Skip to main content

New estimations for the Berezin number inequality

Abstract

In this paper, by the definition of Berezin number, we present some inequalities involving the operator geometric mean. For instance, it is shown that if \(X, Y, Z\in {\mathcal{L}}(\mathcal{H})\) such that X and Y are positive operators, then

$$\begin{aligned} \operatorname{ber}^{r} \bigl( ( X\mathbin{\sharp} Y ) Z \bigr) &\leq \operatorname{ber} \biggl(\frac{ ( Z^{\star }YZ ) ^{\frac{rq}{2}}}{q}+ \frac{X^{ \frac{rp}{2}}}{p} \biggr) -\frac{1}{p}\inf_{\lambda \in \varOmega } \bigl( \bigl[ \widetilde{X} ( \lambda ) \bigr] ^{\frac{rp}{4}}- \bigl[ \widetilde{ \bigl( Z^{\star }YZ \bigr) } ( \lambda ) \bigr] ^{ \frac{rq}{4}} \bigr) ^{2}, \end{aligned}$$

in which \(X\mathbin{\sharp} Y=X^{\frac{1}{2}} ( X^{-\frac{1}{2}}YX^{- \frac{1}{2}} ) ^{\frac{1}{2}}X^{\frac{1}{2}}\), \(p\geq q>1\) such that \(r\geq \frac{2}{q}\) and \(\frac{1}{p}+\frac{1}{q}=1\).

1 Introduction and preliminaries

We denote the \(C^{*}\)-algebra of all bounded linear operators on a separable complex Hilbert space \({\mathcal{H}}\) with \(\mathcal{L} ( \mathcal{H} ) \). An operator \(X\in \mathcal{L} ( \mathcal{H} ) \) is called positive if \(\langle Xx,x\rangle \geq 0\) for every \(x\in {\mathcal{H} }\), and in this case we write \(X\geq 0\). The numerical range and numerical radius of \(X\in \mathcal{L} ( \mathcal{H} ) \) are respectively defined by \(W ( X ) := \{ \langle Xf,f \rangle :f \in \mathcal{H}, \Vert f \Vert =1 \}\) and \(w ( X ) :=\sup \{ \vert f \vert :f \in W ( X ) \} \). We denote by \(\mathcal{F} ( \varOmega ) \) the set of all complex-valued functions on a nonempty set Ω. Let \(\mathcal{H}=\mathcal{H} ( \varOmega ) \subset \mathcal{F} ( \varOmega ) \) be a Hilbert space. The Riesz representation theorem makes certain that a functional Hilbert space has a reproducing kernel, which is a function \(k_{\lambda }:\varOmega \times \varOmega \rightarrow \mathcal{H}\), that is called the reproducing kernel enjoying the reproducing property \(k_{\lambda }:=k ( \cdot, \lambda ) \in \mathcal{H}\) (\(\lambda \in \varOmega \)) such that \(f(\lambda )= \langle f,k_{\lambda } \rangle _{\mathcal{H}}\), in which \(\lambda \in \varOmega \) and \(f\in \mathcal{H}\) (see [18]). For \(\{ \xi _{n} ( z ) \} _{n \geq 0}\), an orthonormal basis of the space \(\mathcal{H} ( \varOmega ) \), the reproducing kernel can be presented as follows:

$$ k_{\lambda } ( z ) =\sum_{n=0}^{\infty } \overline{ \xi _{n} ( \lambda ) }\xi _{n} ( z ) $$

(see [2, 18] and the references therein). Throughout the paper, \(\mathcal{H}=\mathcal{H}(\varOmega )\) for some nonempty set Ω. If \(X\in \mathcal{L}(\mathcal{H})\), then the Berezin symbol of X is the function with

$$ \widetilde{X}(\mu ):= \langle X\widehat{k}_{\mu },\widehat{k} _{\mu } \rangle _{\mathcal{H}} \quad (\mu \in \varOmega ), $$

where \(\widehat{k}_{\lambda }=\frac{k_{\lambda }}{ \Vert k_{ \lambda } \Vert }\) is the normalized reproducing kernel of \(\mathcal{H}\) (see [7]). Karaev in [1315] defined the Berezin set and the Berezin number for operator X as follows:

$$ \operatorname{Ber} ( X ) := \bigl\{ \widetilde{X} ( \lambda ) :\lambda \in \varOmega \bigr\} \quad \text{and} \quad \operatorname{ber} ( X ) :=\sup \bigl\{ \bigl\vert \widetilde{X} ( \lambda ) \bigr\vert :\lambda \in \varOmega \bigr\} , $$

respectively. Moreover, the Berezin number of two operators X, Y satisfies the following properties:

  1. (i)

    \(\operatorname{ber} ( \nu X ) =|\nu | \operatorname{ber} ( X ) \) for all \(\nu \in \mathcal{C}\);

  2. (ii)

    \(\operatorname{ber} ( X+Y ) \leq \operatorname{ber} ( X ) +\operatorname{ber} ( X ) \).

Also, we know that

$$ \operatorname{ber} ( X ) \leq w ( X ) \leq \Vert X \Vert $$

for all \(X\in \mathcal{L} ( \mathcal{H} ) \). In some recent papers, several Berezin number inequalities have been investigated by authors [36, 9, 10, 12, 21, 22].

Assume that \(X_{1},\ldots,X_{n}\in \mathcal{L} ( \mathcal{H} ) \) and \(p\geq 1\). In [3], the generalized Euclidean Berezin number of \(X_{1},\ldots ,X_{n}\) is defined as follows:

$$ \mathbf{ber}_{p}(X_{1},\ldots ,X_{n}):= \sup_{\lambda \in \varOmega } \Biggl(\sum_{i=1}^{n} \bigl\vert \langle X_{i}\hat{k}_{\lambda },\hat{k} _{\lambda }\rangle \bigr\vert ^{p} \Biggr)^{\frac{1}{p}}. $$

If \(p,q>1\) with \(\frac{1}{p}+\frac{1}{q}=1\), then the Young inequality is the inequality

$$ xy\leq \frac{x^{p}}{p}+\frac{y^{q}}{q}, $$
(1)

where x and y are positive real numbers (see [11]). A refinement of (1) was obtained by Kittaneh and Manasrah [17]

$$ xy+r_{0} \bigl( x^{\frac{p}{2}}-y^{\frac{q}{2}} \bigr) ^{2}\leq \frac{x ^{p}}{p}+\frac{y^{q}}{q}, $$
(2)

where \(r_{0}=\min \{ \frac{1}{p},\frac{1}{q} \} \) or equivalently

$$ x^{\nu }y^{1-\nu }+r_{0} \bigl(x^{\frac{1}{2}}-y^{\frac{1}{2}}\bigr)^{2}\leq \nu x+(1-\nu )y, $$
(3)

in which \(\nu \in [0,1]\) and \(r_{0}=\min \{\nu ,1-\nu \}\).

