- Research
- Open access
- Published:
Nonlinear ordered variational inclusion problem involving XOR operation with fuzzy mappings
Journal of Inequalities and Applications volume 2020, Article number: 36 (2020)
Abstract
In the setting of real ordered positive Hilbert spaces, a nonlinear fuzzy ordered variational inclusion problem with its corresponding nonlinear fuzzy ordered resolvent equation problem involving XOR operation has been recommended and solved by employing an iterative algorithm. We establish the equivalence between nonlinear fuzzy ordered variational inclusion problem and nonlinear fuzzy ordered resolvent equation problem. The existence and convergence analysis of the solution of nonlinear fuzzy ordered variational inclusion problem involving XOR operation has been substantiated by applying a new resolvent operator method with XOR operation technique. The iterative algorithm and results demonstrated in this article have witnessed a significant improvement in many previously known results of this domain.
1 Introduction
A number of solutions of nonlinear equations were introduced and studied by Amann [1] in 1972. In recent past, the fixed point theory and its applications have been intensively studied in real ordered Banach spaces. Therefore, it is very important and natural for generalized nonlinear ordered variational inequalities (ordered equations) to be studied and discussed, see [2–4]. In 1994, Hassouni and Moudafi [5] used the resolvent operator technique form maximal monotone mapping to study a class of mixed type variational inequalities with single-valued mappings, which was called variational inclusions, and developed a perturbed algorithm for finding approximate solutions of the mixed variational inequalities, see [6]. It has been proved that the theory of variational inequalities (inclusions) is quite application-oriented and thus it has been generalized in several different directions. This theory is used to solve efficiently many problems related to economics, optimization, transportation, elasticity, basic and applied sciences, etc., see [7–16] and the references therein.
In 2008, Li [17–19] studied the nonlinear ordered variational inequalities and proposed an algorithm to approximate the solution for a class of nonlinear ordered variational inequalities (ordered equations) in real ordered Banach spaces. Very recently, Ahmad et al. [20–22] considered some classes of ordered variational inclusions involving XOR operator in different settings.
A lot of work has been done by Li [17–19, 23–25] to approximate the solution of general nonlinear ordered variational inequalities and ordered equations in ordered Banach spaces. On the other hand, the fuzzy set theory due to Zadeh [26] was specifically designed to mathematically represent uncertainty and vagueness and to provide formalized tools for dealing with the imprecision intrinsic to many problems, see [10–12, 27–30].
In this paper, we consider a new resolvent operator and prove that it is single-valued, compression as well as Lipschitz continuous. We establish the equivalence between nonlinear fuzzy ordered variational inclusion problem and nonlinear fuzzy ordered resolvent equation problem. Then these new results are used to solve a nonlinear fuzzy ordered variational inclusion problem with its corresponding nonlinear fuzzy ordered resolvent equation problem involving XOR operation after defining an iterative algorithm by applying a new resolvent operator method with XOR operation technique. We claim that all the results of this paper, either preliminary or main, are the extension of results of Li [17–19, 23, 24].
2 Preliminaries
Throughout this paper, we assume that \(\mathcal{H}_{p}\) is a real ordered positive Hilbert space endowed with a norm \(\|\cdot \|\) and an inner product \(\langle \cdot,\cdot \rangle \). Let \(2^{\mathcal{H} _{p}}\) (respectively, \(CB(\mathcal{H}_{p})\)) be a family of all nonempty (respectively, nonempty closed and bounded) subsets of \(\mathcal{H} _{p}\).
Let \(\mathcal{F}(\mathcal{H}_{p})\) be a collection of all fuzzy sets over \(\mathcal{H}_{p}\). A mapping \(F:\mathcal{H}_{p}\rightarrow \mathcal{F}(\mathcal{H}_{p})\) is said to be a fuzzy mapping on \(\mathcal{H}_{p}\). For each \(p\in \mathcal{H}_{p}\), \(F(p)\) (in the sequel, it will be denoted by \(F_{p}\)) is a fuzzy set on \(\mathcal{H} _{p}\) and \(F_{p}(q)\) is the membership function of q in \(F_{p}\).
A fuzzy mapping \(F:\mathcal{H}_{p}\rightarrow \mathcal{F}(\mathcal{H} _{p})\) is said to be closed if, for each \(p\in \mathcal{H}_{p}\), the function \(q\rightarrow F_{p}(q)\) is upper semi-continuous, that is, for any given net \(\{q_{\alpha }\}\subset \mathcal{H}_{p}\), satisfying \(q_{\alpha }\rightarrow q_{0}\in \mathcal{H}_{p}\), we have
For \(R\in \mathcal{F}(\mathcal{H}_{p})\) and \(\lambda \in [0,1]\), the set \((R)_{\lambda }=\{p\in \mathcal{H}_{p}: R(p)\geq \lambda \}\) is called a λ-cut set of R. Let \(F:\mathcal{H}_{p}\rightarrow \mathcal{F}(\mathcal{H}_{p})\) be a closed fuzzy mapping satisfying the following condition.
Condition\((*)\): If there exists a function \(a:\mathcal{H} _{p}\rightarrow [0,1]\) such that, for each \(p\in \mathcal{H}_{p}\), the set \((F_{p})_{a(p)}=\{q\in \mathcal{H}_{p}: F_{p}(q)\geq a(p)\}\) is a nonempty bounded subset of \(\mathcal{H}_{p}\).
If F is a closed fuzzy mapping satisfying condition \((*)\), then for each \(p\in \mathcal{H}_{p}\), \((F_{p})_{a(p)}\in CB(\mathcal{H}_{p})\). In fact, let \(\{q_{\alpha }\}\subset (F_{p})_{a(p)}\) be a net and \(q_{\alpha }\rightarrow q_{0}\in \mathcal{H}_{p}\), then \((F_{p})_{a(p)} \geq a(p)\) for each α. Since F is closed, we have
which implies that \(q_{0}\in (F_{p})_{a(p)}\), and so \((F_{p})_{a(p)} \in CB(\mathcal{H}_{p})\).
