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{2}}} \\ &\qquad {}+ \biggl( \int _{a}^{b}(x-a) \bigl\vert f(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b}(x-a) \bigl\vert w(x) \bigr\vert ^{\gamma _{2}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{ \frac{1}{\gamma _{2}}} \biggr\} \\ &\quad \leq \biggl( \int _{a}^{b} \bigl\vert f(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b} \bigl\vert w(x) \bigr\vert ^{\gamma _{2}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{ \frac{1}{\gamma _{2}}}. \end{aligned} $$
(2.2)

Proof

First, by Definition 1.3 and the discrete Hölder inequality we obtain

$$\begin{aligned} & \int _{a}^{b} \bigl\vert w(x)f(x) \bigr\vert \,{}_{a}\mathrm{d}_{p,q}x \\ &\quad =(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert f \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \\ &\quad =\frac{1}{b-a} \Biggl\{ (p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \\ &\qquad {}\times \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \\ &\qquad {}+(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \frac{q^{n}}{p^{n+1}}(b-a) \\ &\qquad{} \times \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \Biggr\} \\ &\quad =\frac{1}{b-a} \Biggl\{ (p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl( \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \biggr)^{\frac{1}{\gamma _{1}}}\\ &\qquad {}\times \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \\ &\qquad {}\times \biggl( \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \biggr)^{ \frac{1}{\gamma _{2}}} \biggl\vert w \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \\ &\qquad {}+(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl( \frac{q^{n}}{p^{n+1}}(b-a) \biggr)^{\frac{1}{\gamma _{1}}} \biggl\vert f \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \\ &\qquad {}\times \biggl(\frac{q^{n}}{p^{n+1}}(b-a) \biggr)^{ \frac{1}{\gamma _{2}}} \biggl\vert w \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \Biggr\} \\ &\quad \leq \frac{1}{b-a} \Biggl\{ \Biggl[(p-q) (b-a)\sum ^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl( \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr) (b-a) \biggr) \\ &\qquad {}\times\biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\gamma _{1}} \Biggr]^{ \frac{1}{\gamma _{1}}} \\ &\qquad{} \times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl( \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \biggr)\\ &\qquad {}\times \biggl\vert w \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\gamma _{2}} \Biggr]^{ \frac{1}{\gamma _{2}}} \\ &\qquad {}+ \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl(\frac{q^{n}}{p^{n+1}}(b-a) \biggr) \biggl\vert f \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{ \gamma _{1}} \Biggr]^{\frac{1}{\gamma _{1}}} \\ &\qquad {}\times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl(\frac{q^{n}}{p^{n+1}}(b-a) \biggr) \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\gamma _{2}} \Biggr]^{\frac{1}{\gamma _{2}}} \Biggr\} \\ &\quad =\frac{1}{b-a} \biggl\{ \biggl( \int _{a}^{b}(b-x) \bigl\vert f(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b}(b-x) \bigl\vert w(x) \bigr\vert ^{\gamma _{2}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{ \frac{1}{\gamma _{2}}} \\ &\qquad {}+ \biggl( \int _{a}^{b}(x-a) \bigl\vert f(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b}(x-a) \bigl\vert w(x) \bigr\vert ^{\gamma _{2}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{ \frac{1}{\gamma _{2}}} \biggr\} . \end{aligned}$$

This completes the proof for the first part of inequality (2.2). For the second part, using Definition 1.3 again yields that

$$\begin{aligned} &\frac{1}{b-a} \biggl\{ \biggl( \int _{a}^{b}(b-x) \bigl\vert f(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{ \frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b}(b-x) \bigl\vert w(x) \bigr\vert ^{\gamma _{2}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{2}}} \\ &\qquad {}+ \biggl( \int _{a}^{b}(x-a) \bigl\vert f(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b}(x-a) \bigl\vert w(x) \bigr\vert ^{\gamma _{2}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{ \frac{1}{\gamma _{2}}} \biggr\} \\ &\quad =\frac{1}{b-a} \Biggl\{ \Biggl[(p-q) (b-a)\sum ^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl( \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr) (b-a) \biggr)\\ &\qquad {}\times \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\gamma _{1}} \Biggr]^{ \frac{1}{\gamma _{1}}} \\ &\qquad{} \times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl( \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \biggr)\\ &\qquad {}\times \biggl\vert w \biggl(\frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\gamma _{2}} \Biggr]^{ \frac{1}{\gamma _{2}}} \\ &\qquad {}+ \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl(\frac{q^{n}}{p^{n+1}}(b-a) \biggr) \biggl\vert f \biggl( \frac{q^{n}}{p^{n+1}}b+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{ \gamma _{1}} \Biggr]^{\frac{1}{\gamma _{1}}} \\ &\qquad{} \times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl(\frac{q^{n}}{p^{n+1}}(b-a) \biggr) \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}b+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\gamma _{2}} \Biggr]^{\frac{1}{\gamma _{2}}} \Biggr\} \\ &\quad \leq \frac{1}{b-a} \Biggl\{ \Biggl[(p-q) (b-a)\sum ^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert f \biggl( \frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\gamma _{1}} \Biggr]^{ \frac{1}{\gamma _{1}}} \\ &\qquad{} \times \Biggl(\sum^{\infty }_{n=0} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \Biggr)^{\frac{1}{\gamma _{1}}} \\ &\qquad{} \times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert w \biggl(\frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\gamma _{2}} \Biggr]^{ \frac{1}{\gamma _{2}}} \\ &\qquad{} \times \Biggl(\sum^{\infty }_{n=0} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \Biggr)^{\frac{1}{\gamma _{2}}} \\ &\qquad {}+ \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\gamma _{1}} \Biggr]^{\frac{1}{\gamma _{1}}} \\ &\qquad {}\times \Biggl(\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}}(b-a) \Biggr)^{\frac{1}{\gamma _{1}}} \\ &\qquad{} \times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert w \biggl(\frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\gamma _{2}} \Biggr]^{ \frac{1}{\gamma _{2}}} \\ &\qquad{} \times \Biggl(\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}}(b-a) \Biggr)^{\frac{1}{\gamma _{2}}} \Biggr\} \\ &\quad = \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\gamma _{1}} \Biggr]^{\frac{1}{\gamma _{1}}} \\ &\qquad{} \times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert w \biggl(\frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\gamma _{2}} \Biggr]^{ \frac{1}{\gamma _{2}}} \\ &\quad = \biggl( \int _{a}^{b} \bigl\vert f(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b} \bigl\vert w(x) \bigr\vert ^{ \gamma _{2}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{2}}}. \end{aligned}$$

Thus the proof of Theorem 2.2 is completed. □

As a generalization of the \((p,q)\)-Hölder inequality, we give the following improvement of \((p,q)\)-power-mean integral inequality.

Theorem 2.3

(Improved \((p,q)\)-power-mean integral inequality)

Let \(\gamma _{1}\geq 1\). If f and w are real mappings on \([a,b]\) such that \(|f|\) and \(|f||w|^{\gamma _{1}}\) are integrable on \([a,b]\), then

$$ \begin{aligned} & \int _{a}^{b} \bigl\vert w(x)f(x) \bigr\vert \,{}_{a}\mathrm{d}_{p,q}x \\ &\quad \leq \frac{1}{b-a} \biggl\{ \biggl( \int _{a}^{b}(b-x) \bigl\vert f(x) \bigr\vert \,{}_{a}\mathrm{d}_{p,q}x \biggr)^{1-\frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b}(b-x) \bigl\vert f(x) \bigr\vert \bigl\vert w(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{1}}} \\ &\qquad {}+ \biggl( \int _{a}^{b}(x-a) \bigl\vert f(x) \bigr\vert \,{}_{a}\mathrm{d}_{p,q}x \biggr)^{1-\frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b}(x-a) \bigl\vert f(x) \bigr\vert \bigl\vert w(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{ \frac{1}{\gamma _{1}}} \biggr\} \\ &\quad \leq \biggl( \int _{a}^{b} \bigl\vert f(x) \bigr\vert \,{}_{a}\mathrm{d}_{p,q}x \biggr)^{1-\frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b} \bigl\vert f(x) \bigr\vert \bigl\vert w(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{ \frac{1}{\gamma _{1}}}. \end{aligned} $$
(2.3)

Proof

We can easily see that inequality (2.3) holds for \(\gamma _{1}=1\). Now we suppose that \(\gamma _{1}>1\). Using Definition 1.3 and the discrete Hölder inequality, we have that