For positive operators \(X,Y\in \mathcal{L} ( \mathcal{H} ) \), the operator geometric mean is the positive operator \(X\mathbin{\sharp} Y=X ^{\frac{1}{2}} ( X^{-\frac{1}{2}}YX^{-\frac{1}{2}} ) ^{ \frac{1}{2}}X^{\frac{1}{2}} \), where it has the property \(X\mathbin{\sharp} Y=Y \mathbin{\sharp} X\). A matrix mean inequality was established by Bhatia and Kittaneh in [8], and later this inequality was generalized in [18]. A matrix Young inequality was obtained by Ando in [1]. The matrix mean inequality and the matrix Young inequality were considered with the numerical radius norm by Salemi and Sheikhhosseini in [19, 20].

In this paper, we get some upper bounds for the Berezin number of the \(( X\mathbin{\sharp} Y ) Z\) on reproducing kernel Hilbert spaces (RKHS), where \(Z\in \mathcal{L} ( \mathcal{H} ) \) is arbitrary, and give some Berezin number inequalities. We also present some inequalities for the generalized Euclidean Berezin number.

2 Main results

We need the following lemma to prove our results (see [16]).

Lemma 1

Let\(X\in \mathcal{L} ( \mathcal{H} ) \)be a positive operator, and let\(x\in \mathcal{H}\)be any unit vector. If\(r\geq 1\), then

$$ \langle Xx,x \rangle ^{r}\leq \bigl\langle X^{r}x,x \bigr\rangle $$
(4)

and if\(0\leq r\leq 1\), then

$$ \bigl\langle X^{r}x,x \bigr\rangle \leq \langle Xx,x \rangle ^{r}. $$

Before giving our next result, we set \(\Vert X \Vert _{ \operatorname{ber}}:=\sup \{ \vert \langle X \widehat{k}_{\lambda },\widehat{k}_{\mu } \rangle \vert : \lambda ,\mu \in \varOmega \} \) and \(m ( X ) := \inf_{\lambda \in \varOmega } \vert \widetilde{X} ( \lambda ) \vert \).

Theorem 2

Let\(X,Y,Z\in \mathcal{L} ( \mathcal{H} ) \)be operators such thatX, Yare positive. If\(p\geq q>1\)with\(\frac{1}{p}+ \frac{1}{q}=1\), then

$$ \operatorname{ber}^{r} \bigl( ( X\mathbin{\sharp} Y ) Z \bigr) \leq \operatorname{ber} \biggl( \frac{X^{\frac{rp}{2}}}{p}+\frac{ ( Z^{\star }YZ ) ^{\frac{rq}{2}}}{q} \biggr) - \frac{1}{p} \inf_{\lambda \in \varOmega } \bigl( \bigl[ \widetilde{X} ( \lambda ) \bigr] ^{\frac{rp}{4}}- \bigl[ \widetilde{ \bigl( Z^{\star }YZ \bigr) } ( \lambda ) \bigr] ^{ \frac{rq}{4}} \bigr) ^{2} $$

for all\(r\geq \frac{2}{q}\).

Proof

Using the Cauchy–Schwarz inequality, we get

$$\begin{aligned} \bigl\vert \widetilde{ ( X\mathbin{\sharp} Y ) Z } ( \lambda ) \bigr\vert ^{r} & = \bigl\vert \widetilde{ \bigl( X^{\frac{1}{2}} \bigl( X^{\frac{-1}{2}}YX^{\frac{-1}{2}} \bigr) ^{\frac{1}{2}}X^{\frac{1}{2}}Z \bigr) } ( \lambda ) \bigr\vert ^{r} \\ & = \bigl\vert \bigl\langle \bigl( X^{\frac{-1}{2}}YX^{ \frac{-1}{2}} \bigr) ^{\frac{1}{2}}X^{\frac{1}{2}}Z\widehat{k}_{ \lambda },X^{\frac{1}{2}} \widehat{k}_{\lambda } \bigr\rangle \bigr\vert ^{r} \\ & \leq \bigl\Vert \bigl( X^{\frac{-1}{2}}YX^{\frac{-1}{2}} \bigr) ^{\frac{1}{2}}X^{\frac{1}{2}}Z\widehat{k}_{\lambda } \bigr\Vert ^{r}\cdot \bigl\Vert X^{\frac{1}{2}}\widehat{k}_{\lambda } \bigr\Vert ^{r} \\ & = \bigl\langle \bigl( X^{\frac{-1}{2}}YX^{\frac{-1}{2}} \bigr) ^{\frac{1}{2}}X^{\frac{1}{2}}Z\widehat{k}_{\lambda }, \bigl( X^{ \frac{-1}{2}}YX^{\frac{-1}{2}} \bigr) ^{\frac{1}{2}}X^{\frac{1}{2}}Z \widehat{k}_{\lambda } \bigr\rangle ^{\frac{r}{2}} \times \bigl\langle X^{\frac{1}{2}}\widehat{k}_{\lambda },X ^{\frac{1}{2}}\widehat{k}_{\lambda } \bigr\rangle ^{\frac{r}{2}} \\ & = \bigl( \widetilde{Z^{\star }YZ} ( \lambda ) \bigr) ^{\frac{r}{2}} \bigl( \widetilde{X} ( \lambda ) \bigr) ^{\frac{r}{2}} \end{aligned}$$

for all \(\lambda \in \varOmega \). By using the Young inequality and (2), we get

$$\begin{aligned} \bigl( \widetilde{X} ( \lambda ) \bigr) ^{ \frac{r}{2}} \bigl( \widetilde{Z^{\star }YZ} ( \lambda ) \bigr) ^{\frac{r}{2}} & \leq \frac{1}{p} \langle X\widehat{k}_{\lambda },\widehat{k} _{\lambda } \rangle ^{\frac{rp}{2}}+\frac{1}{q} \bigl\langle Z ^{\star }YZ\widehat{k}_{\lambda },\widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{2}} \\ &\qquad {} -\frac{1}{p} \bigl( \langle X\widehat{k}_{\lambda }, \widehat{k}_{\lambda } \rangle ^{\frac{rp}{4}}- \bigl\langle Z ^{\star }YZ\widehat{k}_{\lambda },\widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{4}} \bigr) ^{2}, \end{aligned}$$