For the presentation of the results, let us demonstrate some known definitions and results.
Definition 2.1
A nonempty closed convex subset C of \(\mathcal{H}_{p}\) is said to be a cone if:
- (i)
for any \(p\in C\) and any \(\lambda >0\), then \(\lambda p \in C\);
- (ii)
if \(p\in C\) and \(-p\in C\), then \(p=0\).
Definition 2.2
A nonempty subset C of \(\mathcal{H}_{p}\) is called
- (i)
a normal cone if there exists a constant \(\delta _{N}>0\) such that, for \(0\leq p\leq q\), we have \(\Vert p \Vert \leq \delta _{N} \Vert q \Vert \) for any \(p,q \in \mathcal{H}_{p}\);
- (ii)
for any \(p,q\in \mathcal{H}_{p}\), \(p\leq q\) if and only if \(q-p\in C\);
- (iii)
p and q are said to be comparative to each other if and only if we have either \(p\leq q\) or \(q\leq p\), which is denoted by \(p\propto q\).
Definition 2.3
([31])
An ordered Hilbert space \(\mathcal{H}\) is said to be a positive Hilbert space with a partially ordered relation “≤” (denoted by \(\mathcal{H}_{p}\)) if, for any \(p,q\in \mathcal{H}\), \(p\geq 0\) and \(q\geq 0\), then \(\langle p,q\rangle \geq 0\).
Example 2.4
Let \(\mathcal{H}=\mathbb{R}^{2}\) with the usual inner product and norm, and let \(C=\{(p,q)| p,q\geq 0, p\leq q\text{ and }p,q\in \mathbb{R}\}\) be a closed convex subset, and let ≤ defined by a normal cone C be a partial ordered relation in \(\mathbb{R}^{2}\). It is clear that \(\mathbb{R}^{2}_{p}\) is a positive Hilbert space with partial ordered relation ≤. However, when letting \(C_{1}=\{(p,q)| q \geq 0, |p|\leq 4q, p,q\in \mathbb{R}\}\), then \(C_{1}\) is a closed convex subset. Obviously, \(\mathbb{R}^{2}\) is a nonpositive Hilbert space with ≤ because \(\langle (-2.5p,p), (p,p)\rangle =-1.5p ^{2}<0\) for \((-2.5p,p), (p,p)\in C_{1}\).
Definition 2.5
([31])
For arbitrary elements \(p,q\in \mathcal{H}_{p}\), \(lub\{p,q\}\) and \(glb\{p,q\}\) mean the least upper bound and the greatest upper bound of the set \(\{p,q\}\). Suppose that \(lub\{p,q\}\) and \(glb\{p,q\}\) exist, some binary operations are defined as follows:
- (i)
\(p\vee q= lub \{p,q\}\);
- (ii)
\(p\wedge q= glb \{p,q\}\);
- (iii)
\(p\oplus q= (p-q)\vee (q-p)\);
- (iv)
\(p\odot q= (p-q)\wedge (q-p)\).
The operations ⊕, ⊙, ∨, and ∧ are called XOR, XNOR, OR, and AND operations, respectively.
Lemma 2.6
([32])
For any natural numbern, \(p\propto q_{n}\)and\(q_{n}\rightarrow q ^{*}\)as\(n\rightarrow \infty \), then\(p\propto q^{*}\).
Proposition 2.7
Let ⊙ be an XNOR operation and ⊕ be an XOR operation. Then the following relations hold:
- (i)
\(p\odot p=p\oplus p=0\), \(p\odot q=q\odot p=-(p\oplus q)=-(q \oplus p)\);
- (ii)
if\(p\propto 0\), then\(-p\oplus 0\leq p\leq p\oplus 0\);
- (iii)
\((\lambda p)\oplus (\lambda q)=|\lambda | (p\oplus q)\);
- (iv)
\(0\leq p\oplus q \)if\(p\propto q\);
- (v)
if\(p\propto q\), then\(p\oplus q=0\)if and only if\(p=q\);
- (vi)
\((p+q)\odot (u+v)\geq (p\odot u)+(q\odot v)\);
- (vii)
\((p+q)\odot (u+v)\geq (p\odot v)+(q\odot u)\);
- (viii)
if\(p,q\), andware comparative to each other, then\((p\oplus q)\leq p\oplus w+w\oplus q\);
- (ix)
if\(p\propto q\), then\(((p\oplus 0)\oplus (q\oplus 0)) \leq (p\oplus q)\oplus 0=p\oplus q\);
- (x)
\(\alpha p\oplus \beta p=|\alpha -\beta |p=(\alpha \oplus \beta )p\)if\(p\propto 0\), for all\(p,q,u,v,w\in \mathcal{H} _{p}\)and\(\alpha, \beta, \lambda \in \mathbb{R}\).
Proposition 2.8
([32])
LetCbe a normal cone in\(\mathcal{H}_{p}\)with normal constant\(\delta _{N}\), then, for each\(p,q\in \mathcal{H}_{p}\), the following relations hold:
- (i)
\(\|0\oplus 0\|=\|0\|=0\);
- (ii)
\(\|p\vee q\|\leq \|p\|\vee \|q\|\leq \|p\|+\|q\|\);
- (iii)
\(\|p\oplus q\|\leq \|p-q\|\leq \delta _{N}\|p\oplus q \|\);
- (iv)
if\(p\propto q\), then\(\|p\oplus q\|=\|p-q\|\).