$$\begin{aligned} & \int _{a}^{b} \bigl\vert w(x)f(x) \bigr\vert \,{}_{a}\mathrm{d}_{p,q}x \\ &\quad =(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert f \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \\ &\quad =\frac{1}{b-a} \Biggl\{ (p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \\ &\qquad{} \times \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \\ &\qquad {}+(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \frac{q^{n}}{p^{n+1}}(b-a) \\ &\qquad {}\times\biggl\vert f \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \Biggr\} \\ &\quad =\frac{1}{b-a} \Biggl\{ (p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl( \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \biggr)^{1-\frac{1}{\gamma _{1}}}\\ &\qquad {}\times \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{1- \frac{1}{\gamma _{1}}} \\ &\qquad{} \times \biggl( \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \biggr)^{ \frac{1}{\gamma _{1}}}\\ &\qquad {}\times \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\frac{1}{\gamma _{1}}} \biggl\vert w \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \\ &\qquad {}+(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl( \frac{q^{n}}{p^{n+1}}(b-a) \biggr)^{1-\frac{1}{\gamma _{1}}} \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{1-\frac{1}{\gamma _{1}}} \\ &\qquad {}\times \biggl(\frac{q^{n}}{p^{n+1}}(b-a) \biggr)^{ \frac{1}{\gamma _{1}}} \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{\frac{1}{\gamma _{1}}} \biggl\vert w \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \Biggr\} \\ &\quad \leq \frac{1}{b-a} \Biggl\{ \Biggl[(p-q) (b-a)\sum ^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl( \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr) (b-a) \biggr)\\ &\qquad {}\times \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \Biggr]^{1- \frac{1}{\gamma _{1}}} \\ &\qquad {}\times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl( \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \biggr) \\ &\qquad {}\times \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{ \gamma _{1}} \Biggr]^{\frac{1}{\gamma _{1}}} \\ &\qquad {}+ \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl(\frac{q^{n}}{p^{n+1}}(b-a) \biggr) \biggl\vert f \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \Biggr]^{1-\frac{1}{\gamma _{1}}} \\ &\qquad {}\times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl(\frac{q^{n}}{p^{n+1}}(b-a) \biggr) \\ &\qquad{} \times \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{ \gamma _{1}} \Biggr]^{\frac{1}{\gamma _{1}}} \Biggr\} \\ &\quad =\frac{1}{b-a} \biggl\{ \biggl( \int _{a}^{b}(b-x) \bigl\vert f(x) \bigr\vert \,{}_{a}\mathrm{d}_{p,q}x \biggr)^{1-\frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b}(b-x) \bigl\vert f(x) \bigr\vert \bigl\vert w(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{1}}} \\ &\qquad {}+ \biggl( \int _{a}^{b}(x-a) \bigl\vert f(x) \bigr\vert \,{}_{a}\mathrm{d}_{p,q}x \biggr)^{1-\frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b}(x-a) \bigl\vert f(x) \bigr\vert \bigl\vert w(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{ \frac{1}{\gamma _{1}}} \biggr\} . \end{aligned}$$

This completes the proof for the first part of inequality (2.3). Now let us invoke Definition 1.3 again to prove the second part. Specifically, we have

$$\begin{aligned} &\frac{1}{b-a} \biggl\{ \biggl( \int _{a}^{b}(b-x) \bigl\vert f(x) \bigr\vert \,{}_{a}\mathrm{d}_{p,q}x \biggr)^{1-\frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b}(b-x) \bigl\vert f(x) \bigr\vert \bigl\vert w(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{1}}} \\ &\qquad {}+ \biggl( \int _{a}^{b}(x-a) \bigl\vert f(x) \bigr\vert \,{}_{a}\mathrm{d}_{p,q}x \biggr)^{1-\frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b}(x-a) \bigl\vert f(x) \bigr\vert \bigl\vert w(x) \bigr\vert ^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{ \frac{1}{\gamma _{1}}} \biggr\} \\ &\quad =\frac{1}{b-a} \Biggl\{ \Biggl[(p-q) (b-a)\sum ^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl( \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr) (b-a) \biggr)\\ &\qquad {}\times \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \Biggr]^{1- \frac{1}{\gamma _{1}}} \\ &\qquad{} \times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl( \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \biggr) \\ &\qquad{} \times \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{ \gamma _{1}} \Biggr]^{\frac{1}{\gamma _{1}}} \\ &\qquad {}+ \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl(\frac{q^{n}}{p^{n+1}}(b-a) \biggr) \biggl\vert f \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \Biggr]^{1-\frac{1}{\gamma _{1}}} \\ &\qquad{} \times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl(\frac{q^{n}}{p^{n+1}}(b-a) \biggr) \\ &\qquad{} \times \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{ \gamma _{1}} \Biggr]^{\frac{1}{\gamma _{1}}} \Biggr\} \\ &\quad \leq \frac{1}{b-a} \Biggl\{ \Biggl[(p-q) (b-a)\sum ^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert f \biggl( \frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \Biggr]^{1- \frac{1}{\gamma _{1}}} \\ &\qquad {}\times \Biggl(\sum^{\infty }_{n=0} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \Biggr)^{1-\frac{1}{\gamma _{1}}} \\ &\qquad {}\times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \\ &\qquad {}\times \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}b+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{ \gamma _{1}} \Biggr]^{\frac{1}{\gamma _{1}}} \\ &\qquad {}\times \Biggl(\sum^{\infty }_{n=0} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) (b-a) \Biggr)^{\frac{1}{\gamma _{1}}} \\ &\qquad {}+ \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \Biggr]^{1-\frac{1}{\gamma _{1}}} \\ &\qquad {}\times \Biggl(\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}}(b-a) \Biggr)^{1-\frac{1}{\gamma _{1}}} \\ &\qquad {}\times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \\ &\qquad {}\times \biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}b+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{ \gamma _{1}} \Biggr]^{\frac{1}{\gamma _{1}}} \\ &\qquad {}\times \Biggl(\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}}(b-a) \Biggr)^{\frac{1}{\gamma _{1}}} \Biggr\} \\ &\quad = \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \Biggr]^{1-\frac{1}{\gamma _{1}}} \\ &\qquad {}\times \Biggl[(p-q) (b-a)\sum^{\infty }_{n=0} \frac{q^{n}}{p^{n+1}} \biggl\vert f \biggl(\frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert \\ &\qquad {}\times\biggl\vert w \biggl( \frac{q^{n}}{p^{n+1}}b+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \biggr\vert ^{ \gamma _{1}} \Biggr]^{\frac{1}{\gamma _{1}}} \\ &\quad = \biggl( \int _{a}^{b} \bigl\vert f(x) \bigr\vert \,{}_{a}\mathrm{d}_{p,q}x \biggr)^{1- \frac{1}{\gamma _{1}}} \biggl( \int _{a}^{b} \bigl\vert f(x) \bigr\vert \bigl\vert w(x) \bigr\vert ^{ \gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{1}}}. \end{aligned}$$

The proof of Theorem 2.3 is completed. □

Applications

In this section, we present some interesting applications of the results developed in Sect. 2. To this end, we consider the difference between the middle part and the right-hand side of the analogue of \((p,q)\)-Hermite–Hadamard inequality (1.2) and propose the following lemma.

Lemma 3.1

Let \(f:[a, b]\rightarrow \mathbb{R}\) be twice \((p,q)\)-differentiable mapping on \((a, b)\), and let \({}_{a}D^{2}_{p,q}f\) be continuous and integrable on \([a, b]\). Then we have

$$ \begin{aligned} &\frac{qf(a)+pf (pb+(1-p)a) )}{p+q}- \frac{1}{p^{2}(b-a)} \int _{a}^{p^{2}b+(1-p^{2})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x \\ &\quad =\frac{pq^{2}(b-a)^{2}}{p+q} \int _{0}^{1} t(1-qt){}_{a}D^{2}_{p,q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{p,q}t. \end{aligned} $$

Proof

From Definitions 1.1 and 1.2 we have

$$\begin{aligned} &{}_{a}D^{2}_{p,q}f \bigl(tb+(1-t)a \bigr) \\ &\quad ={}_{a}D_{p,q} \bigl({}_{a}D_{p,q}f \bigl(tb+(1-t)a \bigr) \bigr) \\ &\quad = \frac{{}_{a}D_{p,q}f (ptb+(1-pt)a )-{}_{a}D_{p,q}f (qtb+(1-qt)a )}{t(p-q)(b-a)} \\ &\quad = \frac{f (p^{2}tb+(1-p^{2}t)a )-f (pqtb+(1-pqt)a )}{pt^{2}(p-q)^{2}(b-a)^{2}} \\ &\qquad - \frac{f (pqtb+(1-pqt)a )-f (q^{2}tb+(1-q^{2}t)a )}{qt^{2}(p-q)^{2}(b-a)^{2}} \\ &\quad = \frac{qf (p^{2}tb+(1-p^{2}t)a )-(p+q)f (pqtb+(1-pqt)a )+pf (q^{2}tb+(1-q^{2}t)a )}{pqt^{2}(p-q)^{2}(b-a)^{2}}. \end{aligned}$$

Utilizing this calculation and Definition 1.3, we have

$$\begin{aligned} & \int _{0}^{1}t{}_{a}D^{2}_{p,q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{p,q}t \\ &\quad = \int _{0}^{1} \frac{qf (p^{2}tb+(1-p^{2}t)a )-(p+q)f (pqtb+(1-pqt)a )+pf (q^{2}tb+(1-q^{2}t)a )}{pqt(p-q)^{2}(b-a)^{2}}\\ &\qquad {}\times{}_{0}\mathrm{d}_{p,q}t \\ &\quad = \int _{0}^{1} \frac{qf (p^{2}tb+(1-p^{2}t)a )-qf (pqtb+(1-pqt)a )}{pqt(p-q)^{2}(b-a)^{2}}\,{}_{0}\mathrm{d}_{p,q}t \\ &\qquad {}+ \int _{0}^{1} \frac{pf (q^{2}tb+(1-q^{2}t)a )-pf (pqtb+(1-pqt)a )}{pqt(p-q)^{2}(b-a)^{2}}\,{}_{0}\mathrm{d}_{p,q}t \\ &{\quad = \frac{q [\sum_{n=0}^{\infty }f (\frac{q^{n}}{p^{n-1}}b+ (1-\frac{q^{n}}{p^{n-1}} )a ) -\sum_{n=0}^{\infty }f (\frac{q^{n+1}}{p^{n}}b+ (1-\frac{q^{n+1}}{p^{n}} )a ) ]}{pq(p-q)(b-a)^{2}}} \\ &{\qquad {}+ \frac{p [\sum_{n=0}^{\infty }f (\frac{q^{n+2}}{p^{n+1}}b+ (1-\frac{q^{n+2}}{p^{n+1}} )a ) -\sum_{n=0}^{\infty }f (\frac{q^{n+1}}{p^{n}}b+ (1-\frac{q^{n+1}}{p^{n}})a ) ]}{pq(p-q)(b-a)^{2}}} \\ &{\quad = \frac{q[f(pb+(1-p)a)-f(a)]+p[f(a)-f (qb+(1-q)a )]}{pq(p-q)(b-a)^{2}}} \\ &{\quad = \frac{qf(pb+(1-p)a)-pf (qb+(1-q)a )+(p-q)f(a)}{pq(p-q)(b-a)^{2}}} \end{aligned}$$

