- Research
- Open access
- Published:
On structure of discrete Muckenhoupt and discrete Gehring classes
Journal of Inequalities and Applications volume 2020, Article number: 233 (2020)
Abstract
In this paper, we study the structure of the discrete Muckenhoupt class \(\mathcal{A}^{p}(\mathcal{C})\) and the discrete Gehring class \(\mathcal{G}^{q}(\mathcal{K})\). In particular, we prove that the self-improving property of the Muckenhoupt class holds, i.e., we prove that if \(u\in \mathcal{A}^{p}(\mathcal{C})\) then there exists \(q< p\) such that \(u\in \mathcal{A}^{q}(\mathcal{C}_{1})\). Next, we prove that the power rule also holds, i.e., we prove that if \(u\in \mathcal{A}^{p}\) then \(u^{q}\in \mathcal{A}^{p}\) for some \(q>1\). The relation between the Muckenhoupt class \(\mathcal{A}^{1}(\mathcal{C})\) and the Gehring class is also discussed. For illustrations, we give exact values of the norms of Muckenhoupt and Gehring classes for power-low sequences. The results are proved by some algebraic inequalities and some new inequalities designed and proved for this purpose.
1 Introduction
We fix an interval \(\mathbb{I}\subset \mathbb{R}\) and consider subintervals I of \(\mathbb{I}\) and denote by \(\vert I \vert \) the Lebesgue measure of I. A weight w is nonnegative locally integrable function. In the literature a nonnegative measurable weight function w defined on a bounded fixed interval \(\mathbb{I}\) is called an \(A^{p}(\mathcal{C})\)-Muckenhoupt weight for \(1< p<\infty \) if there exists a constant \(\mathcal{C}<\infty \) such that
for every subinterval \(I\subset \mathbb{I}\). For a given exponent \(p>1\), we define the \(A^{p}\)-norm of the function w by the following quantity:
where the supremum is taken over all intervals \(I\subset \mathbb{I}\). For a given fixed constant \(\mathcal{C}>1\), if the weight w belongs to \(A^{p}(\mathcal{C})\), then \(A^{p}(w)\leq \mathcal{C}\). A weight w satisfying the condition
is called an \(A^{1}(\mathcal{C})\)-Muckenhoupt weight where \(\mathcal{C}>1\). In [25] Muckenhoupt proved the following result.
Lemma 1.1
If w is a nonincreasing weight satisfying condition (3), then there exists \(p\in [ 1, \mathcal{C}/(\mathcal{C}-1)]\) such that
Bojarski, Sbordone, and Wik [3] improved the Muckenhoupt result by excluding the monotonicity condition on the weight w by using the rearrangement \(\omega ^{\ast }\) of the function ω over the interval I and established the best constant. In particular, they proved the following lemma.
Lemma 1.2
If w is a nonincreasing weight and satisfies condition (3) with \(\mathcal{C}>1\), then there exists \(p\in [ 1, \mathcal{C}/(\mathcal{C}-1)]\) such that
In [25] Muckenhoupt also proved the following result.
Lemma 1.3
If \(1< p<\infty \) and w satisfies the \(A^{p}\)-condition (1) on the interval \(\mathbb{I}\), with constant \(\mathcal{C}\), then there exist constants q and \(\mathcal{C}_{1}\) depending on p and \(\mathcal{C}\) such that \(1< q< p\) and w satisfies the \(A^{q}\)-condition
for every subinterval \(I\subset \mathbb{I}\).
In other words, Muckenhoupt’s result (see also Coifman and Fefferman [9]) for self-improving property states that: if \(w\in A^{p}(\mathcal{C})\) then there exist a constant \(\epsilon >0\) and a positive constant \(\mathcal{C}_{1}\) such that \(w\in A^{p-\epsilon }(\mathcal{C}_{1})\), and then
Muckenhoupt [25] also proved the following result.
Lemma 1.4
If \(1< p<\infty \) and \(w\in A^{p}(\mathcal{C})\) on the interval \(\mathbb{I}\) with a constant \(\mathcal{C}\), then there exist constants r and \(\mathcal{C}_{1}\) depending only on p and \(\mathcal{C}\) such that \(1< r\) and \(w^{r}\in A^{p}(\mathcal{C}_{1})\).