Definition 2.9
Let \(g:\mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\) be a single-valued mapping. Then
- (i)
g is said to be a strongly comparison mapping if g is a comparison mapping and \(g(p)\propto g(q)\) if and only if \(p\propto q\) for all \(p,q\in \mathcal{H}_{p}\);
- (ii)
g is said to be a β-ordered compression mapping if G is a comparison mapping and
$$ g(p)\oplus g(q)\leq \beta (p\oplus q) \quad\text{for } 0< \beta < 1. $$
Definition 2.10
A mapping \(N:\mathcal{H}_{p}\times \mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\) is said to be \((\kappa,\nu )\)-ordered Lipschitz continuous if \(p\propto q\), \(u\propto v\), then \(N(p,u)\propto N(q,v)\) and there exist constants \(\kappa,\nu >0\) such that
Definition 2.11
A set-valued mapping \(A:\mathcal{H}_{p}\rightarrow CB(\mathcal{H}_{p})\) is said to be D-Lipschitz continuous if, for any \(p,q\in \mathcal{H}_{p}\), \(p\propto q\), there exists a constant \(\lambda _{D _{A}}>0\) such that
Definition 2.12
Let \(A:\mathcal{H}_{p}\rightarrow 2^{\mathcal{H}_{p}}\) be a set-valued mapping. Then
- (i)
A is said to be a weak comparison mapping if, for any \(v_{p}\in A(p)\), \(p\propto v_{p}\), and if \(p\propto q\), then for any \(v_{p}\in A(p)\) and \(v_{q}\in A(q)\), \(v_{p}\propto v_{q} \) for all \(p,q\in \mathcal{H}_{p}\);
- (ii)
a weak comparison mapping A is said to be α-weak-nonordinary difference mapping if, for each \(p,q\in \mathcal{H}_{p}\), there exist \(\alpha >0\) and \(v_{p}\in A(p)\) and \(v_{q}\in A(q)\) such that
$$ (v_{p}\oplus v_{q})\oplus \alpha (p\oplus q)=0; $$ - (iii)
a weak comparison mapping A is said to be a λ-XOR-ordered different weak compression mapping if, for each \(p,q\in \mathcal{H}_{p}\), there exist a constant \(\lambda >0\) and \(v_{p}\in A(p)\), \(v_{q}\in A(q)\) such that
$$ \lambda (v_{p}\oplus v_{q})\geq p\oplus q. $$
Now, we introduce some new definitions of an XOR-weak-NODD set-valued mapping and a resolvent operator associated with the XOR-weak-NODD set-valued mapping.
Definition 2.13
A comparison mapping \(M:\mathcal{H}_{p}\rightarrow 2^{\mathcal{H}_{p}}\) is said to be an \((\alpha, \lambda )\)-XOR-weak-NODD set-valued mapping if A is an α-weak-nonordinary difference mapping and a λ-XOR-ordered different weak compression mapping, and \([I\oplus \lambda A](\mathcal{H}_{p})=\mathcal{H}_{p}\) for \(\lambda, \beta,\alpha >0\).
Definition 2.14
Let \(A:\mathcal{H}_{p}\rightarrow 2^{\mathcal{H}_{p}}\) be an \((\alpha, \lambda )\)-XOR-weak-NODD set-valued mapping. The resolvent operator \(\mathcal{J}^{\lambda }_{A}:\mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\) associated with A is defined by
where \(\lambda >0\) is a constant.
Now, we show that the resolvent operator defined by (2.1) is a single-valued, comparison mapping as well as Lipschitz continuous.
Lemma 2.15
Let\(A: \mathcal{{H}}_{p} \rightarrow 2^{\mathcal{{H}}_{p}}\)be anα-nonordinary difference comparison mapping with\(\alpha >\frac{1}{ \lambda }\). Then the resolvent operator\(\mathcal{J}^{\lambda }_{A}:\mathcal{ {H}}_{p} \rightarrow {\mathcal{{H}}}_{p} \)is single-valued for all\(\lambda >0\).
Proof
Proof is similar to Proposition 2.15 in [33]. □
Lemma 2.16
Let\(A: \mathcal{{H}}_{p} \rightarrow 2^{\mathcal{{H}}_{p}}\)be an\((\alpha, \lambda )\)-XOR-weak-NODD set-valued mapping with respect to\(\mathcal{J}^{\lambda }_{A}\). Then the resolvent operator\(\mathcal{J}^{\lambda }_{A}: \mathcal{{H}}_{p} \rightarrow {\mathcal{ {H}}}_{p}\)is a comparison mapping.
Proof
Let A be an \((\alpha, \lambda )\)-XOR-weak-NODD set-valued mapping with respect to \(\mathcal{J}^{\lambda }_{A}\). That is, A is α-nonordinary difference and λ-XOR-ordered different weak comparison mapping with respect to \(\mathcal{J}^{\lambda }_{A}\), so that \(p \propto \mathcal{J}^{\lambda }_{A}(p)\). For any \(p, q \in {\mathcal{{H}}}_{p}\), let \(p \propto q\) and
and
Since A is a λ-XOR-ordered different weak comparison mapping, using (2.2) and (2.3), we have
Thus, we have
which implies that
Therefore, the resolvent operator \(\mathcal{J}^{\lambda }_{A}\) is a comparison mapping. □
Lemma 2.17
Let\(A: \mathcal{{H}}_{p} \rightarrow 2^{\mathcal{{H}}_{p}}\)be an\((\alpha, \lambda )\)-XOR-weak-NODD mapping with respect to\(\mathcal{J}^{\lambda }_{A}\)for\(\alpha \lambda > \mu \)and\(\mu \geq 1\). Then the resolvent operator\(\mathcal{J}^{\lambda }_{A}\)satisfies the following condition:
i.e., the resolvent operator\(\mathcal{J}^{\lambda }_{A}\)is\(\frac{\lambda }{(\alpha \lambda \oplus \mu )}\)-Lipschitz type continuous mapping.