and it follows from inequality (4) that

$$\begin{aligned} & \frac{1}{p} \langle X\widehat{k}_{\lambda }, \widehat{k}_{ \lambda } \rangle ^{\frac{rp}{2}}+\frac{1}{q} \bigl\langle Z ^{\star }YZ\widehat{k}_{\lambda },\widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{2}}-\frac{1}{p} \bigl( \langle X \widehat{k}_{\lambda },\widehat{k}_{\lambda } \rangle ^{\frac{rp}{4}}- \bigl\langle Z ^{\star }YZ\widehat{k}_{\lambda }, \widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{4}} \bigr) ^{2} \\ &\quad \leq \frac{1}{p} \bigl\langle X^{\frac{rp}{2}} \widehat{k}_{\lambda },\widehat{k}_{\lambda } \bigr\rangle + \frac{1}{q} \bigl\langle \bigl( Z^{\star }YZ \bigr) ^{\frac{rq}{2}}\widehat{k}_{\lambda }, \widehat{k}_{\lambda } \bigr\rangle \\ &\qquad {} -\frac{1}{p} \bigl( \langle X\widehat{k}_{\lambda }, \widehat{k}_{\lambda } \rangle ^{\frac{rp}{4}}- \bigl\langle Z ^{\star }YZ\widehat{k}_{\lambda },\widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{4}} \bigr) ^{2} \\ &\quad = \biggl\langle \biggl( \frac{X^{\frac{rp}{2}}}{p}+\frac{ ( Z ^{\star }YZ ) ^{\frac{rq}{2}}}{q} \biggr) \widehat{k}_{\lambda },\widehat{k}_{\lambda } \biggr\rangle - \frac{1}{p} \bigl( \langle X \widehat{k}_{\lambda }, \widehat{k}_{\lambda } \rangle ^{ \frac{rp}{4}}- \bigl\langle Z^{\star }YZ\widehat{k}_{\lambda }, \widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{4}} \bigr) ^{2} \end{aligned}$$

for all \(\lambda \in \varOmega \). Since \(\widetilde{ ( \frac{X^{\frac{rp}{2}}}{p}+\frac{ ( Z^{\star }YZ ) ^{\frac{rq}{2}}}{q} ) } ( \lambda ) \) is positive, then we have

$$\begin{aligned} &\sup_{\lambda \in \varOmega } \bigl\vert \widetilde{ ( X\mathbin{\sharp} Y )Z } ( \lambda ) \bigr\vert ^{r} \\ &\quad \leq \sup_{\lambda \in \varOmega }\widetilde{ \biggl( \frac{X^{\frac{rp}{2}}}{p}+ \frac{ ( Z^{\star }YZ ) ^{\frac{rq}{2}}}{q} \biggr) } ( \lambda ) - \frac{1}{p}\inf _{\lambda \in \varOmega } \bigl( \bigl[ \widetilde{X} ( \lambda ) \bigr] ^{\frac{rp}{4}}- \bigl[ \widetilde{ \bigl( Z^{\star }YZ \bigr) } ( \lambda ) \bigr] ^{ \frac{rq}{4}} \bigr) ^{2} \end{aligned}$$

for all \(\lambda \in \varOmega \). This implies that

$$\begin{aligned} \operatorname{ber}^{r} \bigl( ( X\mathbin{\sharp} Y ) Z \bigr) \leq \operatorname{ber} \biggl( \frac{X ^{\frac{rp}{2}}}{p}+ \frac{ ( Z^{\star }YZ ) ^{\frac{rq}{2}}}{q} \biggr) -\frac{1}{p}\inf_{\lambda \in \varOmega } \bigl( \bigl[ \widetilde{X} ( \lambda ) \bigr] ^{\frac{rp}{4}}- \bigl[ \widetilde{ \bigl( Z^{\star }YZ \bigr) } ( \lambda ) \bigr] ^{ \frac{rq}{4}} \bigr) ^{2}. \end{aligned}$$
(5)

 □

Taking the \(Z=I\) in inequality (5), we have the following result.

Corollary 3

Let\(X,Y\in \mathcal{L} ( \mathcal{H} ) \)be positive operators, and let\(p\geq q>1\)with\(\frac{1}{p}+\frac{1}{q}=1\). Then

$$ \operatorname{ber}^{r} ( X\mathbin{\sharp} Y ) \leq \operatorname{ber} \biggl( \frac{X^{\frac{rp}{2}}}{p}+\frac{Y^{ \frac{rq}{2}}}{q} \biggr) -\frac{1}{p}\inf _{\lambda \in \varOmega } \bigl( \bigl[ \widetilde{X} ( \lambda ) \bigr] ^{\frac{rp}{4}}- \bigl[ \widetilde{ Y } ( \lambda ) \bigr] ^{\frac{rq}{4}} \bigr) ^{2} $$

for all\(r\geq \frac{2}{q}\).

Corollary 4

Let\(X,Y\in \mathcal{L} ( \mathcal{H} ) \)be positive operators. Then

$$ \sqrt{2}\operatorname{ber} ( X\mathbin{\sharp} Y ) \leq \operatorname{ber}_{2} ( X,Y ) \leq \operatorname{ber}^{ \frac{1}{2}} \bigl( X^{2}+Y^{2} \bigr). $$

Proof

As in the same arguments in the proof of Theorem 2, if we put \(r=p=q=2\), then we get

$$\begin{aligned} \bigl\vert \widetilde{ ( X\mathbin{\sharp} Y ) } ( \lambda ) \bigr\vert & \leq \frac{1}{2} \bigl( \bigl[ \widetilde{X} ( \lambda ) \bigr] ^{2}+ \bigl[ \widetilde{Y} ( \lambda ) \bigr] ^{2} \bigr) \\ & \leq \frac{1}{2} \bigl( \widetilde{X^{2}} ( \lambda ) + \widetilde{Y^{2}} ( \lambda ) \bigr) =\frac{1}{2} \widetilde{ \bigl( X^{2}+Y^{2} \bigr) } ( \lambda )\quad ( \lambda \in \varOmega ). \end{aligned}$$

Since \([ \widetilde{X} ( \lambda ) ] ^{2} \geq 0\), \([ \widetilde{Y} ( \lambda ) ] ^{2} \geq 0\), and \(\widetilde{ ( X^{2}+Y^{2} ) } ( \lambda ) \geq 0\), taking the supremum over \(\lambda \in \varOmega \), we get that

$$ \sqrt{2}\operatorname{ber} ( X\mathbin{\sharp} Y ) \leq \operatorname{ber}_{2} ( X,Y ) \leq \operatorname{ber}^{ \frac{1}{2}} \bigl( X^{2}+Y^{2} \bigr). $$

 □

Proposition 5

Let\(X,Y,Z\in \mathcal{L} ( \mathcal{H} ) \)such thatX, Yare positive, and let\(\frac{1}{p}+\frac{1}{q}=1\). Then

$$\begin{aligned} \bigl\Vert ( X\mathbin{\sharp} Y )Z \bigr\Vert _{\mathrm{ber}}^{r} \leq \biggl\Vert \frac{X^{\frac{rp}{2}}}{p} \biggr\Vert _{\mathrm{ber}}+ \biggl\Vert \frac{ ( Z^{\star }YZ ) ^{\frac{rq}{2}}}{q} \biggr\Vert _{\mathrm{ber}} -\frac{1}{p} \inf_{\mu ,\lambda \in \varOmega } \bigl( \langle X \widehat{k}_{\mu },\widehat{k}_{\mu } \rangle ^{\frac{rp}{4}}- \bigl\langle Z^{\star }YZ\widehat{k}_{\lambda }, \widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{4}} \bigr) ^{2} \end{aligned}$$

for all\(r\geq \frac{2}{q}\).