Gehring [12, 13] introduced a new class of weights satisfying reverse Hölder’s inequalities in connection with the integrability properties of the gradient of quasiconformal mappings. The function w is said to belong to the Gehring class \(G^{q}(\mathcal{K})\) for \(q>1\) with a constant \(\mathcal{K}<\infty \) if
For a given exponent \(p>1\), we define the \(G^{q}(w)\)-norm of the weight w by the following quantity:
where the supremum is taken over all \(I\subset \mathbb{I}\). For a given fixed constant \(\mathcal{K}>1\), if the weight w belongs to \(G^{p}(\mathcal{K})\), then \(G^{p}(w)\leq \mathcal{K}\).
Remark 1.1
Lemma 1.2 proves that if the weight w belongs to the Muckenhoupt class \(A^{1}(\mathcal{C})\), then w belongs to the Gehring class \(G^{p}(\mathcal{K})\) with \(\mathcal{K}= [ \mathcal{C}^{1-p}/(\mathcal{C}-p(\mathcal{C}-1)) ] ^{1/p-1}\) for \(p\in [ 1, \mathcal{C}/(\mathcal{C}-1)]\).
For power-low functions Malaksiano in [18, Lemma 2.2] proved that if \(I=(0,1)\), \(p>1\), and \(\alpha >-1/p\), then
Moreover, if \(0<\alpha <\beta \) and \(p>1\), then \(G^{p}(y^{\alpha };(0,1))< G^{p}(y^{\beta };(0,1))\). Also in [19, Lemma 2.2] Malaksiano proved that if \(I=(0,1)\), \(q>1\), and \(\alpha \in (-1,q-1)\), then
Moreover, if \(0<\alpha <\beta <q-1\) and \(q>1\), then \(A^{q}(y^{-\alpha };(0,1))< A^{q}(y^{-\beta };(0,1))\).
In recent years the study of the discrete analogues in harmonic analysis has become an active field of research. For example, the study of regularity and boundedness of discrete operators on \(l^{p}\) analogues for \(L^{p}\)-regularity and higher summability of sequences has been considered by some authors, see for example [2, 15–17, 26, 27] and the references they have cited. Whereas some results from Euclidean harmonic analysis admit an obvious variant in the discrete setting, others do not. The main challenge in such studies is that there are no general methods to study these questions, see for example [5–8, 26, 27, 30–32] and the references cited therein. We confine ourselves to proving the discrete analogue of Muckenhoupt results (Lemmas 1.1 and 1.3) and establish some inclusion properties between the discrete Muckenhoupt class and the discrete Gehring class. For structure and relations between classical Muckenhoupt and Gehring classes (in the integral forms) and their applications, we refer the reader to the papers [1, 3, 10–14, 18, 20–25, 28] and the references cited therein.
Throughout the paper, we assume that \(1< p<\infty \) and \(\mathbb{I}\) is a fixed finite interval from \(\mathbb{Z}_{+}\). A discrete weight u defined on \(\mathbb{Z}_{+}=\{1, 2,\ldots \}\) is a sequence \(u=\{u(n)\}_{n=1}^{\infty }\) of nonnegative real numbers. We consider the norm on \(l^{p}(\mathbb{Z}_{+})\) of the form
A discrete nonnegative weight u belongs to the discrete Muckenhoupt class \(\mathcal{A}^{1}(A)\) on the fixed interval \(\mathbb{I}\subset \mathbb{Z}_{+}\) for \(p>1\) and \(A>1\) if the inequality
holds for every subinterval \(J\subset \mathbb{I}\) and \(\vert J \vert \) is the cardinality of the set J. A discrete nonnegative weight u belongs to the discrete Muckenhoupt class \(\mathcal{A}^{p}(A)\) on the interval \(\mathbb{I}\subseteq \mathbb{Z}_{+}\) for \(p>1\) and \(A>1\) if the inequality
holds for every subinterval \(J\subset \mathbb{I}\). For a given exponent \(p>1 \), we define the \(\mathcal{A}^{p}\)-norm of the discrete weight u by the following quantity:
where the supremum is taken over all intervals \(J\subset \mathbb{I}\). Note that by Hölder’s inequality \(\mathcal{A}^{p}(u)\geq 1\) for all \(1< p<\infty \), and the following inclusion is true:
For a given exponent \(q>1\) and a constant \(\mathcal{K}>1\), a discrete nonnegative weight u belongs to the discrete Gehring class \(\mathcal{G}^{q}(\mathcal{K})\) (or satisfies a reverse Hölder inequality) on the interval \(\mathbb{I}\) if, for every subinterval \(J\subseteq \mathbb{I}\), we have
For a given exponent \(q>1\), we define the \(\mathcal{G}^{q}\)-norm of u as follows:
where the supremum is taken over all intervals \(J\subseteq \mathbb{I}\) and represents the best constant for which the \(\mathcal{G}^{q}\)-condition holds true independently on the interval \(J\subseteq \mathbb{I}\). Note that by Hölder’s inequality \(\mathcal{G}^{q}(u)\geq 1\) for all \(1< q<\infty \), and that the following inclusion is true:
Our aim in this paper, in the next section, is to prove the discrete analogy of the Muckenhoupt results which include the self-improving property of the Muckenhoupt class and we also prove the transition property due to Bojarski, Sbordone, and Wik [3] with a sharp constant. In particular, we prove that if \(u\in \mathcal{A}^{p}(\mathcal{C})\) then there exists \(q< p\) such that \(u\in \mathcal{A}^{q}(\mathcal{C}_{1})\) and if \(u\in \mathcal{A}^{p}\) then \(u^{q}\in \mathcal{A}^{p}\) for some \(q>1\). For the relation between the discrete Muckenhoupt class and the discrete Gehring class, we prove that if \(u\in \mathcal{A}^{1}(\mathcal{C})\) then \(u\in \mathcal{G}^{q}(\mathcal{K})\) with exact values of the exponent q and the constant \(\mathcal{K}\). In addition, for illustration, we establish the exact values of the Muckenhoupt norm \(\mathcal{A}^{q}(n^{\alpha })\) and the Gehring norm \(\mathcal{G}^{p}(n^{\alpha })\) for power-low sequences \(\{n^{\alpha }\}\).
2 Main results
Throughout this section, we assume that the sequences in the statements of theorems are nonnegative and assume for the sake of conventions that \(0\cdot \infty =0\), \(0/0=0\), \(\sum_{s=a}^{b}y(s)=0\), whenever \(a>b\), and
We fix an interval \(\mathbb{I}\subset \mathbb{Z}_{+}\) and consider \(\mathbb{I}\) of the form \(\{1, 2,\ldots,k,\ldots,N\}\) (or \([1,N]\subset \mathbb{Z}_{+}\)). For any weight \(u:\mathbb{I}\rightarrow \mathbb{R}^{+}\) which is nonnegative, we define the operator \(\mathcal{H}u:\mathbb{I}\rightarrow \mathbb{R}^{+}\) by
The following lemma gives some properties of the operator \(\mathcal{H}u \) that will be needed later.
Lemma 2.1
Let \(\mathcal{H}u\) be defined as in (17). Then we have the following properties:
-
(1).
If u is nonincreasing, then so is \(\mathcal{H}u(k)\) and \(\mathcal{H}u(k)\geq u(k)\).
-
(2).
If u is nondecreasing, then so is \(\mathcal{H}u(k)\) and \(\mathcal{H}u(k)\leq u(k)\).
Proof
(1). From the definition of \(\mathcal{H}\), we see that: If u is nonincreasing, then
Hence, we have by using the above inequality that
thus \(\mathcal{H}u(k)\) is nonincreasing. This completes the proof of the first case.
(2). If u is nondecreasing, then
Also, we have by using the above inequality that
thus \(\mathcal{H}u(k)\) is nondecreasing. This completes the proof of the second case. The proof is complete. □
Remark 2.1
As a consequence of Lemma 2.1, we notice that if \(q>1\) and u is nonnegative, nonincreasing, then \(\mathcal{H}u^{q}\) is also nonnegative and nonincreasing and \(\mathcal{H}u^{q}\geq u^{q}\). We also notice from Lemma 2.1 that if \(q>1\) and u is nonnegative and nondecreasing, then \(\mathcal{H}u^{q}\) is also nonnegative and nondecreasing and \(\mathcal{H}u^{q}\leq u^{q}\).