Proof
Let \(p, q \in {\mathcal{{H}}}_{p}\), \(u_{p}=\mathcal{J}^{\lambda }_{A}(p)\), \(u_{q} = \mathcal{J}^{\lambda }_{A}(q)\), and let
As A is an \((\alpha, \lambda )\)-XOR-weak-NODD set-valued mapping with respect to \(\mathcal{J}^{\lambda }_{A}\), it follows that A is also an α-nonordinary weak difference mapping with respect to \(\mathcal{J}^{\lambda }_{A}\), we have
and
From (2.4), we have
It follows that \(u_{p} \oplus u_{q} \leq ( \frac{\mu }{(\alpha \lambda \oplus \mu )} ) (p \oplus q)\) and, consequently, we have
Therefore, the resolvent operator \(\mathcal{J}^{\lambda }_{A}\) is a \(\frac{\lambda }{(\alpha \lambda \oplus \mu )}\)-Lipschitz type continuous mapping. □
Proposition 2.18
Let\(g:\mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\)be a strongly comparison andβ-ordered compression mapping. Let\(A: \mathcal{H}_{p}\times \mathcal{H}_{p}\rightarrow 2^{\mathcal{H}_{p}}\)be an\((\alpha, \lambda )\)-XOR-weak-NODD set-valued mapping with respect to the first argument. The resolvent operator\(\mathcal{J} ^{\lambda }_{A}:\mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\)associated withAis defined by
Then, for any given\(z\in \mathcal{H}_{p}\), the resolvent operator\(\mathcal{J}^{\lambda }_{A(\cdot,z)}:\mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\)is well-defined, single-valued, continuous, comparison, and\(\frac{\mu }{(\lambda \alpha \oplus \mu )}\)-nonexpansive mapping with\(\lambda \alpha >\mu \)and\(\mu \geq 1\), that is,
3 Formulation of the problem and iterative algorithm
Let \(\mathcal{H}_{p}\) be a real ordered positive Hilbert space and C be a normal cone with normal constant \(\delta _{N}\). Let \(S,T,U,V:\mathcal{H}_{p}\rightarrow \mathcal{F}(\mathcal{H}_{p})\) be closed fuzzy mappings satisfying the following condition \((*)\), with functions \(a,b,c,d:\mathcal{H}\rightarrow [0,1]\) such that, for each \(p\in \mathcal{H}_{p}\), we have \((S_{p})_{a(p)}\), \((T_{p})_{b(p)}\), \((U _{p})_{c(p)}\), and \((V_{p})_{d(p)}\) in \(CB(\mathcal{H}_{p})\), respectively, and let \(G,g:\mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\) be surjective single-valued mappings. Let \(A:\mathcal{H}_{p}\times \mathcal{H}_{p}\rightarrow 2^{\mathcal{H}_{p}}\) be an \((\alpha, \lambda )\)-XOR-weak-NODD set-valued mapping with respect to the first argument. For a given nonlinear mapping \(N:\mathcal{H}_{p}\times \mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\), we consider a problem of finding \(p,u,v,w,z\in \mathcal{H}_{p}\) such that \(S_{p}(u)\geq a(p)\), \(T_{p}(v)\geq b(p)\), \(U_{p}(w)\geq c(w)\), and \(V_{p}(z)\geq d(z)\), i.e., \(u\in (S_{p})_{a(p)}\), \(v\in (T_{p})_{b(p)}\), \(w\in (U_{p})_{c(p)}\), \(z\in (V_{p})_{d(p)}\),
Problem (3.1) is called nonlinear fuzzy ordered variational inclusion problem involving ⊕ operation.
It is clear that, for suitable choices of mappings involved in the formulation of nonlinear fuzzy ordered variational inclusion problem (3.1), one can obtain many variational inclusion problems studied in recent past, i.e., [17–19, 25].
Putting \(a(p)=b(p)=c(p)=d(p)=1\) for all \(p\in \mathcal{H}_{p}\), problem (3.1) includes many kinds of variational inequalities and variational inclusion problems [17, 19, 22–25].
In support of our problem (3.1), we provide the following examples.
Example 3.1
The continuum of players problem can be obtained from nonlinear fuzzy ordered variational inclusion problem (3.1). For more details, see Chap. 13 and exercise 13.2 of the book “Optima and Equilibria” by Aubin [34] and Example 2.1 in [35].
If we can take \(\mathcal{H}_{p}=\mathbb{R}^{n}_{p}\), \(U=I\) (identity mapping) and T is a single-valued mapping, and the other functions, that is, \(G, S, V, A, g\), are equal to zero. Define \(N:\mathcal{H} _{p}\times \mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\) by
We associate each player with its action \(Q(u,\cdot)\), where \(Q: \mathcal{H}_{p}\times O\rightarrow \mathbb{R}^{n}_{p}\), O is a nonempty subset of \(\mathbb{R}^{n}_{p}\), and each fuzzy coalition \(h(u)\) with its action \(\int _{L}Q(u,T(u))h(u)\,du\).
Example 3.2
Let \(\mathcal{H}_{p}=[0,10]\) and \(C=\{p\in \mathcal{H}_{p}: 0\leq p \leq 4\} \) be the normal cone. Let \(S,T,U,V:\mathcal{H}_{p}\rightarrow \mathcal{F}(\mathcal{H}_{p})\) be the closed fuzzy mappings defined by, for all \(p,q,u,v,w,z\in \mathcal{H}_{p}\):
We define the mappings \(a,b,c,d:\mathcal{H}_{p}\rightarrow [0, 1]\) by
For any \(p\in [0, 1]\), we have
and for any \(p\in (1, 10]\), we have
Now, we define the single-valued mappings \(G,g:\mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\) and \(N:\mathcal{H}_{p}\times \mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\) by
and the set-valued mapping \(A:\mathcal{H}_{p}\times \mathcal{H}_{p} \rightarrow 2^{\mathcal{H}_{p}}\) is defined by
In view of the above, it is easy to verify that \(0\in G(w)\oplus N(u,v)+A(g(p),z)\), that is, problem (3.1) is satisfied.