and

$$\begin{aligned} & \int _{0}^{1}t^{2}{}_{a}D^{2}_{p,q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{p,q}t \\ &\quad = \int _{0}^{1} \frac{qf (p^{2}tb+(1-p^{2}t)a )-(p+q)f (pqtb+(1-pqt)a )+pf (q^{2}tb+(1-q^{2}t)a )}{pq(p-q)^{2}(b-a)^{2}}\\ &\qquad {}\times{}_{0}\mathrm{d}_{p,q}t \\ &\quad = \frac{\sum_{n=0}^{\infty }\frac{q^{n+1}}{p^{n+1}}f (\frac{q^{n}}{p^{n-1}}b+ (1-\frac{q^{n}}{p^{n-1}} )a ) -\sum_{n=0}^{\infty }\frac{q^{n+1}}{p^{n+1}}f (\frac{q^{n+1}}{p^{n}}b+ (1-\frac{q^{n+1}}{p^{n}} )a )}{pq(p-q)(b-a)^{2}} \\ &\qquad {}+ \frac{\sum_{n=0}^{\infty }\frac{q^{n}}{p^{n}}f (\frac{q^{n+2}}{p^{n+1}}b+ (1-\frac{q^{n+2}}{p^{n+1}} )a ) -\sum_{n=0}^{\infty }\frac{q^{n}}{p^{n}}f (\frac{q^{n+1}}{p^{n}}b+ (1-\frac{q^{n+1}}{p^{n}} )a )}{pq(p-q)(b-a)^{2}} \\ &\quad = \frac{\sum_{n=0}^{\infty }\frac{q^{n+1}}{p^{n+1}}f (\frac{q^{n}}{p^{n-1}}b+ (1-\frac{q^{n}}{p^{n-1}} )a ) -\frac{p}{q}\sum_{n=0}^{\infty }\frac{q^{n+2}}{p^{n+2}}f (\frac{q^{n+1}}{p^{n}}b+ (1-\frac{q^{n+1}}{p^{n}} )a )}{pq(p-q)(b-a)^{2}} \\ &\qquad {}+ \frac{\frac{p}{q}\sum_{n=0}^{\infty }\frac{q^{n+1}}{p^{n+1}}f (\frac{q^{n+2}}{p^{n+1}}b+ (1-\frac{q^{n+2}}{p^{n+1}} )a ) -\sum_{n=0}^{\infty }\frac{q^{n}}{p^{n}}f (\frac{q^{n+1}}{p^{n}}b+ (1-\frac{q^{n+1}}{p^{n}} )a )}{pq(p-q)(b-a)^{2}} \\ &\quad = \frac{ (1-\frac{p}{q} )\sum_{n=0}^{\infty }\frac{q^{n+1}}{p^{n+1}}f (\frac{q^{n}}{p^{n-1}}b+ (1-\frac{q^{n}}{p^{n-1}})a )+f (pb+(1-p)a )}{pq(p-q)(b-a)^{2}} \\ &\qquad {}+ \frac{ (\frac{p}{q}-1 )\sum_{n=0}^{\infty }\frac{q^{n}}{p^{n}}f (\frac{q^{n+1}}{p^{n}}b+ (1-\frac{q^{n+1}}{p^{n}} )a )-\frac{p}{q}f (qb+(1-q)a )}{pq(p-q)(b-a)^{2}} \\ &\quad = \frac{\frac{1}{p}f (pb+(1-p)a) )+ (1-\frac{p}{q} )\sum_{n=0}^{\infty }\frac{q^{n+1}}{p^{n+2}}f (\frac{q^{n+1}}{p^{n}}b+ (1-\frac{q^{n+1}}{p^{n}} )a )}{p(p-q)(b-a)^{2}} \\ &\qquad {}+ \frac{\frac{p}{q} (\frac{p}{q}-1 )\sum_{n=0}^{\infty }\frac{q^{n+1}}{p^{n+2}}f (\frac{q^{n+1}}{p^{n}}b+ (1-\frac{q^{n+1}}{p^{n}} )a) )-\frac{1}{q}f (qb+(1-q)a) )}{q(p-q)(b-a)^{2}} \\ &\quad = \frac{\frac{1}{p}f (pb+(1-p)a )+ (1-\frac{p}{q} ) [\sum_{n=0}^{\infty }\frac{q^{n}}{p^{n+1}}f (\frac{q^{n}}{p^{n-1}}b+ (1-\frac{q^{n}}{p^{n-1}} )a )-\frac{1}{p}f (pb+(1-p)a ) ]}{p(p-q)(b-a)^{2}} \\ &\qquad {}+ \Biggl(\frac{p}{q} \biggl(\frac{p}{q}-1 \biggr) \Biggl[\sum_{n=0}^{\infty }\frac{q^{n}}{p^{n+1}}f \biggl(\frac{q^{n}}{p^{n-1}}b+ \biggl(1-\frac{q^{n}}{p^{n-1}} \biggr)a \biggr)-\frac{1}{p}f \bigl(pb+(1-p)a \bigr) \Biggr]\\ &\qquad {}-\frac{1}{q}f \bigl(qb+(1-q)a \bigr)\Biggr)\big/\bigl(q(p-q)(b-a)^{2}\bigr) \\ &\quad =\frac{q^{2}-p^{2}+pq}{pq^{3}(p-q)(b-a)^{2}}f \bigl(pb+(1-p)a \bigr)-\frac{1}{q^{2}(p-q)(b-a)^{2}}f \bigl(qb+(1-q)a \bigr) \\ &\qquad {}+\frac{p+q}{p^{3}q^{3}(b-a)^{3}} \int _{a}^{p^{2}b+(1-p^{2})a} f(x)\,{}_{a}\mathrm{d}_{p,q}x. \end{aligned}$$

After suitable arrangement, we get the desired result. Thus the proof is completed. □

Remark 3.1

In Lemma 3.1, choosing \(p=1\), we obtain Lemma 4.1 in [20].

Using Lemma 3.1, we derive the following theorem.

Theorem 3.1

Let \(f:[a, b]\rightarrow \mathbb{R}\) be twice \((p,q)\)-differentiable mapping on \((a, b)\), and let \({}_{a}D_{p,q}^{2}f\) be continuous and integrable on \([a, b]\). If \(|{}_{a}D_{p,q}^{2}f|^{\gamma _{2}}\) is convex for \(\gamma _{2}>1\) on \([a, b]\) and \(\gamma ^{-1}_{1}+\gamma ^{-1}_{2}=1\), then we have

$$ \begin{aligned} & \biggl\vert \frac{qf(a)+pf (pb+(1-p)a )}{p+q}- \frac{1}{p^{2}(b-a)} \int _{a}^{p^{2}b+(1-p^{2})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x \biggr\vert \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \bigl\{ \mathcal{Q}^{ \frac{1}{\gamma _{1}}}_{1} \bigl[\Psi _{1} \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma _{2}}+\Psi _{2} \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{ \gamma _{2}} \bigr]^{\frac{1}{\gamma _{2}}} \\ &\qquad {}+\mathcal{Q}^{\frac{1}{\gamma _{1}}}_{2} \bigl[\Psi _{2} \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma _{2}}+\Psi _{3} \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{ \gamma _{2}} \bigr]^{\frac{1}{\gamma _{2}}} \bigr\} , \end{aligned} $$
(3.1)

where

$$\begin{aligned}& \mathcal{Q}_{1}=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{2} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)^{\gamma _{1}}, \\& \mathcal{Q}_{2}=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{3} \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)^{ \gamma _{1}}, \\& \Psi _{1}=\frac{1}{p^{3}+p^{2}q+pq^{2}+q^{3}}- \frac{2}{p^{2}+pq+q^{2}}+ \frac{1}{p+q}, \\& \Psi _{2}=\frac{1}{p^{2}+pq+q^{2}}- \frac{1}{p^{3}+p^{2}q+pq^{2}+q^{3}}, \end{aligned}$$

and

$$ \Psi _{3}=\frac{1}{p^{3}+p^{2}q+pq^{2}+q^{3}}. $$

Proof

Using Lemma 3.1, the \((p,q)\)-Hölder–İşcan integral inequality, and the convexity of \(|{}_{a}D_{p,q}^{2}f|^{\gamma _{2}}\) on \([a,b]\), we have

$$\begin{aligned} & \biggl\vert \frac{qf(a)+pf (pb+(1-p)a )}{p+q}- \frac{1}{p^{2}(b-a)} \int _{a}^{p^{2}b+(1-p^{2})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x \biggr\vert \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \biggl\{ \biggl( \int _{0}^{1}(1-t)t(1-qt)^{ \gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{\frac{1}{\gamma _{1}}} \\ &\qquad {}\times\biggl( \int _{0}^{1}(1-t)t \bigl\vert {}_{a}D^{2}_{p,q}f \bigl(tb+(1-t)a \bigr) \bigr\vert ^{\gamma _{2}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{ \frac{1}{\gamma _{2}}} \\ &\qquad {}+ \biggl( \int _{0}^{1}t^{2}(1-qt)^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{\frac{1}{\gamma _{1}}} \biggl( \int _{0}^{1}t^{2} \bigl\vert {}_{a}D^{2}_{p,q}f \bigl(tb+(1-t)a \bigr) \bigr\vert ^{\gamma _{2}}\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{\frac{1}{\gamma _{2}}} \biggr\} \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \biggl\{ \biggl( \int _{0}^{1}(1-t)t(1-qt)^{ \gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{\frac{1}{\gamma _{1}}} \\ &\qquad {}\times \biggl[ \int _{0}^{1}(1-t)t \bigl((1-t) \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma _{2}}+t \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{\gamma _{2}} \bigr)\,{}_{a}\mathrm{d}_{p,q}x \biggr]^{\frac{1}{\gamma _{2}}} \\ &\qquad {}+ \biggl( \int _{0}^{1}t^{2}(1-qt)^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{\frac{1}{\gamma _{1}}} \\ &\qquad {}\times\biggl[ \int _{0}^{1}t^{2} \bigl((1-t) \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma _{2}}+t \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{\gamma _{2}} \bigr)\,{}_{a}\mathrm{d}_{p,q}t \biggr]^{ \frac{1}{\gamma _{2}}} \biggr\} . \end{aligned}$$