In the proof of the next lemma, we shall use the notion of the characteristic function \(\chi _{J}\) defined on a set J by
Lemma 2.2
Let \(1< q<\infty \), and let \(u\in \mathcal{A}^{q}(\mathcal{C})\) for \(\mathcal{C}>1\). Then, for any subset \(J= \{ 1,2,\ldots,k \} \), we have that
Proof
For any nonnegative sequence \(\lambda (k)\) defined on \(\mathbb{I}\), we see for any subset \(J= \{ 1,2,\ldots,k \} \subset \mathbb{I}\) that
By using \(q^{\prime }=q/(q-1)\), we get that
That is,
Multiplying both sides by \(( 1/(k)^{q} ) \sum_{s=1}^{k}u(s)\), we get that
Now, since \(u\in \mathcal{A}^{q}(\mathcal{C})\), for \(\mathcal{C}>1\), we see that
By using (21) in (20), we get that
For \(\lambda (s)=\chi _{J}(s)\), we see that \(\sum_{s=1}^{k}u(s)\leq \mathcal{C}k\sup_{s\in J}u(s)\). That is,
which is the desired inequality (19). The proof is complete. □
Remark 2.2
The above lemma can be written as: if \(u\in \mathcal{A}^{q}(\mathcal{C})\) for some \(\mathcal{C}>1\), then \(\mathcal{H}u(k)\leq \mathcal{C}\sup_{k\in J}u(k)\).
Lemma 2.3
Let \(1< q<\infty \) and u be a nonincreasing weight. If \(u\in \mathcal{A}^{q}(\mathcal{C})\), then \(u\in \mathcal{A}^{1}(\mathcal{C})\).
Proof
To prove the lemma, we need to prove that: if
for some \(\mathcal{C}>1\) independent of k, then
for all \(1< s\leq k\), and \(k\in \mathbb{I}\). By using (22) and employing Lemma 3.1 in [29], we get that
Now, by applying property (2) in Lemma 2.1 for the nondecreasing weight \(\log u(s)\), we obtain that
for all \(1< s\leq k\). The proof is complete. □
Lemma 2.4
Let \(1< p<\infty \) and u be a nonnegative weight. Then \(u\in \mathcal{A}^{p}\) if and only if \(u^{1-p^{\prime }}\in \mathcal{A}^{p^{\prime }}\), with \(\mathcal{A}^{p^{\prime }}(u^{1-p^{\prime }})= [ \mathcal{A}^{p}(u) ] ^{p^{\prime }-1}\), where \(p^{\prime }\) is the conjugate of p.
Proof
From the definition of the class \(\mathcal{A}^{p}\), and since \(1-p^{\prime }=1/(1-p)<0\), we have for \(A>1\) and all \(k\in \mathbb{I}\) that
with \(\mathcal{A}^{p^{\prime }}(u^{1-p^{\prime }})= [ \mathcal{A}^{p}(u) ] ^{p^{\prime }-1}\). The proof is complete. □
The following lemma will play an important role in proving one of our main results.
Lemma 2.5
Assume that u is a nonincreasing weight, and let \(A(k)=\sum_{s=1}^{k}u(s)\). If \(p>1\), then
for all \(k\in \mathbb{I}\).
Proof
Since u is nonincreasing, then so is \(\omega (s)=A(s)/s\), thus we have
By applying Young’s inequality
with \(q=\frac{p}{p-1}\), \(a=\omega (s)\) and \(b=\omega ^{p-1}(s)\), we obtain that
By substituting (27) into (26), we obtain
Using (28) and since \(\frac{1-p}{p}<0\), then we have
Rewriting the last inequality and using \(\omega =A(k)/k\), we obtain that
which is the required inequality (25). The proof is complete. □
As a consequence of the above lemma and by the definition of \(\mathcal{H}\), and the fact that \(( \mathcal{H}u ) (k)=A(k)/k\), we obtain the following lemma.
Lemma 2.6
Assume that u is a nonincreasing weight, and let \(\mathcal{H}u\) be defined as in (17). If \(p>1\), then
for all \(k\in \mathbb{I}\).