Related to the nonlinear fuzzy ordered variational inclusion problem (3.1), we consider the following nonlinear fuzzy ordered resolvent equation problem:
Find \(p,q,u,v,w,z\in \mathcal{H}_{p}\) such that \((S_{p})(u)\geq a(p)\), \((T_{p})(v)\geq b(p)\), \((U_{p})(w)\geq c(p)\), and \((V_{p})(z)\geq d(z)\),
where \(\lambda >0\) is a constant and \(\mathcal{R}_{A(\cdot,z)}= [I \oplus \mathcal{J}^{\lambda }_{A(\cdot,z)} ]\).
Now, we establish the equivalence between nonlinear fuzzy ordered variational inclusion problem and nonlinear fuzzy ordered resolvent equation problem.
Lemma 3.3
Assume that\(S,T,U,V:\mathcal{H}_{p}\rightarrow \mathcal{F}( \mathcal{H}_{p})\)are closed fuzzy mappings satisfying the following condition\((*)\), with functions\(a,b,c,d:\mathcal{H}\rightarrow [0,1]\), respectively. Let\(G,g:\mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\)and\(N:\mathcal{H}_{p}\times \mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\)be single-valued mappings. Let\(A:\mathcal{H}_{p}\times \mathcal{H}_{p} \rightarrow 2^{\mathcal{H}}_{p}\)be an\((\alpha,\lambda )\)-XOR-weak-NODD set-valued mapping with respect to the first argument. Then the following are equivalent:
- (i)
\((p,u,v,w,z)\), where\(p,u,v,w,z\in \mathcal{H}_{p}\)such that\(S_{p}(u)\geq a(p)\), \(T_{p}(v)\geq b(p)\), \(U_{p}(w)\geq c(w)\), and\(V_{p}(z)\geq d(z)\)is a solution of problem (3.1);
- (ii)
\(p\in \mathcal{H}_{p}\)is a fixed point of the mapping\(Q:\mathcal{H}_{p}\rightarrow 2^{\mathcal{H}_{p}}\)defined by
$$ Q(p)=G(w)\oplus N(u,v)+A\bigl(g(p),z\bigr)+p; $$(3.3) - (iii)
\((p,u,v,w,z)\), where\(p,u,v,w,z\in \mathcal{H}_{p}\)such that\(S_{p}(u)\geq a(p)\), \(T_{p}(v)\geq b(p)\), \(U_{p}(w)\geq c(w)\), and\(V_{p}(z)\geq d(z)\), is a solution of the following equation:
$$ g(p)=\mathcal{J}^{\lambda }_{A(\cdot,z)}\bigl[g(p)\oplus \lambda \bigl(G(w)\odot N(u,v)\bigr)\bigr]; $$(3.4) - (iv)
\((p,q,u,v,w,z)\), where\(p,u,v,w,z\in \mathcal{H}_{p}\)such that\(S_{p}(u)\geq a(p)\), \(T_{p}(v)\geq b(p)\), \(U_{p}(w)\geq c(w)\), and\(V_{p}(z)\geq d(z)\), is a solution of problem (3.2), where
$$\begin{aligned} \begin{aligned}& q =g(p)\oplus \lambda \bigl(G(w)\odot N(u,v)\bigr), \\ &g(p) =\mathcal{J}^{\lambda }_{A(\cdot,z)}(q). \end{aligned} \end{aligned}$$(3.5)
Proof
(i) ⇒ (ii) Adding p to both sides of (3.1), we have
Hence, a is a fixed point of Q.
(ii) ⇒ (iii) Let p be a fixed point of Q, then
Hence \(g(p)=\mathcal{J}^{\lambda }_{A(\cdot,z)}[g(p)\oplus \lambda (G(w) \odot N(u,v))]\).
(iii) ⇒ (iv) Taking \(q=g(p)\oplus \lambda (G(w)\odot N(u,v))\), from (3.4), we have \(g(p)=\mathcal{J}^{\lambda }_{A(\cdot,z)}(q)\), so
which implies that
Consequently, \((p,q,u,v,w,z)\) is a solution of the fuzzy resolvent equation problem (3.2).
(iv) ⇒ (i), from (3.5) we have
i.e.,
so
which implies
Therefore, \((p,u,v,w,z)\), where \(p\in \mathcal{H}_{p}\) such that \(S_{p}(u)\geq a(p)\), \(T_{p}(v)\geq b(p)\), \(U_{p}(w)\geq c(w)\), and \(V_{p}(z)\geq d(z)\) is a solution of problem (3.1). □
Based on Lemma 3.3, we construct an iterative algorithm for finding approximate solutions of problem (3.1).