We obtain the desired inequality by noting that

$$\begin{aligned}& \int _{0}^{1}(1-t)t(1-qt)^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}t=(p-q) \sum^{\infty }_{n=0} \biggl(\frac{q^{n}}{p^{n+1}} \biggr)^{2} \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr) \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)^{ \gamma _{1}}, \\& \int _{0}^{1}t^{2}(1-qt)^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}t=(p-q) \sum^{\infty }_{n=0} \biggl(\frac{q^{n}}{p^{n+1}} \biggr)^{3} \biggl(1- \frac{q^{n+1}}{p^{n+1}} \biggr)^{\gamma _{1}}, \\& \int _{0}^{1}t(1-t)^{2}\,{}_{a}\mathrm{d}_{p,q}t= \frac{1}{p^{3}+p^{2}q+pq^{2}+q^{3}}-\frac{2}{p^{2}+pq+q^{2}}+ \frac{1}{p+q}, \\& \int _{0}^{1}(1-t)t^{2}\,{}_{a}\mathrm{d}_{p,q}t= \frac{1}{p^{2}+pq+q^{2}}-\frac{1}{p^{3}+p^{2}q+pq^{2}+q^{3}}, \end{aligned}$$

and

$$ \int _{0}^{1}t^{3}\,{}_{a}\mathrm{d}_{p,q}t= \frac{1}{p^{3}+p^{2}q+pq^{2}+q^{3}}. $$

This ends the proof. □

Corollary 3.1

If we set \(p=1\) and \(q\rightarrow 1^{-}\) in Theorem 3.1, then we have

$$ \begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{1}{b-a} \int _{a}^{b}f(x) \,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{2} \biggl\{ \biggl( \frac{1}{(\gamma _{1}+2)(\gamma _{1}+3)} \biggr)^{\frac{1}{\gamma _{1}}} \biggl[\frac{1}{12} \bigl\vert f''(a) \bigr\vert ^{\gamma _{2}}+\frac{1}{12} \bigl\vert f''(b) \bigr\vert ^{\gamma _{2}} \biggr]^{\frac{1}{\gamma _{2}}} \\ &\qquad {}+ \biggl(\frac{2}{(\gamma _{1}+1)(\gamma _{1}+2)(\gamma _{1}+3)} \biggr)^{\frac{1}{\gamma _{1}}} \biggl[ \frac{1}{12} \bigl\vert f''(a) \bigr\vert ^{ \gamma _{2}}+\frac{1}{4} \bigl\vert f''(b) \bigr\vert ^{\gamma _{2}} \biggr]^{ \frac{1}{\gamma _{2}}} \biggr\} . \end{aligned} $$
(3.2)

In Theorem 5.2 of [20], as \(q\rightarrow 1^{-}\), the authors obtained the following result.

Proposition 3.1

Let a continuous and integrable function \(f:[a,b]\rightarrow \mathbb{R}\) be twice differentiable on \((a,b)\). If \(|f''|^{\gamma _{2}}\) is convex for \(\gamma _{2}>1\) on \([a,b]\) and \(\gamma ^{-1}_{1}+\gamma ^{-1}_{2}=1\), then we have

$$ \begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{1}{b-a} \int _{a}^{b}f(x) \,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{2} \biggl( \frac{1}{(\gamma _{1}+1)(\gamma _{1}+2)} \biggr)^{\frac{1}{\gamma _{1}}} \biggl[ \frac{ \vert f''(a) \vert ^{\gamma _{2}}+2 \vert f''(b) \vert ^{\gamma _{2}}}{6} \biggr]^{\frac{1}{\gamma _{2}}}. \end{aligned} $$
(3.3)

Remark 3.2

Inequality (3.2) is sharper than inequality (3.3). Indeed, since the function \(h:[0,\infty )\rightarrow \mathbb{R}\), \(h(\tau )=\tau ^{\kappa }\), \(\kappa \in (0,1]\), is concave, we can write

$$ \frac{\mu ^{\kappa }+\nu ^{\kappa }}{2}= \frac{h(\mu )+h(\nu )}{2}\leq h \biggl( \frac{\mu +\nu }{2} \biggr)= \biggl( \frac{\mu +\nu }{2} \biggr)^{\kappa } $$
(3.4)

for all \(\mu , \nu \geq 0\). In inequality (3.4), choosing

$$ \mu =\frac{1}{12} \bigl\vert f''(a) \bigr\vert ^{\gamma _{2}}+\frac{1}{12} \bigl\vert f''(b) \bigr\vert ^{\gamma _{2}}, \qquad \nu =\frac{1}{12} \bigl\vert f''(a) \bigr\vert ^{\gamma _{2}}+ \frac{1}{4} \bigl\vert f''(b) \bigr\vert ^{\gamma _{2}}, $$

and \(\kappa =\frac{1}{\gamma _{2}}\), \(\gamma _{2}>1\), we have

$$ \begin{aligned} &\frac{1}{2} \biggl[\frac{1}{12} \bigl\vert f''(a) \bigr\vert ^{ \gamma _{2}}+ \frac{1}{12} \bigl\vert f''(b) \bigr\vert ^{\gamma _{2}} \biggr]^{ \frac{1}{\gamma _{2}}}+ \frac{1}{2} \biggl[ \frac{1}{12} \bigl\vert f''(a) \bigr\vert ^{\gamma _{2}}+\frac{1}{4} \bigl\vert f''(b) \bigr\vert ^{\gamma _{2}} \biggr]^{\frac{1}{\gamma _{2}}} \\ &\quad \leq \biggl[ \frac{ \vert f''(a) \vert ^{\gamma _{2}}+2 \vert f''(b) \vert ^{\gamma _{2}}}{12} \biggr]^{\frac{1}{\gamma _{2}}}. \end{aligned} $$

Thus we obtain the following result:

$$\begin{aligned} &\frac{(b-a)^{2}}{2} \biggl\{ \biggl( \frac{1}{(\gamma _{1}+2)(\gamma _{1}+3)} \biggr)^{\frac{1}{\gamma _{1}}} \biggl[\frac{1}{12} \bigl\vert f''(a) \bigr\vert ^{\gamma _{2}}+\frac{1}{12} \bigl\vert f''(b) \bigr\vert ^{\gamma _{2}} \biggr]^{\frac{1}{\gamma _{2}}} \\ &\qquad {}+ \biggl(\frac{2}{(\gamma _{1}+1)(\gamma _{1}+2)(\gamma _{1}+3)} \biggr)^{\frac{1}{\gamma _{1}}} \biggl[ \frac{1}{12} \bigl\vert f''(a) \bigr\vert ^{ \gamma _{2}}+\frac{1}{4} \bigl\vert f''(b) \bigr\vert ^{\gamma _{2}} \biggr]^{ \frac{1}{\gamma _{2}}} \biggr\} \\ &\quad \leq \frac{(b-a)^{2}}{2} \biggl( \frac{1}{(\gamma _{1}+1)(\gamma _{1}+2)} \biggr)^{\frac{1}{\gamma _{1}}} \biggl(\frac{1}{2^{\frac{1}{\gamma _{1}}}} \biggr) \biggl\{ \biggl[ \frac{1}{12} \bigl\vert f''(a) \bigr\vert ^{\gamma _{2}}+ \frac{1}{12} \bigl\vert f''(b) \bigr\vert ^{\gamma _{2}} \biggr]^{\frac{1}{\gamma _{2}}} \\ &\qquad {}+ \biggl[\frac{1}{12} \bigl\vert f''(a) \bigr\vert ^{\gamma _{2}}+ \frac{1}{4} \bigl\vert f''(b) \bigr\vert ^{\gamma _{2}} \biggr]^{ \frac{1}{\gamma _{2}}} \biggr\} \\ &\quad \leq \frac{(b-a)^{2}}{2} \biggl( \frac{1}{(\gamma _{1}+1)(\gamma _{1}+2)} \biggr)^{\frac{1}{\gamma _{1}}} \biggl(\frac{1}{2^{\frac{1}{\gamma _{1}}}} \biggr) \biggl( \frac{2}{2^{\frac{1}{\gamma _{2}}}} \biggr) \biggl[ \frac{ \vert f''(a) \vert ^{\gamma _{2}}+2 \vert f''(b) \vert ^{\gamma _{2}}}{6} \biggr]^{\frac{1}{\gamma _{2}}} \\ &\quad =\frac{(b-a)^{2}}{2} \biggl(\frac{1}{(\gamma _{1}+1)(\gamma _{1}+2)} \biggr)^{\frac{1}{\gamma _{1}}} \biggl[ \frac{ \vert f''(a) \vert ^{\gamma _{2}}+2 \vert f''(b) \vert ^{\gamma _{2}}}{6} \biggr]^{\frac{1}{\gamma _{2}}}. \end{aligned}$$

The upper bound for the right-hand side of the Hermite–Hadamard inequality for convex mappings obtained in inequality (3.2) is shaper than that of inequality (3.3), which can be illustrated by the following example.