Proof

Indeed, for every \(\lambda ,\mu \in \varOmega \), we have

$$\begin{aligned} & \bigl\vert \bigl\langle ( X\mathbin{\sharp} Y ) Z\widehat{k}_{ \lambda }, \widehat{k}_{\mu } \bigr\rangle \bigr\vert ^{r} \\ &\quad = \bigl\vert \bigl\langle X^{\frac{1}{2}} \bigl( X^{\frac{-1}{2}}YX ^{\frac{-1}{2}} \bigr) ^{\frac{1}{2}}X^{\frac{1}{2}}Z\widehat{k}_{ \lambda }, \widehat{k}_{\mu } \bigr\rangle \bigr\vert \\ &\quad = \bigl\vert \bigl\langle \bigl( X^{\frac{-1}{2}}YX^{ \frac{-1}{2}} \bigr) ^{\frac{1}{2}}X^{\frac{1}{2}}Z\widehat{k}_{ \lambda },X^{\frac{1}{2}} \widehat{k}_{\mu } \bigr\rangle \bigr\vert ^{r} \\ &\quad = \bigl\vert \bigl\langle \bigl( X^{\frac{-1}{2}}YX^{\frac{-1}{2}} \bigr) ^{\frac{1}{2}}X^{ \frac{1}{2}}Z\widehat{k}_{\lambda },X^{\frac{1}{2}} \widehat{k}_{ \mu } \bigr\rangle \bigr\vert ^{r} \\ &\quad \leq \bigl\Vert \bigl( X^{\frac{-1}{2}}YX^{\frac{-1}{2}} \bigr) ^{\frac{1}{2}}X^{\frac{1}{2}}Z\widehat{k}_{\lambda } \bigr\Vert ^{r}\cdot \bigl\Vert X^{\frac{1}{2}}\widehat{k}_{\mu } \bigr\Vert ^{r} \\ &\quad = \bigl\langle \bigl( X^{\frac{-1}{2}}YX^{\frac{-1}{2}} \bigr) ^{\frac{1}{2}}X^{\frac{1}{2}}Z\widehat{k}_{\lambda }, \bigl( X^{ \frac{-1}{2}}YX^{\frac{-1}{2}} \bigr) ^{\frac{1}{2}}X^{\frac{1}{2}}Z \widehat{k}_{\lambda } \bigr\rangle ^{\frac{r}{2}}\times \bigl\langle X ^{\frac{1}{2}}\widehat{k}_{\mu },X^{\frac{1}{2}} \widehat{k}_{\mu } \bigr\rangle ^{\frac{r}{2}} \\ &\quad = \langle X\widehat{k}_{\mu },\widehat{k}_{\mu } \rangle ^{\frac{r}{2}} \bigl\langle Z^{\star }YZ\widehat{k}_{\lambda }, \widehat{k}_{\lambda } \bigr\rangle ^{\frac{r}{2}} \\ &\quad \leq \frac{1}{p} \langle X\widehat{k}_{\lambda },\widehat{k} _{\lambda } \rangle ^{\frac{rp}{2}}+\frac{1}{q} \bigl\langle Z ^{\star }YZ\widehat{k}_{\mu },\widehat{k}_{\mu } \bigr\rangle ^{ \frac{rq}{2}} \\ &\qquad {} -\frac{1}{p} \bigl( \langle X\widehat{k}_{\lambda }, \widehat{k} _{\lambda } \rangle ^{\frac{rp}{4}}- \bigl\langle Z^{\star }YZ \widehat{k}_{\mu },\widehat{k}_{\mu } \bigr\rangle ^{\frac{rq}{4}} \bigr) ^{2} \quad (\text{by (1) and (2)}) \\ &\quad \leq \frac{1}{p} \bigl\langle X^{\frac{rp}{2}} \widehat{k}_{\mu }, \widehat{k}_{\mu } \bigr\rangle + \frac{1}{q} \bigl\langle \bigl( Z ^{\star }YZ \bigr) ^{\frac{rq}{2}}\widehat{k}_{\lambda },\widehat{k} _{\lambda } \bigr\rangle \\ &\qquad {} -\frac{1}{p} \bigl( \langle X\widehat{k}_{\mu }, \widehat{k}_{ \mu } \rangle ^{\frac{rp}{4}}- \bigl\langle Z^{\star }YZ \widehat{k}_{\lambda },\widehat{k}_{\lambda } \bigr\rangle ^{ \frac{rq}{4}} \bigr) ^{2} \quad(\text{by (4)}) \\ &\quad \leq \frac{1}{p} \bigl\langle X^{\frac{rp}{2}} \widehat{k}_{\mu }, \widehat{k}_{\mu } \bigr\rangle + \frac{1}{q} \bigl\langle \bigl( Z ^{\star }YZ \bigr) ^{\frac{rq}{2}}\widehat{k}_{\lambda },\widehat{k} _{\lambda } \bigr\rangle \\ &\qquad {} -\frac{1}{p} \inf_{\mu ,\lambda \in \varOmega } \bigl( \langle X \widehat{k}_{\mu },\widehat{k}_{\mu } \rangle ^{\frac{rp}{4}}- \bigl\langle Z^{\star }YZ\widehat{k}_{\lambda }, \widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{4}} \bigr) ^{2} \end{aligned}$$
(6)

so that if we take the supremum over \(\lambda ,\mu \in \varOmega \) in inequality (6), we get

$$\begin{aligned} \bigl\Vert ( X\mathbin{\sharp} Y ) Z \bigr\Vert _{\mathrm{ber}}^{r} & \leq \biggl\Vert \frac{X^{\frac{rp}{2}}}{p} \biggr\Vert _{\mathrm{ber}}+ \biggl\Vert \frac{ ( Z^{\star }YZ ) ^{\frac{rq}{2}}}{q} \biggr\Vert _{\mathrm{ber}} \\ &\quad {} -\frac{1}{p} \inf_{\mu ,\lambda \in \varOmega } \bigl( \langle X \widehat{k}_{\mu },\widehat{k}_{\mu } \rangle ^{\frac{rp}{4}}- \bigl\langle Z^{\star }YZ\widehat{k}_{\lambda }, \widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{4}} \bigr) ^{2}. \end{aligned}$$