Iterative Algorithm 3.4
Let \(S,T,U,V:\mathcal{H}_{p}\rightarrow \mathcal{F}(\mathcal{H}_{p})\) be the closed fuzzy mappings satisfying the following condition \((*)\), with functions \(a,b,c,d:\mathcal{H}\rightarrow [0,1]\), respectively. Let \(G,g:\mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\) and \(N:\mathcal{H} _{p}\times \mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\) be single-valued mappings. Let \(A:\mathcal{H}_{p}\times \mathcal{H}_{p}\rightarrow 2^{ \mathcal{H}_{p}}\) be an \((\alpha,\lambda )\)-XOR-weak-NODD set-valued mapping with respect to the first argument. We assume that g is surjective. For any given \(p_{0},q_{0}\in \mathcal{H}_{p}\), \(u_{0}\in (S_{p_{0}})_{a(p_{0})} \), \(v_{0}\in (T_{p_{0}})_{b(p_{0})} \), \(w_{0}\in (U_{p_{0}})_{c(p_{0})}\), and \(z_{0}\in (V_{p_{0}})_{d(p _{0})}\), let
Since g is surjective, there exists \(p_{1}\in \mathcal{H}_{p}\) such that
On the other hand, by Nadler [36], there exist \(u_{1}\in (S _{p_{1}})_{a(p_{1})} \), \(v_{0}\in (T_{p_{1}})_{b(p_{1})} \), \(w_{0}\in (U_{p_{1}})_{c(p_{1})}\), and \(z_{1}\in (V_{p_{1}})_{d(p_{1})}\), and suppose that \(p_{0}\propto p _{1}\), \(u_{0}\propto u_{1}\), \(v_{0}\propto v_{1}\), \(w_{0}\propto w _{1}\), and \(z_{0}\propto z_{1}\) such that
Let
Since g is surjective, there exists \(p_{2}\in \mathcal{H}_{p}\) such that
On the other hand, by Nadler [36], there exist \(u_{2}\in (S _{p_{2}})_{a(p_{2})} \), \(v_{2}\in (T_{p_{2}})_{b(p_{2})} \), \(w_{2}\in (U_{p_{2}})_{c(p_{2})}\), and \(z_{2}\in (V_{p_{2}})_{d(p_{2})}\), and suppose that \(p_{1}\propto p _{2}\), \(u_{1}\propto u_{2}\), \(v_{1}\propto v_{2}\), \(w_{1}\propto w _{2}\), and \(z_{1}\propto z_{2}\) such that
Continuing the above process inductively with the supposition that \(p_{n+1}\propto p_{n}\), \(u_{n+1}\propto u_{n}\), \(v_{n+1}\propto v_{n}\), \(w_{n+1}\propto w_{n}\), and \(z_{n+1}\propto z_{n}\), for all \(n=0,1,2,\ldots \) ,
4 Main results
In this section, we prove an existence and convergence result for nonlinear fuzzy ordered variational inclusion problem (3.1) and its corresponding nonlinear fuzzy ordered resolvent equation problem (3.2).
Theorem 4.1
Let\(\mathcal{H}_{p}\)be a real ordered positive Hilbert space andCbe a normal cone with normal constant\(\delta _{N}\). Let\(S,T,U,V:\mathcal{H}_{p}\rightarrow \mathcal{F}(\mathcal{H}_{p})\)be the closed fuzzy mappings satisfying condition\((*)\), with functions\(a,b,c,d:\mathcal{H}\rightarrow [0,1]\), respectively. Let\(G,g: \mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\)and\(N:\mathcal{H}_{p} \times \mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\)be the single-valued mappings. Let\(A:\mathcal{H}_{p}\times \mathcal{H}_{p}\rightarrow 2^{ \mathcal{H}_{p}}\)be an\((\alpha,\lambda )\)-XOR-weak-NODD set-valued mapping with respect to the first argument. Suppose that the following conditions hold:
- (i)
Gis comparison and\(\lambda _{G}\)-ordered compression mapping, \(\lambda _{G}\in (0,1)\);
- (ii)
gis comparison and\(\lambda _{g}\)-ordered compression mapping, \(\lambda _{g}\in (0,1)\);
- (iii)
Nis comparison and\((\kappa, \nu )\)-ordered Lipschitz continuous mapping;
- (iv)
\(S, T, U\), andVare ordered Lipschitz type continuous mappings with constants\(\lambda _{D_{S}}\), \(\lambda _{D_{T}}\), \(\lambda _{D_{U}}\), and\(\lambda _{D_{V}}\), respectively.
If the following conditions
are satisfied, then there exist\(p,q\in \mathcal{H}_{p}\)such that\(u\in (S_{p})_{a(p)}\), \(v\in (T_{p})_{b(p)}\), \(w\in (U_{p})_{c(p)}\), and\(z\in (V_{p})_{d(p)}\)satisfying the nonlinear fuzzy ordered resolvent equation equation (3.2), and so\((p,u,v,w,z)\)is a solution of the nonlinear fuzzy ordered variational inclusion problem (3.1), and the iterative sequences\(\{p_{n}\}\), \(\{u_{n}\}\), \(\{v_{n}\}\), \(\{w_{n}\}\), and\(\{z_{n}\}\)generated by Algorithm3.4converge strongly to\(p,v,u,w\), andzin\(\mathcal{H}_{p}\), respectively.
Proof
Since g is a \(\lambda _{g}\)-ordered compression mapping, V is a \(\lambda _{D_{V}}\)-ordered Lipschitz continuous mapping. By Algorithm 3.4, Proposition 2.7, and Proposition 2.18, we have
Since G is a \(\lambda _{G}\)-ordered compression mapping, \(N(\cdot,\cdot)\) is a \((\kappa,\nu )\)-ordered Lipschitz continuous and g is a \(\lambda _{G}\)-ordered compression mapping and D-Lipschitz continuous of \(T, U\), and V with constants \(\lambda _{D_{T}}, \lambda _{D_{U}}\), and \(\lambda _{D_{V}}\). Using Proposition 2.7, we have
where
Letting
By condition (4.1), we have \(0< \varOmega <1\), thus \(\{p_{n}\}\) is a Cauchy sequence in \(\mathcal{H}_{p}\) and as \(\mathcal{H}_{p}\) is complete, there exists \(p\in \mathcal{H}_{p}\) such that \(p_{n}\rightarrow p\) as \(n\rightarrow \infty \). From (3.6) of Algorithm 3.4 and D-Lipschitz continuity of S, T, U, and V, we have
It is clear from (4.5)–(4.8) that \(\{u_{n}\}\), \(\{v_{n}\}\), \(\{w_{n}\}\), and \(\{z_{n}\}\) are also Cauchy sequences in \(\mathcal{H}_{p}\), so there exist u, v, w, and z in \(\mathcal{H}_{p}\) such that \(u_{n}\rightarrow u\), \(v_{n}\rightarrow v\), \(w_{n}\rightarrow w\), and \(z_{n}\rightarrow z\) as \(n\rightarrow \infty \). By using the continuity of the operators S, T, U, V, \(\mathcal{J}^{\lambda }_{A(\cdot,z)}\) and iterative Algorithm 3.4, we have
which implies that
By Lemma 3.3, we conclude that \((p,u,v,w,z)\) is a solution of problem (3.1). It remains to show that \(u\in (S_{p})_{a(p)}\), \(v\in (T_{p})_{b(p)}\), \(w\in (U_{p})_{c(p)}\), and \(z\in (V_{p})_{d(p)}\). Using Proposition 2.8, in fact
Hence \(u\in (S_{p})_{a(p)}\). Similarly, we can show that \(v\in (T_{p})_{b(p)}\), \(w\in (U_{p})_{c(p)}\), and \(z\in (V_{p})_{d(p)}\). This completes the proof. □
Taking \(\beta =1\) in Algorithm 3.4, we can also prove the existence and convergence result for nonlinear fuzzy ordered variational inclusion problem (3.1) and nonlinear fuzzy ordered resolvent equation problem (3.2).