Example 3.1

Considering the mapping \(f(x)=\frac{x^{3}}{6}\), \(x>0\), we apply it to inequalities (3.3) and (3.2). Let the right-hand sides of inequalities (3.3) and (3.2), except a common factor \(\frac{(b-a)^{2}}{2}\), be denoted by

$$ E_{1}(\gamma _{1},\gamma _{2})= \biggl( \frac{1}{(\gamma _{1}+1)(\gamma _{1}+2)} \biggr)^{\frac{1}{\gamma _{1}}} \biggl[\frac{a^{\gamma _{2}}+2b^{\gamma _{2}}}{6} \biggr]^{ \frac{1}{\gamma _{2}}} $$

and

$$ \begin{aligned} E_{2}(\gamma _{1},\gamma _{2}) &= \biggl\{ \biggl( \frac{1}{(\gamma _{1}+2)(\gamma _{1}+3)} \biggr)^{\frac{1}{\gamma _{1}}} \biggl[\frac{1}{12}a^{\gamma _{2}}+\frac{1}{12}b^{\gamma _{2}} \biggr]^{ \frac{1}{\gamma _{2}}} \\ &\quad {}+ \biggl(\frac{2}{(\gamma _{1}+1)(\gamma _{1}+2)(\gamma _{1}+3)} \biggr)^{\frac{1}{\gamma _{1}}} \biggl[ \frac{1}{12}a^{\gamma _{2}}+ \frac{1}{4}b^{\gamma _{2}} \biggr]^{\frac{1}{\gamma _{2}}} \biggr\} . \end{aligned} $$

Next, let us compare \(E_{1}(\gamma _{1},\gamma _{2})\) with \(E_{2}(\gamma _{1},\gamma _{2})\). For \(\gamma _{2}>2\) with \(\gamma _{1}=\frac{\gamma _{2}}{\gamma _{2}-1}\), \(a=2\), and \(b=5\), from Fig. 1 we see that \(E_{2}(\gamma _{1},\gamma _{2})\) is a sharper error bound than \(E_{1}(\gamma _{1},\gamma _{2})\). Therefore it reveals that the result of Corollary 3.1 is sharper than that of Proposition 3.1.

Figure 1
figure1

Error curves of \(E_{1}\) and \(E_{2}\) on the variable \(\gamma _{2}\)

The next result deals with the other case where \(|{}_{a}D_{p,q}^{2}f|^{\gamma _{2}}\) is convex for \(\gamma _{2}>1\).

Theorem 3.2

Let \(f:[a, b]\rightarrow \mathbb{R}\) be twice \((p,q)\)-differentiable mapping with \((a, b)\), and let \({}_{a}D_{p,q}^{2}f\) be continuous and integrable on \([a, b]\). If \(|{}_{a}D_{p,q}^{2}f|^{\gamma _{2}}\) is convex for \(\gamma _{2}>1\) on \([a, b]\) and \(\gamma ^{-1}_{1}+\gamma ^{-1}_{2}=1\), then we have

$$ \begin{aligned} & \biggl\vert \frac{qf(a)+pf (pb+(1-p)a )}{p+q}- \frac{1}{p^{2}(b-a)} \int _{a}^{p^{2}b+(1-p^{2})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x \biggr\vert \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \bigl\{ \mathcal{X}^{ \frac{1}{\gamma _{1}}}_{1} \bigl[\Lambda _{1} \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma _{2}}+\Lambda _{2} \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{\gamma _{2}} \bigr]^{\frac{1}{\gamma _{2}}} \\ &\qquad {}+\mathcal{X}^{\frac{1}{\gamma _{1}}}_{2} \bigl[\Lambda _{2} \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma _{2}}+\Lambda _{3} \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{\gamma _{2}} \bigr]^{\frac{1}{\gamma _{2}}} \bigr\} , \end{aligned} $$

where

$$\begin{aligned}& \mathcal{X}_{1}=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{\gamma _{1}+1} \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr) \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)^{ \gamma _{1}}, \\& \mathcal{X}_{2}=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{\gamma _{1}+2} \biggl(1- \frac{q^{n+1}}{p^{n+1}} \biggr)^{\gamma _{1}}, \\& \Lambda _{1}=\frac{p+q-2}{p+q}+\frac{1}{p^{2}+pq+q^{2}}, \\& \Lambda _{2}=\frac{1}{p+q}-\frac{1}{p^{2}+pq+q^{2}}, \end{aligned}$$

and

$$ \Lambda _{3}=\frac{1}{p^{2}+pq+q^{2}}. $$

Proof

By Lemma 3.1, the \((p,q)\)-Hölder–İşcan integral inequality, and the convexity of \(|{}_{a}D_{p,q}^{2}f|^{\gamma _{2}}\) on \([a, b]\) we have

$$\begin{aligned} & \biggl\vert \frac{qf(a)+pf (pb+(1-p)a) )}{p+q}- \frac{1}{p^{2}(b-a)} \int _{a}^{p^{2}b+(1-p^{2})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x \biggr\vert \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \biggl\{ \biggl( \int _{0}^{1}(1-t)t^{ \gamma _{1}}(1-qt)^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{ \frac{1}{\gamma _{1}}} \\ &\qquad {}\times\biggl( \int _{0}^{1}(1-t) \bigl\vert {}_{a}D^{2}_{p,q}f \bigl(tb+(1-t)a \bigr) \bigr\vert ^{\gamma _{2}}\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma _{2}}} \\ &\qquad {}+ \biggl( \int _{0}^{1}t^{\gamma _{1}+1}(1-qt)^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{\frac{1}{\gamma _{1}}} \biggl( \int _{0}^{1}t \bigl\vert {}_{a}D^{2}_{p,q}f \bigl(tb+(1-t)a \bigr) \bigr\vert ^{\gamma _{2}}\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{\frac{1}{\gamma _{2}}} \biggr\} \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \biggl\{ \biggl( \int _{0}^{1}(1-t)t^{ \gamma _{1}}(1-qt)^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{ \frac{1}{\gamma _{1}}} \\ &\qquad{} \times \biggl[ \int _{0}^{1}(1-t) \bigl((1-t) \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma _{2}}+t \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{\gamma _{2}} \bigr)\,{}_{a}\mathrm{d}_{p,q}x \biggr]^{\frac{1}{\gamma _{2}}} \\ &\qquad {}+ \biggl( \int _{0}^{1}t^{\gamma _{1}+1}(1-qt)^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{\frac{1}{\gamma _{1}}}\\ &\qquad {}\times \biggl[ \int _{0}^{1}t \bigl((1-t) \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma _{2}}+t \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{\gamma _{2}} \bigr)\,{}_{a}\mathrm{d}_{p,q}t \biggr]^{ \frac{1}{\gamma _{2}}} \biggr\} . \end{aligned}$$

We obtain the desired inequality by noting that

$$\begin{aligned}& \int _{0}^{1}(1-t)t^{\gamma _{1}}(1-qt)^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}t=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{\gamma _{1}+1} \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr) \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)^{ \gamma _{1}}, \\& \int _{0}^{1}t^{\gamma _{1}+1}(1-qt)^{\gamma _{1}}\,{}_{a}\mathrm{d}_{p,q}t=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{\gamma _{1}+2} \biggl(1- \frac{q^{n+1}}{p^{n+1}} \biggr)^{\gamma _{1}}, \\& \int _{0}^{1}(1-t)^{2}\,{}_{a}\mathrm{d}_{p,q}t= \frac{p+q-2}{p+q}+\frac{1}{p^{2}+pq+q^{2}}, \\& \int _{0}^{1}(1-t)t\,{}_{a}\mathrm{d}_{p,q}t=\frac{1}{p+q}- \frac{1}{p^{2}+pq+q^{2}}, \end{aligned}$$

and

$$ \Lambda _{3}= \int _{0}^{1}t^{2}\,{}_{a}\mathrm{d}_{p,q}t= \frac{1}{p^{2}+pq+q^{2}}. $$

This ends the proof. □

Corollary 3.2

If we select \(p=1\) and \(q\rightarrow 1^{-}\) in Theorem 3.2, then we have

$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int _{a}^{b}f(x) \,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{2}\beta ^{\frac{1}{\gamma _{1}}} (\gamma _{1}+1, \gamma _{1}+2 ) \biggl\{ \biggl[\frac{1}{3} \bigl\vert f''(a) \bigr\vert ^{ \gamma _{2}}+ \frac{1}{6} \bigl\vert f''(b) \bigr\vert ^{\gamma _{2}} \biggr]^{ \frac{1}{\gamma _{2}}} \\ &\qquad {}+ \biggl[\frac{1}{6} \bigl\vert f''(a) \bigr\vert ^{\gamma _{2}}+ \frac{1}{3} \bigl\vert f''(b) \bigr\vert ^{\gamma _{2}} \biggr]^{ \frac{1}{\gamma _{2}}} \biggr\} , \end{aligned}$$

where \(\beta (x,y)=\int _{0}^{1}t^{x-1}(1-t)^{y-1}\,\mathrm{d}t\), \(x>0\), \(y>0\).