 □

Remark 6

It follows from inequality

$$\begin{aligned} &\inf_{\mu ,\lambda \in \varOmega } \bigl( \langle X\widehat{k} _{\mu }, \widehat{k}_{\mu } \rangle ^{\frac{rp}{4}}- \bigl\langle Z ^{\star }YZ\widehat{k}_{\lambda },\widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{4}} \bigr) ^{2} \\ &\quad = \inf_{\mu ,\lambda \in \varOmega } \bigl( \langle X\widehat{k} _{\mu }, \widehat{k}_{\mu } \rangle ^{\frac{rp}{2}}+ \bigl\langle Z ^{\star }YZ\widehat{k}_{\lambda },\widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{2}}-2 \langle X\widehat{k}_{\mu }, \widehat{k}_{ \mu } \rangle ^{\frac{rp}{4}} \bigl\langle Z^{\star }YZ \widehat{k}_{\lambda },\widehat{k}_{\lambda } \bigr\rangle ^{ \frac{rq}{4}} \bigr) \\ &\quad \geq \inf_{\mu \in \varOmega } \langle X\widehat{k}_{\mu }, \widehat{k}_{\mu } \rangle ^{\frac{rp}{2}}+ \inf_{\lambda \in \varOmega } \bigl\langle Z^{\star }YZ\widehat{k}_{ \lambda }, \widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{2}} -2 \sup_{\mu \in \varOmega } \langle X\widehat{k}_{\mu }, \widehat{k}_{\mu } \rangle ^{\frac{rp}{4}} \sup_{\lambda \in \varOmega } \bigl\langle Z^{\star }YZ\widehat{k}_{ \lambda }, \widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{4}} \\ &\quad = m ( X ) ^{\frac{rp}{2}}+ m \bigl( Z^{\star }YZ \bigr) ^{\frac{rq}{2}}-2 \bigl\Vert Z^{\star }YZ \bigr\Vert _{\mathrm{ber}}^{ \frac{rq}{4}} \Vert X \Vert _{\mathrm{ber}}^{\frac{rp}{4}} \end{aligned}$$

and inequality (6) that

$$\begin{aligned} \bigl\Vert ( X\mathbin{\sharp} Y )Z \bigr\Vert _{\mathrm{ber}}^{r} &\leq \biggl\Vert \frac{X^{\frac{rp}{2}}}{p} \biggr\Vert _{\mathrm{ber}}+ \biggl\Vert \frac{ ( Z^{\star }YZ ) ^{\frac{rq}{2}}}{q} \biggr\Vert _{\mathrm{ber}} \\ &\quad {} - \bigl(m ( X ) ^{\frac{rp}{2}}+ m \bigl( Z^{\star }YZ \bigr)^{\frac{rq}{2}}-2 \bigl\Vert Z^{\star }YZ \bigr\Vert _{\mathrm{ber}}^{\frac{rq}{4}} \Vert X \Vert _{\mathrm{ber}}^{\frac{rp}{4}} \bigr). \end{aligned}$$

Proposition 7

Let\(X,Y, Z\in \mathcal{L} ( \mathcal{H} ) \)such thatX, Yare positive, and let\(p\geq q>1\), where\(\frac{1}{p}+ \frac{1}{q}=1\). Then

$$\begin{aligned} \bigl( \Vert X \Vert _{\mathrm{ber}} \bigl\Vert Z^{\star }YZ \bigr\Vert _{\mathrm{ber}} \bigr) ^{\frac{r}{2}} &\leq \biggl\Vert \frac{X^{\frac{rp}{2}}}{p} \biggr\Vert _{\mathrm{ber}}+ \biggl\Vert \frac{ ( Z^{\star }YZ ) ^{\frac{rq}{2}}}{q} \biggr\Vert _{\mathrm{ber}} \\ &\quad {} -\frac{1}{p}\inf_{\lambda \in \varOmega } \bigl( \bigl[ \langle X \widehat{k}_{\mu },\widehat{k}_{\mu } \rangle ^{\frac{rp}{4}} \bigr] - \bigl\langle Z^{\star }YZ\widehat{k}_{\lambda }, \widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{4}} \bigr) ^{2} \end{aligned}$$

for all\(r\geq \frac{2}{q}\).

Proof

By inequality (2), we have

$$\begin{aligned} & \langle X\widehat{k}_{\mu },\widehat{k}_{\mu } \rangle ^{\frac{r}{2}} \bigl\langle Z^{\star }YZ\widehat{k}_{\lambda }, \widehat{k}_{\lambda } \bigr\rangle ^{\frac{r}{2}} \\ &\quad \leq \frac{1}{p} \langle X\widehat{k}_{\mu }, \widehat{k}_{ \mu } \rangle ^{\frac{rp}{2}}+\frac{1}{q} \bigl\langle Z^{ \star }YZ\widehat{k}_{\lambda },\widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{2}} \\ &\qquad {} -\frac{1}{p} \bigl( \langle X\widehat{k}_{\mu }, \widehat{k}_{\mu } \rangle ^{\frac{rp}{4}}- \bigl\langle Z^{ \star }YZ\widehat{k}_{\lambda },\widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{4}} \bigr) ^{2} \\ &\quad \leq \frac{1}{p} \bigl\langle X^{\frac{rp}{2}} \widehat{k}_{\mu }, \widehat{k}_{\mu } \bigr\rangle + \frac{1}{q} \bigl\langle \bigl( Z ^{\star }YZ \bigr) ^{\frac{rq}{2}}\widehat{k}_{\lambda },\widehat{k} _{\lambda } \bigr\rangle \\ &\qquad {} -\frac{1}{p} \bigl( \langle X\widehat{k}_{\mu }, \widehat{k}_{\mu } \rangle ^{\frac{rp}{4}}- \bigl\langle Z^{ \star }YZ\widehat{k}_{\lambda },\widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{4}} \bigr) ^{2} \end{aligned}$$

for all \(\lambda ,\mu \in \varOmega \) and taking supremum over \(\lambda ,\mu \in \varOmega \) in the above inequality, we get

$$\begin{aligned} \bigl( \Vert X \Vert _{\mathrm{ber}} \bigl\Vert Z^{\star }YZ \bigr\Vert _{\mathrm{ber}} \bigr) ^{\frac{r}{2}} & \leq \biggl\Vert \frac{X^{\frac{rp}{2}}}{p} \biggr\Vert _{\mathrm{ber}}+ \biggl\Vert \frac{ ( Z^{\star }YZ ) ^{\frac{rq}{2}}}{q} \biggr\Vert _{\mathrm{ber}} \\ &\quad {} -\frac{1}{p}\inf_{\lambda \in \varOmega } \bigl( \bigl[ \langle X \widehat{k}_{\mu },\widehat{k}_{\mu } \rangle ^{\frac{rp}{4}} \bigr] - \bigl\langle Z^{\star }YZ\widehat{k}_{\lambda }, \widehat{k}_{\lambda } \bigr\rangle ^{\frac{rq}{4}} \bigr) ^{2}. \end{aligned}$$

 □

Now, we present the next lemma to obtain our last results.