Theorem 4.2
Let\(S,T,U,V:\mathcal{H}_{p}\rightarrow \mathcal{F}(\mathcal{H}_{p})\)be the closed fuzzy mappings satisfying the following condition\((*)\), with functions\(a,b,c,d:\mathcal{H}\rightarrow [0,1]\), respectively. Let\(G,g:\mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\)and\(N:\mathcal{H} _{p}\times \mathcal{H}_{p}\rightarrow \mathcal{H}_{p}\)be the single-valued mappings. Let\(A:\mathcal{H}_{p}\times \mathcal{H}_{p} \rightarrow 2^{\mathcal{H}_{p}}\)be an\((\alpha,\lambda )\)-XOR-weak-NODD set-valued mapping with respect to the first argument. Suppose that the following conditions hold:
- (i)
Gis comparison and\(\lambda _{G}\)-ordered compression mapping, \(\lambda _{G}\in (0,1)\);
- (ii)
gis comparison and\(\lambda _{g}\)-ordered compression mapping, \(\lambda _{g}\in (0,1)\);
- (iii)
Nis comparison and\((\kappa, \nu )\)-ordered Lipschitz continuous mapping;
- (iv)
\(S, T, U\), andVare ordered Lipschitz type continuous mappings with constants\(\lambda _{D_{S}}\), \(\lambda _{D_{T}}\), \(\lambda _{D_{U}}\), and\(\lambda _{D_{V}}\), respectively.
For given\(p_{0}\in \mathcal{H}\), let the sequences\(p_{n}\), \(u_{n}\), \(v_{n}\), \(w_{n}\), and\(z_{n}\)defined by the following schemes:
If the following conditions
are satisfied, then there exist\(p,q\in \mathcal{H}_{p}\)such that\(u\in (S_{p})_{a(p)}\), \(v\in (T_{p})_{b(p)}\), \(w\in (U_{p})_{c(p)}\), and\(z\in (V_{p})_{d(p)}\)satisfying the generalized nonlinear mixed ordered fuzzy resolvent equation (3.2), and so\((p,u,v,w,z)\)is a solutions of the generalized nonlinear mixed ordered fuzzy variational inclusion problem (3.1), and the iterative sequences\(\{p_{n}\}\), \(\{u_{n}\}\), \(\{v_{n}\}\), \(\{w_{n}\}\), and\(\{z_{n}\}\)generated by Algorithm3.4converge strongly to\(p,v,u,w\)andzin\(\mathcal{H}_{p}\), respectively.
5 Conclusion
The aim of this paper is to introduce a resolvent operator, and we demonstrate some of its properties. The resolvent operator is used to define an iterative algorithm for solving a nonlinear fuzzy ordered variational inclusion problem and its corresponding nonlinear fuzzy ordered resolvent equation problem based on XOR operator in real ordered positive Hilbert spaces. Some preliminary results are proved to obtain the main result. We prove the convergence analysis of our proposed iterative algorithm which assumes that the suggested algorithm converges to a unique solution of our considered problem with some consequence. Our results extend and generalize most of the results involving fuzzy mappings of different authors existing in the literature.