Theorem 3.3

Let \(f:[a, b]\rightarrow \mathbb{R}\) be twice \((p,q)\)-differentiable mapping with \((a, b)\), and let \({}_{a}D_{p,q}^{2}f\) be continuous and integrable on \([a, b]\). If \(|{}_{a}D_{p,q}^{2}f|^{\gamma }\) is convex for \(\gamma \geq 1\) on \([a, b]\), then we have

$$ \begin{aligned} & \biggl\vert \frac{qf(a)+pf (pb+(1-p)a )}{p+q}- \frac{1}{p^{2}(b-a)} \int _{a}^{p^{2}b+(1-p^{2})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x \biggr\vert \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \bigl\{ \Theta ^{1-\frac{1}{\gamma }}_{1} \bigl[\mathcal{H}_{1} \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma }+ \mathcal{H}_{2} \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{\gamma } \bigr]^{ \frac{1}{\gamma }} \\ &\qquad {}+\Theta ^{1-\frac{1}{\gamma }}_{2} \bigl[\mathcal{H}_{2} \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma }+\mathcal{H}_{3} \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{ \gamma } \bigr]^{\frac{1}{\gamma }} \bigr\} , \end{aligned} $$
(3.5)

where

$$\begin{aligned}& \mathcal{H}_{1}=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{2} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)^{2} \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)^{\gamma }, \\& \mathcal{H}_{2}=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{3} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)^{\gamma }, \\& \mathcal{H}_{3}=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{4} \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)^{ \gamma }, \\& \Theta _{1}=\frac{1}{p+q}-\frac{1}{p^{2}+pq+q^{2}}, \end{aligned}$$

and

$$ \Theta _{2}=\frac{1}{p^{2}+pq+q^{2}}. $$

Proof

First, we suppose that \(\gamma =1\). Using the convexity of \(|{}_{a}D_{p,q}^{2}f|\) on \([a, b]\) and Lemma 3.1, we have

$$\begin{aligned} & \biggl\vert \frac{qf(a)+pf (pb+(1-p)a) )}{p+q}- \frac{1}{p^{2}(b-a)} \int _{a}^{p^{2}b+(1-p^{2})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x \biggr\vert \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \int _{0}^{1} \bigl\vert t(1-qt) \bigr\vert \bigl\vert {}_{a}D^{2}_{p,q}f \bigl(tb+(1-t)a \bigr) \bigr\vert \,{}_{0}\mathrm{d}_{p,q}t \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \int _{0}^{1} \bigl\vert t(1-qt) \bigr\vert \bigl[(1-t) \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert +t \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert \bigr]\,{}_{0}\mathrm{d}_{p,q}t \\ &\quad = \frac{p^{2}q^{2}(b-a)^{2}}{(p+q)(p^{2}+pq+q^{2})(p^{3}+p^{2}q+pq^{2}+q^{3})} \\ &\qquad {}\times \biggl[ \frac{p^{4}+2p^{3}q+p^{2}q^{2}+pq^{3}-p^{3}-p^{2}q-q^{4}}{p+q} \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert +p^{2} \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert \biggr]. \end{aligned}$$

This ends the proof for the case of \(\gamma =1\). Second, we suppose that \(\gamma >1\). Using the improved \((p,q)\)-power-mean integral inequality and the convexity of \(|{}_{a}D_{p,q}^{2}f|^{\gamma }\) on \([a, b]\), we have

$$\begin{aligned} & \biggl\vert \frac{qf(a)+pf (pb+(1-p)a )}{p+q}- \frac{1}{p^{2}(b-a)} \int _{a}^{p^{2}b+(1-p^{2})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x \biggr\vert \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \biggl\{ \biggl( \int _{0}^{1}(1-t)t\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{1-\frac{1}{\gamma }} \\ &\qquad {}\times\biggl( \int _{0}^{1}(1-t)t(1-qt)^{ \gamma } \bigl\vert {}_{a}D^{2}_{p,q}f \bigl(tb+(1-t)a \bigr) \bigr\vert ^{\gamma }\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma }} \\ &\qquad {}+ \biggl( \int _{0}^{1}t^{2}\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{1- \frac{1}{\gamma }} \biggl( \int _{0}^{1}t^{2}(1-qt)^{\gamma } \bigl\vert {}_{a}D^{2}_{p,q}f \bigl(tb+(1-t)a \bigr) \bigr\vert ^{\gamma }\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{ \frac{1}{\gamma }} \biggr\} \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \biggl\{ \biggl( \int _{0}^{1}(1-t)t\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{1-\frac{1}{\gamma }} \\ &\qquad {}\times \biggl[ \int _{0}^{1}(1-t)t(1-qt)^{\gamma } \bigl((1-t) \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma }+t \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{\gamma } \bigr)\,{}_{a}\mathrm{d}_{p,q}x \biggr]^{ \frac{1}{\gamma }} \\ &\qquad {}+ \biggl( \int _{0}^{1}t^{2}\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{1- \frac{1}{\gamma }}\\ &\qquad {}\times \biggl[ \int _{0}^{1}t^{2}(1-qt)^{\gamma } \bigl((1-t) \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma }+t \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{\gamma } \bigr)\,{}_{a}\mathrm{d}_{p,q}t \biggr]^{ \frac{1}{\gamma }} \biggr\} . \end{aligned}$$

We obtain the desired inequality by noting that

$$\begin{aligned}& \int _{0}^{1}(1-t)^{2}t(1-qt)^{\gamma }\,{}_{a}\mathrm{d}_{p,q}t=(p-q) \sum^{\infty }_{n=0} \biggl(\frac{q^{n}}{p^{n+1}} \biggr)^{2} \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)^{2} \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)^{ \gamma }, \\& \int _{0}^{1}t^{2}(1-t) (1-qt)^{\gamma }\,{}_{a}\mathrm{d}_{p,q}t=(p-q) \sum ^{\infty }_{n=0} \biggl(\frac{q^{n}}{p^{n+1}} \biggr)^{3} \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr) \biggl(1- \frac{q^{n+1}}{p^{n+1}} \biggr)^{ \gamma }, \\& \int _{0}^{1}t^{3}(1-qt)^{\gamma }\,{}_{a}\mathrm{d}_{p,q}t=(p-q) \sum^{\infty }_{n=0} \biggl(\frac{q^{n}}{p^{n+1}} \biggr)^{4} \biggl(1- \frac{q^{n+1}}{p^{n+1}} \biggr)^{\gamma }, \\& \int _{0}^{1}(1-t)t\,{}_{a}\mathrm{d}_{p,q}t=\frac{1}{p+q}- \frac{1}{p^{2}+pq+q^{2}}, \end{aligned}$$

and

$$ \int _{0}^{1}t^{2}\,{}_{a}\mathrm{d}_{p,q}t= \frac{1}{p^{2}+pq+q^{2}}. $$

The proof of Theorem 3.3 is completed. □

Corollary 3.3

If we take \(p=1\) and \(q\rightarrow 1^{-}\) in Theorem 3.3, then we have

$$ \begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{1}{b-a} \int _{a}^{b}f(x) \,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{2} \biggl\{ \biggl(\frac{1}{6} \biggr)^{1- \frac{1}{\gamma }} \biggl[\frac{1}{(\gamma +3)(\gamma +4)} \bigl\vert f''(a) \bigr\vert ^{\gamma }\\ &\qquad {}+\frac{2}{(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(b) \bigr\vert ^{\gamma } \biggr]^{\frac{1}{\gamma }} \\ &\qquad {}+ \biggl(\frac{1}{3} \biggr)^{1-\frac{1}{\gamma }} \biggl[ \frac{2}{(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(a) \bigr\vert ^{ \gamma }\\ &\qquad {}+\frac{6}{(\gamma +1)(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(b) \bigr\vert ^{\gamma } \biggr]^{\frac{1}{\gamma }} \biggr\} . \end{aligned} $$
(3.6)

In Theorem 5.1 of [20], as \(q\rightarrow 1^{-}\), the authors obtained the following result.

Proposition 3.2

Let a continuous integrable function \(f:[a,b]\rightarrow \mathbb{R}\) be twice differentiable on \((a,b)\). If \(|f''|^{\gamma }\) is convex for \(\gamma \geq 1\) on \([a,b]\), then we have

$$ \begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{1}{b-a} \int _{a}^{b}f(x) \,\mathrm{d}x \biggr\vert \leq \frac{(b-a)^{2}}{2^{2-\frac{1}{\gamma }}} \biggl[ \frac{(\gamma +1) \vert f''(a) \vert ^{\gamma }+2 \vert f''(b) \vert ^{\gamma }}{(\gamma +1)(\gamma +2)(\gamma +3)} \biggr]^{\frac{1}{\gamma }}. \end{aligned} $$
(3.7)

Remark 3.3

Inequality (3.6) is shaper than inequality (3.7). Indeed, since the function \(h:[0,\infty )\rightarrow \mathbb{R}\), \(h(\tau )=\tau ^{\kappa }\), \(\kappa \in (0,1]\), is concave, we can write

$$ \frac{\mu ^{\kappa }+\nu ^{\kappa }}{2}= \frac{h(\mu )+h(\nu )}{2}\leq h \biggl( \frac{\mu +\nu }{2} \biggr)= \biggl( \frac{\mu +\nu }{2} \biggr)^{\kappa } $$
(3.8)

for all \(\mu , \nu \geq 0\). In inequality (3.8), choosing

$$\begin{aligned}& \mu =\frac{1}{(\gamma +3)(\gamma +4)} \bigl\vert f''(a) \bigr\vert ^{\gamma }+ \frac{2}{(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(b) \bigr\vert ^{ \gamma }, \\& \nu =\frac{2}{(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(a) \bigr\vert ^{ \gamma }+\frac{6}{(\gamma +1)(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(b) \bigr\vert ^{\gamma }, \end{aligned}$$

and \(\kappa =\frac{1}{\gamma }\), \(\gamma \geq 1\), we have

$$\begin{aligned} &\frac{1}{2} \biggl[\frac{1}{(\gamma +3)(\gamma +4)} \bigl\vert f''(a) \bigr\vert ^{\gamma }+ \frac{2}{(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(b) \bigr\vert ^{\gamma } \biggr]^{\frac{1}{\gamma }} \\ &\qquad {}+\frac{1}{2} \biggl[\frac{2}{(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(a) \bigr\vert ^{\gamma }+ \frac{6}{(\gamma +1)(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(b) \bigr\vert ^{\gamma } \biggr]^{\frac{1}{\gamma }} \\ &\quad \leq \biggl[ \frac{(\gamma +1) \vert f''(a) \vert ^{\gamma }+2 \vert f''(b) \vert ^{\gamma }}{2(\gamma +1)(\gamma +2)(\gamma +3)} \biggr]^{\frac{1}{\gamma }}. \end{aligned}$$