Lemma 8

([16])

If\(f, g: [0, \infty )\longrightarrow \mathcal{R} \)are nonnegative continuous such that\(f(t)g(t)=t\) (\(t\in [0, \infty )\)), then

$$ \bigl| \langle Xx, y \rangle \bigr| \leq \bigl\| f\bigl(| X | \bigr)x \bigr\| \bigl\| g\bigl(\bigl| X^{*}\bigr| \bigr)x \bigr\| , $$

where\(X \in {\mathcal{L}}({\mathcal{H}})\)and\(x, y\in {\mathcal{H}}\).

In the next theorem we show an upper bound for the generalized Euclidean Berezin number.

Theorem 9

Let\(X_{i}, Y_{i}, Z_{i}, \in {\mathcal{L}}({\mathcal{H}})\) (\(1 \leq i \leq n\)). Then

$$\begin{aligned} &\operatorname{ber}_{p}^{p} \bigl(X_{1}^{*}Z_{1}Y_{1}, \ldots,X_{n}^{*}Z_{n}Y_{n} \bigr) \\ &\quad \leq \frac{n^{1-\frac{1}{r}}}{2^{\frac{1}{r}}}\mathrm{ber}^{\frac{1}{r}} \Biggl(\sum _{i=1}^{n}\bigl[Y_{i}^{*} f^{2}\bigl( \vert Z_{i} \vert \bigr)Y_{i} \bigr]^{rp}+\bigl[X_{i}^{*}g^{2} \bigl( \bigl\vert Z_{i} ^{*} \bigr\vert \bigr)X_{i}\bigr]^{rp} \Biggr) \\ &\qquad {} -\frac{1}{2}\inf_{\lambda \in \varOmega } \Biggl( \sum _{i=1}^{n} \bigl(\sqrt{\bigl\langle \bigl(X_{i}^{*}g^{2}\bigl( \bigl\vert Z_{i}^{*} \bigr\vert \bigr)X_{i} \bigr)^{p}\hat{k} _{\lambda }, \hat{k}_{\lambda }\bigr\rangle } -\sqrt{ \bigl\langle \bigl(Y_{i}^{*}f ^{2}\bigl( \vert Z_{i} \vert \bigr)Y_{i} \bigr)^{p}\hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle } \bigr)^{2} \Biggr), \end{aligned}$$
(7)

where\(f, g: [0, \infty )\longrightarrow \mathcal{R} \)are nonnegative continuous such that\(f(t)g(t)=t\) (\(t\in [0, \infty )\)) and\(p, r\geq 1\).

Proof

For any \(\hat{k}_{\lambda }\in {\mathcal{H}(\varOmega )}\), we have

$$\begin{aligned} &\sum_{i=1}^{n} \bigl\vert \bigl\langle X_{i}^{*}Z_{i}Y_{i} \hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle \bigr\vert ^{p} \\ &\quad =\sum_{i=1}^{n} \bigl\vert \langle Z_{i}Y_{i}\hat{k}_{\lambda }, X_{i} \hat{k} _{\lambda }\rangle \bigr\vert ^{p} \\ &\quad \leq \sum_{i=1}^{n} \bigl\Vert f \bigl( \vert Z_{i} \vert \bigr)Y_{i} \hat{k}_{\lambda } \bigr\Vert ^{p} \bigl\Vert g\bigl( \bigl\vert Z _{i}^{*} \bigr\vert \bigr)X_{i} \hat{k}_{\lambda } \bigr\Vert ^{p} \quad (\text{by Lemma 8}) \\ &\quad =\sum_{i=1}^{n}\bigl\langle f\bigl( \vert Z_{i} \vert \bigr)Y_{i}\hat{k}_{\lambda }, f\bigl( \vert Z_{i} \vert \bigr)Y _{i} \hat{k}_{\lambda }\bigr\rangle ^{\frac{p}{2}} \bigl\langle g\bigl( \bigl\vert Z_{i}^{*} \bigr\vert \bigr)X _{i} \hat{k}_{\lambda }, g\bigl( \bigl\vert Z_{i}^{*} \bigr\vert \bigr)X_{i}\hat{k}_{\lambda } \bigr\rangle ^{\frac{p}{2}} \\ &\quad =\sum_{i=1}^{n} \bigl\langle Y_{i}^{*} f^{2}\bigl( \vert Z_{i} \vert \bigr)Y_{i}\hat{k}_{\lambda}, \hat{k}_{\lambda }\bigr\rangle ^{\frac{p}{2}} \bigl\langle X_{i}^{*}g^{2}\bigl( \bigl\vert Z _{i}^{*} \bigr\vert \bigr)Z_{i} \hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle ^{ \frac{p}{2}} \\ &\quad \leq \sum_{i=1}^{n} \bigl\langle \bigl(Y_{i}^{*} f^{2}\bigl( \vert Z_{i} \vert \bigr)Y_{i}\bigr)^{p} \hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle ^{\frac{1}{2}} \bigl\langle \bigl(X _{i}^{*}g^{2}\bigl( \bigl\vert Z_{i}^{*} \bigr\vert \bigr)Z_{i}\bigr)^{p}\hat{k}_{\lambda }, \hat{k}_{ \lambda }\bigr\rangle ^{\frac{1}{2}} \quad (\text{by (4)}) \\ &\quad \leq \sum_{i=1}^{n} \biggl[ \biggl( \frac{1}{2} \bigl\langle \bigl(Y_{i}^{*} f ^{2}\bigl( \vert Z_{i} \vert \bigr)Y_{i} \bigr)^{pr}\hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle + \frac{1}{2} \bigl\langle \bigl(X_{i}^{*}g^{2} \bigl( \bigl\vert Z_{i}^{*} \bigr\vert \bigr)X_{i}\bigr)^{pr}\hat{k} _{\lambda }, \hat{k}_{\lambda }\bigr\rangle \biggr)^{\frac{1}{r}} \biggr] \quad (\text{by (2)}) \\ &\qquad {} -\frac{1}{2}\sum_{i=1}^{n} \bigl(\sqrt{\bigl\langle \bigl(X_{i}^{*}g ^{2}\bigl( \bigl\vert Z_{i}^{*} \bigr\vert \bigr)X_{i}\bigr)^{p}\hat{k}_{\lambda }, \hat{k}_{\lambda } \bigr\rangle } -\sqrt{ \bigl\langle \bigl(Y_{i}^{*}f^{2} \bigl( \vert Z_{i} \vert \bigr)Y_{i} \bigr)^{p}, \hat{k}_{\lambda }\bigr\rangle } \bigr)^{2} \\ &\quad \leq \frac{n^{1-\frac{1}{r}}}{2^{\frac{1}{r}}} \Biggl\langle \Biggl(\sum _{i=1}^{n} \bigl( \bigl[Y_{i}^{*}f^{2} \bigl( \vert Z_{i} \vert \bigr)Y_{i} \bigr]^{rp}+ \bigl[X_{i}^{*} g^{2}\bigl( \bigl\vert Z_{i}^{*} \bigr\vert \bigr)X_{i} \bigr]^{rp} \bigr) \Biggr) \hat{k}_{\lambda }, \hat{k}_{\lambda } \Biggr\rangle ^{\frac{1}{r}} \\ &\qquad {} -\frac{1}{2}\sum_{i=1}^{n} \bigl(\sqrt{\bigl\langle \bigl(X_{i}^{*}g ^{2}\bigl( \bigl\vert Z_{i}^{*} \bigr\vert \bigr)X_{i}\bigr)^{p}\hat{k}_{\lambda }, \hat{k}_{\lambda } \bigr\rangle } -\sqrt{ \bigl\langle \bigl(Y_{i}^{*}f^{2} \bigl( \vert Z_{i} \vert \bigr)Y_{i} \bigr)^{p}\hat{k} _{\lambda }, \hat{k}_{\lambda }\bigr\rangle } \bigr)^{2}. \end{aligned}$$