References
Amann, H.: On the number of solutions of nonlinear equations in ordered Banach spaces. J. Funct. Anal. 11, 346–384 (1972)
Farajzadeh, A.P., Amini-Harandi, A., Kazmi, K.R.: Existence of solutions to generalized vector variational-like inequalities. J. Optim. Theory Appl. 146(1), 95–104 (2010)
Farajzadeh, A.P., Noor, M.A., Noor, K.I.: Vector nonsmooth variational-like inequalities and optimization problems. Nonlinear Anal. 71(7–8), 3471–3476 (2010)
Farajzadeh, A.P., Amini-Harandi, A., Noor, M.A.: On the generalized vector f-implicit complementarity problems and vector F-implicit variational inequality problems. Math. Commun. 12(2007), 203–211 (2007)
Hassouni, A., Moudafi, A.: A perturbed algorithms for variational inclusions. J. Math. Anal. Appl. 185(3), 706–712 (1994)
Farajzadeh, A.P., Amini-Harandi, A., O’Regan, D., Agarwal, R.P.: New kinds of generalized variational-like inequality problems in topological vector spaces. Appl. Math. Lett. 22(7), 1126–1129 (2009)
Khan, A.A., Tammer, C., Zalinescu, C.: Set-Valued Optimization: An Introduction with Applications. Springer, Berlin (2015)
Attouch, H., Thera, M.: A general duality principle for the sum of two operators. J. Convex Anal. 3, 1–24 (1996)
Attouch, H.: Variational Convergence for Functions and Operators. Pitman, Boston (1984)
Chang, S.S., Zhu, Y.: On variational inequalities for fuzzy mappings. Fuzzy Sets Syst. 32(3), 359–367 (1989)
Chang, S.S.: Fuzzy quasi-variational inclusions in Banach spaces. Appl. Math. Comput. 145(2–3), 805–819 (2003)
Dai, H.X.: Generalized mixed variational-like inequalities with fuzzy mappings. J. Comput. Appl. Math. 224(1), 20–28 (2009)
Huang, N.J.: A new method for a class of nonlinear variational inequalities with fuzzy mappings. Appl. Math. Lett. 10(6), 129–133 (1997)
Kumam, P., Petrot, N.: Mixed variational-like inequality for fuzzy mappings in reflexive Banach spaces. J. Inequal. Appl. 2009, 15 (2009). https://doi.org/10.1155/2009/209485
Noor, M.A., Noor, K.I.: Multivalued variational inequalities and resolvent equations. Math. Comput. Model. 27(7), 109–121 (1997)
Verma, R.U.: Projection methods, algorithm and a new system of nonlinear variational inequalities. Comput. Math. Appl. 41(7–8), 1025–1031 (2001)
Li, H.G.: A nonlinear inclusion problem involving \((\alpha,\lambda )\)-NODM set-valued mappings in ordered Hilbert space. Appl. Math. Lett. 25, 1384–1388 (2012)
Li, H.G.: Approximation solution for generalized nonlinear ordered variational inequality and ordered equation in ordered Banach space. Nonlinear Anal. Forum 13(2), 205–214 (2008)
Li, H.G.: Nonlinear inclusion problems for ordered RME set-valued mappings in ordered Hilbert spaces. Nonlinear Funct. Anal. Appl. 16(1), 1–8 (2011)
Ahmad, I., Pang, C.T., Ahmad, R., Ishtyak, M.: System of Yosida inclusions involving XOR operator. J. Nonlinear Convex Anal. 18(5), 831–845 (2017)
Ahmad, I., Ahmad, R., Iqbal, J.: A resolvent approach for solving a set-valued variational inclusion problem using weak-RRD set-valued mapping. Korean J. Math. 24(2), 199–213 (2016)
Ahmad, I., Rahaman, M., Ahmad, R., Ali, I.: Convergence analysis and stability of perturbed three-step iterative algorithm for generalized mixed ordered quasi-variational inclusion involving XOR operator. Optimization (2019). https://doi.org/10.1080/02331934.2019.1652910
Li, H.G., Li, L.P., Jin, M.M.: A class of nonlinear mixed ordered inclusion problems for ordered \((\alpha _{A}, \lambda )\)-ANODM set-valued mappings with strong comparison mapping A. Fixed Point Theory Appl. 2014, 79 (2014)
Li, H.G., Qiu, Z., Zou, Y.: Characterizations of weak- ANODD set-valued mappings with applications to approximate solution of GNMOQV inclusions involving ⊕ operator in ordered Banach spaces. Fixed Point Theory Appl. (2013). https://doi.org/10.1186/1687-1812-2013-241
Li, H.G., Yang, Y., Jin, M.M., Zhang, Q.: Stability for a new class of GNOVI with \((\gamma _{G}, \lambda )\)-weak-GRD mapping in positive Hilbert spaces. Math. Probl. Eng. 2016, 9217091 (2016). https://doi.org/10.1155/2016/9217091
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Ding, X.P., Park, J.Y.: A new class of generalized nonlinear implicit quasi-variational inclusions with fuzzy mappings. J. Comput. Math. Appl. 138(2), 243–257 (2002)
Ahmad, R., Dilshad, M.: Fuzzy resolvent equation with \(\mbox{H}(\cdot,\cdot)\)-η-ϕ-accretive operator in Banach spaces. Iran. J. Fuzzy Syst. 12(2), 95–106 (2015)
Ding, X.D.: Algorithm of solution for mixed implicit quasi-variational inequalities with fuzzy mappings. Comput. Math. Appl. 38(5–6), 231–241 (1999)
Zimmerann, H.J.: Fuzzy Set Theory and Its Applications. Kluwer Acad. Publ., Dordrecht (1988)
Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)
Du, Y.H.: Fixed points of increasing operators in ordered Banach spaces and applications. Appl. Anal. 38(1–2), 1–20 (1990)
Ahmad, I., Pang, C.T., Ahmad, R., Ali, I.: A new resolvent operator approach for solving a general variational inclusion problem involving XOR operation with convergence and stability analysis. Linear Nonlinear Anal. 4(3), 413–430 (2018)
Aubin, J.P.: Optima and Equilibria, 2nd edn. Springer, Berlin (1998)
Ahmad, R., Farajzadeh, A.P.: On random variational inclusions with random fuzzy mappings and random relaxed cocoercive mappings. Fuzzy Sets Syst. 160(21), 3166–3174 (2009)
Nadler, S.B.: Multi-valued contraction mappings. Pac. J. Math. 30(2), 475–488 (1969)
Acknowledgements
We are grateful for the comments and suggestions of the reviewers and the editor, which improved the paper a lot. The first three authors are thankful to the Deanship of Scientific Research, Qassim University, Saudi Arabia, for technical and financial support of the research project under grant number 3626-qec-2018-1-14-S. The last author is thankful to Office of Doctoral Studies and Research, Integral University, Lucknow, India, for manuscript communication number (MCN) is 1U/R20/2019-MCN000733.
Availability of data and materials
Not applicable.
Funding
The research was supported by the Deanship of Scientific Research, Qassim University, Saudi Arabia under grant number 3626-qec-2018-1-14-S.
Author information
Authors and Affiliations
Contributions
The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Ahmad, I., Irfan, S.S., Farid, M. et al. Nonlinear ordered variational inclusion problem involving XOR operation with fuzzy mappings. J Inequal Appl 2020, 36 (2020). https://doi.org/10.1186/s13660-020-2308-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-020-2308-z