Thus we obtain the following result:

$$\begin{aligned} &\frac{(b-a)^{2}}{2} \biggl\{ \biggl(\frac{1}{6} \biggr)^{1- \frac{1}{\gamma }} \biggl[\frac{1}{(\gamma +3)(\gamma +4)} \bigl\vert f''(a) \bigr\vert ^{\gamma }+\frac{2}{(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(b) \bigr\vert ^{\gamma } \biggr]^{\frac{1}{\gamma }} \\ &\qquad {}+ \biggl(\frac{1}{3} \biggr)^{1-\frac{1}{\gamma }} \biggl[ \frac{2}{(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(a) \bigr\vert ^{ \gamma }\\ &\qquad {}+\frac{6}{(\gamma +1)(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(b) \bigr\vert ^{\gamma } \biggr]^{\frac{1}{\gamma }} \biggr\} \\ &\quad \leq \frac{(b-a)^{2}}{2^{2-\frac{1}{\gamma }}} \biggl( \frac{1}{2^{1-\frac{1}{\gamma }}} \biggr) \biggl\{ \biggl[ \frac{1}{(\gamma +3)(\gamma +4)} \bigl\vert f''(a) \bigr\vert ^{\gamma }+ \frac{2}{(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(b) \bigr\vert ^{ \gamma } \biggr]^{\frac{1}{\gamma }} \\ &\qquad {}+ \biggl[\frac{2}{(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(a) \bigr\vert ^{\gamma }+ \frac{6}{(\gamma +1)(\gamma +2)(\gamma +3)(\gamma +4)} \bigl\vert f''(b) \bigr\vert ^{\gamma } \biggr]^{\frac{1}{\gamma }} \biggr\} \\ &\quad \leq \frac{(b-a)^{2}}{2^{2-\frac{1}{\gamma }}} \biggl( \frac{1}{2^{1-\frac{1}{\gamma }}} \biggr) \biggl( \frac{2}{2^{\frac{1}{\gamma }}} \biggr) \biggl[ \frac{(\gamma +1) \vert f''(a) \vert ^{\gamma }+2 \vert f''(b) \vert ^{\gamma }}{(\gamma +1)(\gamma +2)(\gamma +3)} \biggr]^{\frac{1}{\gamma }} \\ &\quad =\frac{(b-a)^{2}}{2^{2-\frac{1}{\gamma }}} \biggl[ \frac{(\gamma +1) \vert f''(a) \vert ^{\gamma }+2 \vert f''(b) \vert ^{\gamma }}{(\gamma +1)(\gamma +2)(\gamma +3)} \biggr]^{\frac{1}{\gamma }}. \end{aligned}$$

The upper bound for the right-hand side of the Hermite–Hadamard inequality for convex mappings obtained in inequality (3.6) is better than that of inequality (3.7), as the the following example shows.

Example 3.2

Considering the mapping \(f(x)=e^{x}\), \(x>0\), we apply it to inequalities (3.7) and (3.6). Let the right-hand sides of inequalities (3.7) and (3.6), except a common factor \(\frac{(b-a)^{2}}{2}\), be denoted by

$$ E_{3}(\gamma )=\frac{1}{2^{1-\frac{1}{\gamma }}} \biggl[ \frac{(\gamma +1)e^{a\gamma }+2e^{b\gamma }}{(\gamma +1)(\gamma +2)(\gamma +3)} \biggr]^{\frac{1}{\gamma }} $$

and

$$ \begin{aligned} E_{4}(\gamma ) &= \biggl\{ \biggl( \frac{1}{6} \biggr)^{1- \frac{1}{\gamma }} \biggl[\frac{1}{(\gamma +3)(\gamma +4)}e^{a\gamma }+ \frac{2}{(\gamma +2)(\gamma +3)(\gamma +4)}e^{b\gamma } \biggr]^{ \frac{1}{\gamma }} \\ &\quad {}+ \biggl(\frac{1}{3} \biggr)^{1-\frac{1}{\gamma }} \biggl[ \frac{2}{(\gamma +2)(\gamma +3)(\gamma +4)}e^{a\gamma }+ \frac{6}{(\gamma +1)(\gamma +2)(\gamma +3)(\gamma +4)}e^{b\gamma } \biggr]^{\frac{1}{\gamma }} \biggr\} . \end{aligned} $$

Let us compare \(E_{3}(\gamma )\) with \(E_{4}(\gamma )\). For \(\gamma >2\), \(a=3\), and \(b=7\), from Fig. 2 we see that \(E_{4}(\gamma )\) is a shaper error bound than \(E_{3}(\gamma )\). Therefore it reveals that the result of Corollary 3.3 is shaper than that of Proposition 3.2.

Figure 2
figure2

Error curves of \(E_{3}\) and \(E_{4}\) on the variable γ

Finally, we get the following result dealing with the other case where \(|{}_{a}D_{p,q}^{2}f|^{\gamma }\) is convex for \(\gamma \geq 1\).

Theorem 3.4

Let \(f:[a, b]\rightarrow \mathbb{R}\) be a twice \((p,q)\)-differentiable mapping on \((a, b)\), and let \({}_{a}D_{p,q}^{2}f\) be continuous and integrable on \([a, b]\). If \(|{}_{a}D_{p,q}^{2}f|^{\gamma }\) is convex for \(\gamma \geq 1\) on \([a, b]\), then we have

$$ \begin{aligned} & \biggl\vert \frac{qf(a)+pf (pb+(1-p)a )}{p+q}- \frac{1}{p^{2}(b-a)} \int _{a}^{p^{2}b+(1-p^{2})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x \biggr\vert \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \biggl\{ \biggl(\frac{p+q-1}{p+q} \biggr)^{1-\frac{1}{\gamma }} \bigl[\mathcal{G}_{1} \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma }+\mathcal{G}_{2} \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{ \gamma } \bigr]^{\frac{1}{\gamma }} \\ &\qquad {}+ \biggl(\frac{1}{p+q} \biggr)^{1-\frac{1}{\gamma }} \bigl[ \mathcal{G}_{2} \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma }+ \mathcal{G}_{3} \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{\gamma } \bigr]^{ \frac{1}{\gamma }} \biggr\} , \end{aligned} $$
(3.9)

where

$$\begin{aligned}& \mathcal{G}_{1}=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{\gamma +1} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)^{2} \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)^{\gamma }, \\& \mathcal{G}_{2}=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{\gamma +2} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)^{\gamma }, \end{aligned}$$

and

$$ \mathcal{G}_{3}=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{\gamma +3} \biggl(1- \frac{q^{n+1}}{p^{n+1}} \biggr)^{\gamma }. $$

Proof

Using Lemma 3.1, the improved \((p,q)\)-power-mean integral inequality, and the convexity of \(|{}_{a}D_{p,q}^{2}f|^{\gamma }\) on \([a, b]\), we have

$$\begin{aligned} & \biggl\vert \frac{qf(a)+pf (pb+(1-p)a )}{p+q}- \frac{1}{p^{2}(b-a)} \int _{a}^{p^{2}b+(1-p^{2})a}f(x)\,{}_{a}\mathrm{d}_{p,q}x \biggr\vert \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \biggl\{ \biggl( \int _{0}^{1}(1-t)\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{1-\frac{1}{\gamma }}\\ &\qquad {}\times \biggl( \int _{0}^{1}(1-t)t^{ \gamma }(1-qt)^{\gamma } \bigl\vert {}_{a}D^{2}_{p,q}f \bigl(tb+(1-t)a \bigr) \bigr\vert ^{\gamma }\,{}_{a}\mathrm{d}_{p,q}x \biggr)^{\frac{1}{\gamma }} \\ &\qquad {}+ \biggl( \int _{0}^{1}t\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{1- \frac{1}{\gamma }} \biggl( \int _{0}^{1}t^{\gamma +1}(1-qt)^{\gamma } \bigl\vert {}_{a}D^{2}_{p,q}f \bigl(tb+(1-t)a \bigr) \bigr\vert ^{\gamma }\,{}_{a}\mathrm{d}_{p,q}t \biggr)^{\frac{1}{\gamma }} \biggr\} \\ &\quad \leq \frac{pq^{2}(b-a)^{2}}{p+q} \biggl\{ \biggl(\frac{p+q-1}{p+q} \biggr)^{1- \frac{1}{\gamma }} \\ &\qquad {}\times \biggl[ \int _{0}^{1}(1-t)t^{\gamma }(1-qt)^{\gamma } \bigl((1-t) \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma }+t \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{\gamma } \bigr)\,{}_{a}\mathrm{d}_{p,q}x \biggr]^{ \frac{1}{\gamma }} \\ &\qquad {}+ \biggl(\frac{1}{p+q} \biggr)^{1-\frac{1}{\gamma }} \biggl[ \int _{0}^{1}t^{ \gamma +1}(1-qt)^{\gamma } \bigl((1-t) \bigl\vert {}_{a}D^{2}_{p,q}f(a) \bigr\vert ^{\gamma }+t \bigl\vert {}_{a}D^{2}_{p,q}f(b) \bigr\vert ^{\gamma } \bigr)\,{}_{a}\mathrm{d}_{p,q}t \biggr]^{\frac{1}{\gamma }} \biggr\} . \end{aligned}$$

We obtain the desired inequality by noting that

$$\begin{aligned}& \int _{0}^{1}(1-t)^{2}t^{\gamma }(1-qt)^{\gamma }\,{}_{a}\mathrm{d}_{p,q}t=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{\gamma +1} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)^{2} \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)^{\gamma }, \\& \int _{0}^{1}t^{\gamma +1}(1-t) (1-qt)^{\gamma }\,{}_{a}\mathrm{d}_{p,q}t=(p-q)\sum ^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{\gamma +2} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr) \biggl(1- \frac{q^{n+1}}{p^{n+1}} \biggr)^{\gamma }, \end{aligned}$$

and

$$ \int _{0}^{1}t^{\gamma +2}(1-qt)^{\gamma }\,{}_{a}\mathrm{d}_{p,q}t=(p-q)\sum^{\infty }_{n=0} \biggl( \frac{q^{n}}{p^{n+1}} \biggr)^{\gamma +3} \biggl(1- \frac{q^{n+1}}{p^{n+1}} \biggr)^{\gamma }. $$