By taking the supremum on \(\hat{k}_{\lambda }\in {\mathcal{H}}\) with \(\|\hat{k}_{\lambda }\|=1\), we reach the desired inequality. □

Selecting \(X_{i}=Y_{i}=I\) for \(i=1,2,\ldots ,n\) in Theorem 9, we get the next result.

Corollary 10

Let\(Z_{i}\in {\mathcal{L}}({\mathcal{H}}) \) (\(1\leq i \leq n\)) and\(r, p\geq 1\). Then

$$\begin{aligned} \operatorname{ber}_{p}^{p}(Z_{1},\ldots ,Z_{n})&\leq \frac{n^{1-\frac{1}{r}}}{2^{ \frac{1}{r}}}\mathrm{ber}^{\frac{1}{r}} \Biggl(\sum_{i=1}^{n}[ f^{2} \bigl( \vert Z_{i} \vert \bigr)^{rp}+g ^{2}\bigl( \bigl\vert Z_{i}^{*} \bigr\vert \bigr)^{rp} \Biggr) \\ &\quad {} -\frac{1}{2}\sum_{i=1}^{n} \bigl(\sqrt{\bigl\langle g^{2p}\bigl( \bigl\vert Z_{i} ^{*} \bigr\vert \bigr)\hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle } -\sqrt{ \bigl\langle f^{2p} \bigl( \vert Z_{i} \vert \bigr)\hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle } \bigr)^{2}, \end{aligned}$$

where\(f, g: [0, \infty )\longrightarrow \mathcal{R} \)are nonnegative continuous such that\(f(t)g(t)=t\) (\(t\in [0, \infty )\)).

In particular, if\(X, Y\in {\mathcal{L}}({\mathcal{H}})\), then for all\(p\geq 1\)and\(0\leq \nu \leq 1\)

$$ \operatorname{ber}_{p}^{p}(X, Y)\leq \frac{1}{2} \operatorname{ber} \bigl( \vert X \vert ^{2\nu p}+ \bigl\vert X^{*} \bigr\vert ^{2(1- \nu )p}+ \vert Y \vert ^{2\nu p}+ \bigl\vert Y^{*} \bigr\vert ^{2(1-\nu )p} \bigr)- \inf_{\lambda \in \varOmega }\delta (\hat{k}_{\lambda }), $$

where

$$\begin{aligned} \delta (\hat{k}_{\lambda })&=\frac{1}{2} \bigl[\bigl( \bigl\langle \vert X \vert ^{2\nu p} \hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle ^{\frac{1}{2}} - \bigl\langle \bigl\vert X^{*} \bigr\vert ^{2(1-\nu ) p}\hat{k}_{\lambda }, \hat{k}_{\lambda }x \bigr\rangle ^{\frac{1}{2}}\bigr)^{2} \\ &\quad {} + \bigl(\bigl\langle \vert Y \vert ^{2\nu p}\hat{k}_{\lambda }, \hat{k}_{\lambda } \bigr\rangle ^{\frac{1}{2}} - \bigl\langle \bigl\vert Y^{*} \bigr\vert ^{2(1-\nu )p}\hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle ^{\frac{1}{2}}\bigr)^{2} \bigr]. \end{aligned}$$

In the last theorem, we show another upper bound for \(\operatorname{ber}_{p}(T_{1},\ldots,T_{n})\).

Theorem 11

Let\(Z_{i}\in {\mathcal{L}}({\mathcal{H}})\) (\(1\leq i \leq n\)). Then

$$ \operatorname{ber}_{p}(Z_{1}, \ldots,Z_{n})\leq \frac{1}{2} \Biggl[\sum _{i=}^{n} \Bigl(\operatorname{ber} \bigl( \vert Z_{i} \vert ^{2\nu }+ \bigl\vert Z_{i}^{*} \bigr\vert ^{2(1-\nu )} \bigr)-2\inf_{ \Vert x \Vert =1} \delta ( \hat{k}_{\lambda }) \Bigr)^{p} \Biggr]^{\frac{1}{p}}, $$
(8)

where\(p\geq 1\), \(0\leq \nu \leq 1\), and\(\delta (\hat{k}_{\lambda })= (\sqrt{ \langle |Z_{i}^{*}|^{2(1-\nu )}\hat{k}_{\lambda }, \hat{k}_{\lambda }\rangle } - \sqrt{ \langle |Z_{i}|^{2\nu }\hat{k} _{\lambda }, \hat{k}_{\lambda }\rangle } )^{2} \).

Proof

Let \(\hat{k}_{\lambda }\in {\mathcal{H}(\varOmega )}\). Then, by using Lemma 8 and inequality (3), we have

$$\begin{aligned} &\sum_{i=1}^{n} \bigl\vert \langle Z_{i}\hat{k}_{\lambda }, \hat{k}_{\lambda } \rangle \bigr\vert ^{p} \\ &\quad \leq \sum_{i=1}^{n}\bigl(\bigl\langle \vert Z_{i} \vert ^{2\nu }\hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle ^{\frac{1}{2}}\bigl\langle \bigl\vert Z_{i}^{*} \bigr\vert ^{2(1- \nu )} \hat{k}_{\lambda },\hat{k}_{\lambda }\bigr\rangle ^{\frac{1}{2}} \bigr)^{p} \quad (\text{by Lemma 8}) \\ &\quad \leq \frac{1}{2^{p}}\sum_{i=1}^{n} [\bigl\langle \vert Z_{i} \vert ^{2\nu } \hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle +\bigl\langle \bigl\vert Z_{i}^{*} \bigr\vert ^{2(1- \nu )} \hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle \\ &\qquad {} - \bigl(\sqrt{ \bigl\langle \bigl\vert Z_{i}^{*} \bigr\vert ^{2(1-\nu )}\hat{k}_{\lambda }, \hat{k}_{\lambda } \bigr\rangle } -\sqrt{ \bigl\langle \vert Z_{i} \vert ^{2\nu } \hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle } \bigr)^{2} ]^{p} \quad (\text{by (3)}) \\ &\quad =\frac{1}{2^{p}}\sum_{i=1}^{n} \bigl[\bigl\langle \vert Z_{i} \vert ^{2\nu }+ \bigl\vert Z_{i} ^{*} \bigr\vert ^{2(1-\nu )} \hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle - \bigl(\sqrt{ \bigl\langle \bigl\vert Z_{i}^{*} \bigr\vert ^{2(1-\nu )}\hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle } {} -\sqrt{ \bigl\langle \vert Z_{i} \vert ^{2\nu } \hat{k}_{\lambda }, \hat{k} _{\lambda }\bigr\rangle } \bigr)^{2} \bigr]^{p}. \end{aligned}$$

Thus

$$\begin{aligned} \Biggl(\sum_{i=1}^{n} \bigl\vert \langle Z_{i}\hat{k}_{\lambda }, \hat{k}_{ \lambda } \rangle \bigr\vert ^{p} \Biggr)^{\frac{1}{p}} &\leq \frac{1}{2} \Biggl[ \sum_{i=1}^{n} \bigl(\bigl\langle \vert Z_{i} \vert ^{2\nu }+ \bigl\vert Z_{i}^{*} \bigr\vert ^{2(1-\nu )} \hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle \\ &\quad {} - \bigl(\sqrt{ \bigl\langle \bigl\vert Z_{i}^{*} \bigr\vert ^{2(1-\nu )}\hat{k}_{\lambda }, \hat{k}_{\lambda } \bigr\rangle } - \sqrt{ \bigl\langle \vert Z_{i} \vert ^{2\nu } \hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle } \bigr)^{2} \bigr)^{p} \Biggr]^{\frac{1}{p}} \\ &=\frac{1}{2} \Biggl[\sum_{i=1}^{n} \bigl(\bigl\langle \vert Z_{i} \vert ^{2\nu }+ \bigl\vert Z _{i}^{*} \bigr\vert ^{2(1-\nu )} \hat{k}_{\lambda }, \hat{k}_{\lambda }\bigr\rangle -2 \delta ( \hat{k}_{\lambda }) \bigr)^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$

If we get the supremum over all \(\hat{k}_{\lambda }\in {\mathcal{H}( \varOmega )}\) with \(\|\hat{k}_{\lambda }\|=1\), then we reach the desired result. □

References

  1. Ando, T.: Matrix Young inequality. Oper. Theory, Adv. Appl. 75, 33–38 (1995)

    MATH  Google Scholar 

  2. Aronzajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  3. Bakherad, M.: Some Berezin number inequalities for operator matrices. Czechoslov. Math. J. 68(143)(4), 997–1009 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bakherad, M., Garayev, M.T.: Berezin number inequalities for operators. Concr. Oper. 6, 33–43 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bakherad, M., Lashkaripour, R., Hajmohamadi, M., Yamanci, U.: Complete refinements of the Berezin number inequalities. J. Math. Inequal. 13(4), 1117–1128 (2019)

    Article  MathSciNet  Google Scholar 

  6. Basaran, H., Gürdal, M., Güncan, A.N.: Some operator inequalities associated with Kantorovich and Holder–McCarthy inequalities and their applications. Turk. J. Math. 43(1), 523–532 (2019)

    Article  Google Scholar 

  7. Berezin, F.A.: Covariant and contravariant symbols for operators. Math. USSR, Izv. 6, 1117–1151 (1972)

    Article  Google Scholar 

  8. Bhatia, R., Kittaneh, F.: On the singular values of a product of operators. SIAM J. Matrix Anal. Appl. 11, 272–277 (1990)

    Article  MathSciNet  Google Scholar 

  9. Garayev, M.T., Gürdal, M., Okudan, A.: Hardy–Hilbert’s inequality and a power inequality for Berezin numbers for operators. Math. Inequal. Appl. 19(3), 883–891 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Garayev, M.T., Gürdal, M., Saltan, S.: Hardy type inequality for reproducing kernel Hilbert space operators and related problems. Positivity 21(4), 1615–1623 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gustafson, K.E., Rao, D.K.M.: Numerical Range. Springer, New York (1997)

    Book  Google Scholar 

  12. Hajmohamadi, M., Lashkaripour, R., Bakherad, M.: Improvements of Berezin number inequalities. Linear Multilinear Algebra (to appear). https://doi.org/10.1080/03081087.2018.1538310

  13. Karaev, M.T.: Berezin symbol and invertibility of operators on the functional Hilbert spaces. J. Funct. Anal. 238, 181–192 (2006)

    Article  MathSciNet  Google Scholar 

  14. Karaev, M.T.: Reproducing kernels and Berezin symbols techniques in various questions of operator theory. Complex Anal. Oper. Theory 7, 983–1018 (2013)

    Article  MathSciNet  Google Scholar 

  15. Karaev, M.T., Gürdal, M., Yamanci, U.: Some results related with Berezin symbols and Toeplitz operators. Math. Inequal. Appl. 17(3), 1031–1045 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Kittaneh, F.: Notes on some inequalities for Hilbert space operators. Publ. Res. Inst. Math. Sci. 24, 283–293 (1988)

    Article  MathSciNet  Google Scholar 

  17. Kittaneh, F., Manasrah, Y.: Improved Young and Heinz inequalities for matrices. J. Math. Anal. Appl. 361, 262–269 (2010)

    Article  MathSciNet  Google Scholar 

  18. Saitoh, S., Sawano, Y.: Theory of Reproducing Kernels and Applications. Springer, Singapore (2016)

    Book  Google Scholar 

  19. Salemi, A., Sheikh Hosseini, A.: Matrix Young numerical radius inequalities. J. Math. Inequal. 16, 783–791 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Salemi, A., Sheikh Hosseini, A.: On reversing of the modified Young inequality. Ann. Funct. Anal. 5, 69–75 (2014)

    Article  MathSciNet  Google Scholar 

  21. Yamancı, U., Gürdal, M.: On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space. N.Y. J. Math. 23, 1531–1537 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Yamancı, U., Gürdal, M., Garayev, M.T.: Berezin number inequality for convex function in reproducing kernel Hilbert space. Filomat 31(18), 5711–5717 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Tusi Mathematical Research Group (TMRG).

Availability of data and materials

Not applicable.

Funding

The authors received no financial support for this article.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Mojtaba Bakherad.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakherad, M., Yamancı, U. New estimations for the Berezin number inequality. J Inequal Appl 2020, 40 (2020). https://doi.org/10.1186/s13660-020-2307-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-020-2307-0

MSC

Keywords