The proof is completed. □

Corollary 3.4

If we choose \(p=1\) and \(q\rightarrow 1^{-}\) in Theorem 3.4, then we have

$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int _{a}^{b}f(x) \,\mathrm{d}x \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{2^{2-\frac{1}{\gamma }}} \bigl\{ \bigl[\beta (\gamma +1,\gamma +3 ) \bigl\vert f''(a) \bigr\vert ^{\gamma }+ \beta ( \gamma +2,\gamma +2 ) \bigl\vert f''(b) \bigr\vert ^{\gamma } \bigr]^{\frac{1}{\gamma }} \\ &\qquad {}+ \bigl[\beta (\gamma +2,\gamma +2 ) \bigl\vert f''(a) \bigr\vert ^{\gamma }+\beta (\gamma +3,\gamma +1 ) \bigl\vert f''(b) \bigr\vert ^{\gamma } \bigr]^{\frac{1}{\gamma }} \bigr\} . \end{aligned}$$

Conclusion

We extend some important integral inequalities of analysis to \((p,q)\)-calculus, which include the Hermite–Hadamard, Hölder, and power-mean integral inequalities. As applications, for mappings with convex absolute values of the second derivatives, we derive certain analogue of \((p,q)\)-Hermite–Hadamard inequalities based on the established \((p,q)\)-integral identity. By an interesting comparison it turns out that the results obtained in this paper are shaper than the existing results. With these ideas and techniques developed in this work, the interested readers can be inspired to explore this fascinating field of \((p,q)\)-integral inequalities.

Availability of data and materials

Not applicable.

References

  1. 1.

    Alp, N., Bilişik, C.C., Sarikaya, M.Z.: On q-Opial type inequality for quantum integral. Filomat 33(13), 4175–4184 (2019)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Aral, A., Gupta, V.: \((p,q)\)-Type beta functions of second kind. Adv. Oper. Theory 1(1), 134–146 (2016)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Awan, M.U., Cristescu, G., Noor, M.A., Riahi, L.: Upper and lower bounds for Riemann type quantum integrals of preinvex and preinvex dominated functions. Sci. Bull. “Politeh.” Univ. Buchar., Ser. A, Appl. Math. Phys. 79(3), 33–44 (2017)

    MathSciNet  Google Scholar 

  4. 4.

    Barani, A.: Hermite–Hadamard and Ostrowski type inequalities on hemispheres. Mediterr. J. Math. 13(6), 4253–4263 (2016)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Budak, H., Usta, F., Sarikaya, M.Z., Ozdemir, M.E.: On generalization of midpoint type inequalities with generalized fractional integral operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(2), 769–790 (2019)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Chen, F.X., Yang, W.G.: Some new Chebyshev type quantum integral inequalities on finite intervals. J. Comput. Anal. Appl. 21(3), 417–426 (2016)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Du, T.S., Awan, M.U., Kashuri, A., Zhao, S.S.: Some k-fractional extensions of the trapezium inequalities through generalized relative semi-\((m,h)\)-preinvexity. Appl. Anal. 100(3), 642–662 (2021)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Du, T.S., Li, Y.J., Yang, Z.Q.: A generalization of Simpson’s inequality via differentiable mapping using extended \((s, m)\)-convex functions. Appl. Math. Comput. 293, 358–369 (2017)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Du, T.S., Liao, J.G., Li, Y.J.: Properties and integral inequalities of Hadamard–Simpson type for the generalized \((s,m)\)-preinvex functions. J. Nonlinear Sci. Appl. 9, 3112–3126 (2016)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Guessab, A., Schmeisser, G.: Sharp integral inequalities of the Hermite–Hadamard type. J. Approx. Theory 115(2), 260–288 (2002)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Guessab, A., Schmeisser, G.: Convexity results and sharp error estimates in approximate multivariate integration. Math. Comput. 73(247), 1365–1384 (2004)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Guessab, A., Schmeisser, G.: Sharp error estimates for interpolatory approximation on convex polytopes. SIAM J. Numer. Anal. 43(3), 909–923 (2005)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Iqbal, S., Pečarić, J., Samraiz, M., Tomovski, Z.: On some Hardy-type inequalities for fractional calculus operators. Banach J. Math. Anal. 11(2), 438–457 (2017)

    MathSciNet  Article  Google Scholar 

  14. 14.

    İşcan, İ.: New refinements for integral and sum forms of Hölder inequality. J. Inequal. Appl. 2019, Article ID 304 (2019)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Kadakal, M., İşcan, İ., Kadakal, H., Bekar, K.: On improvements of some integral inequalities (2019) https://doi.org/10.13140/RG.2.2.15052.46724. Researchgate, Preprint

  16. 16.

    Kalsoom, H., Wu, J.D., Hussain, S., Latif, M.A.: Simpson’s type inequalities for coordinated convex functions on quantum calculus. Symmetry 11, Article ID 768 (2019)

    Article  Google Scholar 

  17. 17.

    Kunt, M., İşcan, İ., Alp, N., Sarikaya, M.Z.: \((p,q)\)-Hermite–Hadamard inequalities and \((p,q)\)-estimates for midpoint type inequalities via convex and quasi-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112, 969–992 (2018)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Latif, M.A., Dragomir, S.S.: Generalization of Hermite–Hadamard type inequalities for n-times differentiable functions which are s-preinvex in the second sense with applications. Hacet. J. Math. Stat. 44(4), 839–853 (2015)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Liao, J.G., Wu, S.H., Du, T.S.: The Sugeno integral with respect to α-preinvex functions. Fuzzy Sets Syst. 379, 102–114 (2020)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Liu, W.J., Zhuang, H.F.: Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 7(2), 501–522 (2017)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Akademic, Dordrecht (1993)

    Book  Google Scholar 

  22. 22.

    Noor, M.A., Cristescu, G., Awan, M.U.: Bounds having Riemann type quantum integrals via strongly convex functions. Studia Sci. Math. Hung. 54(2), 221–240 (2017)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Noor, M.A., Noor, K.I., Awan, M.U.: Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 251, 675–679 (2015)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Nwaeze, E.R., Tameru, A.W.: New parameterized quantum integral inequalities via η-quasiconvexity. Adv. Differ. Equ. 2019, Article ID 425 (2019)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Prabseang, J., Nonlaopon, K., Tariboon, J.: Quantum Hermite–Hadamard inequalities for double integral and q-differentiable convex functions. J. Math. Inequal. 13(3), 675–686 (2019)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Riahi, L., Awan, M.U., Noor, M.A.: Some complementary q-bounds via different classes of convex functions. Sci. Bull. “Politeh.” Univ. Buchar., Ser. A, Appl. Math. Phys. 79(2), 171–182 (2017)

    MathSciNet  Google Scholar 

  27. 27.

    Srivastava, H.M., Raza, N., AbuJarad, E.S.A., Srivastava, G., AbuJarad, M.H.: Fekete–Szegö inequality for classes of \((p,q)\)-starlike and \((p,q)\)-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 3563–3584 (2019)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, Article ID 18 (2015)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Tseng, K.L., Hwang, S.R.: Some extended trapezoid-type inequalities and applications. Hacet. J. Math. Stat. 45(3), 827–850 (2016)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Tunç, M., Göv, E.: Some integral inequalities via \((p,q)\)-calculus on finite intervals. RGMIA Res. Rep. Collect. 19, 1–12 (2016) http://rgmia.org/papers/v19/v19a95.pdf

    Google Scholar 

  31. 31.

    Tunç, M., Göv, E.: \((p,q)\)-Integral inequalities. RGMIA Res. Rep. Collect. 19, 1–13 (2016) http://rgmia.org/papers/v19/v19a97.pdf

    Google Scholar 

  32. 32.

    Tunç, M., Göv, E., Balgeçti, S.: Simpson type quantum integral inequalities for convex functions. Miskolc Math. Notes 19(1), 649–664 (2018)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Vivas–Cortez, M.J., Liko, R., Kashuri, A., Hernández, J.E.H.: New quantum estimates of trapezium-type inequalities for generalized φ-convex functions. Mathematics 7(11), Article ID 1047 (2019)

    Article  Google Scholar 

  34. 34.

    Wu, S.H., Sroysang, B., Xie, J.S., Chu, Y.M.: Parametrized inequality of Hermite–Hadamard type for functions whose third derivative absolute values are quasi-convex. SpringerPlus 2015(4), Article ID 831 (2015)

    Article  Google Scholar 

  35. 35.

    Xi, B.Y., Qi, F.: Some integral inequalities of Hermite–Hadamard type for s-logarithmically convex functions. Acta Math. Sci. Ser. B Engl. Ed. 35A(3), 515–526 (2015)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Yang, W.G.: Some new Fejér type inequalities via quantum calculus on finite intervals. ScienceAsia 43(2), 123–134 (2017)

    Article  Google Scholar 

  37. 37.

    Zheng, S., Du, T.S., Zhao, S.S., Chen, L.Z.: New Hermite–Hadamard inequalities for twice differentiable ϕ-MT-preinvex functions. J. Nonlinear Sci. Appl. 9(10), 5648–5660 (2016)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

This work was supported by the National Natural Science Foundation of China (No. 11301296) and sponsored by Research Fund for Excellent Dissertation of China Three Gorges University (No. 2020SSPY137).

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ting-Song Du.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Luo, CY. & Du, TS. On the refinements of some important inequalities via \((p,q)\)-calculus and their applications. J Inequal Appl 2021, 82 (2021). https://doi.org/10.1186/s13660-021-02617-8

Download citation

MSC

  • 05A30
  • 26A33
  • 26D15

Keywords

  • \((p,q)\)-integral inequalities
  • Hermite–Hadamard inequality
  • Convex mappings