Theorem 2.1
Let \(u:\mathbb{I}\rightarrow \mathbb{R}^{+}\) be a nonnegative and nonincreasing weight. If
then, for \(r\in {}[ 1, \mathcal{C}/(\mathcal{C} -1))\), we have that
where A is given by
Proof
From the definition of \(\mathcal{H}u(k)\) and Lemma 2.5 with \(p=r>1\), we see that
Define the function
By noting that, for \(\eta \geq \gamma \), we have
That is, \(\Phi (\eta )\) is decreasing for \(\eta \geq \gamma \). From Lemma 2.1, we see that
Now, by taking that \(\gamma =u(s)\), \(\beta =\mathcal{H}u(s)\) and \(\theta =\mathcal{C}u(k)\), we see that \(\gamma \leq \beta \leq \theta \), and then we have
This implies, by using (33), that
By combining (32) and (34), we get that
This implies that
The proof is complete. □
Remark 2.3
Theorem 2.1 is a discrete version of Lemma 1.2 and proves that if \(u\in \mathcal{A}^{1}(\mathcal{C})\) then \(u\in \mathcal{G}^{r}(A)\) for \(r\in {}[ 1,\mathcal{C}/(\mathcal{C}-1))\) and a constant A given by (31).
Theorem 2.2
Let u be a nondecreasing weight. If \(1< p<\infty \) and \(u\in \mathcal{A}^{p}(\mathcal{C})\), then there exist constants q and \(\mathcal{C}_{1}\) depending on p and \(\mathcal{C}\) such that \(1< q< p\) and \(u\in \mathcal{A}^{q}(\mathcal{C}_{1})\).
Proof
Since \(u\in \mathcal{A}^{p}(\mathcal{C})\), then it satisfies the condition
From Lemma 2.4, we see also that \(u^{1-p^{\prime }}\) satisfies the \(\mathcal{A}^{p^{\prime }-1}\)-condition
Since \(1-p^{\prime }=-1/(p-1)\) and u is nondecreasing, we see that \(u^{-\frac{1}{p-1}}\) is nonincreasing. Now, applying Lemmas 2.2 and 2.1, we see that
for \(r\in (1,r_{0})\), with a constant A. Combining (35) and (36), we have that
This shows that u satisfies the \(\mathcal{A}^{q}\)-condition, where \(q=1+(p-1)r\) and \(\mathcal{C}_{1}=A^{(p-1)/r}\mathcal{C}\). It is immediate that q and \(\mathcal{C}_{1}\) depend only on \(\mathcal{C}\) and p. The proof is complete. □
Theorem 2.3
Let u be a nondecreasing weight on \(\mathbb{I}\) with \(\vert \mathbb{I} \vert =2^{r}\) for \(r\in \mathbb{Z}_{+}\). If \(1< p<\infty \) and u satisfies the \(\mathcal{A}^{p}\)-condition (35) with constant \(\mathcal{C}\), then there exist constants q and \(\mathcal{C}_{1}\) depending on p and \(\mathcal{C}\) such that \(1< q\) and \(u^{q}\) satisfies the \(\mathcal{A}^{p}\)-condition with constant \(\mathcal{C}_{1}\).
Proof
In [4] Böttcher and Seybold proved that if u satisfies the \(\mathcal{A}^{p}\)-condition (35) with constant \(\mathcal{C}\), then there exists a constant \(m>1\) and \(\mathcal{C}_{1}<\infty \) depending only on p such that
for all \(m>1\) and all even natural numbers k. Now, by combining (36) and (37), we see that
That is,
No, let \(q=\min \{r, m\}\), then Hölder’s inequality implies that
and then (38) shows that
where \(\mathcal{L}=\mathcal{C}_{1}^{1/m}A^{(p-1)/r}\mathcal{C}\). Taking the \(q^{th}\) power, we get the desired result for \(p>1\). The proof is complete. □
One of the basic special formulas in the differential calculus is the power rule \(( d/dt ) t^{k}=kt^{k-1}\). Unfortunately, the difference of a power is complicated and not very useful since
In the following, we show how we can use the difference calculus to prove the property of the parameter of Muckenhoupt and Gehring classes for power-low sequences.
Lemma 2.7
-
(i).
If \(p>1\) and \(-1<\lambda <p-1\), then the norm \(\mathcal{A}^{p}(n^{\lambda })=\Phi (p,\lambda )\), where
$$ \Phi (p,\lambda )= \textstyle\begin{cases} \frac{2^{-\lambda }}{(1+\lambda )} ( \frac{p-1}{p-\lambda -1} ) ^{p-1},& \textit{if }\lambda < 0, \\ \frac{2^{\lambda }}{(1+\lambda )} ( \frac{p-1}{p-\lambda -1} ) ^{p-1},&\textit{if }\lambda >0.\end{cases} $$(39) -
(ii).
If \(0<\lambda <\beta \), then \(\mathcal{A}^{p}(n^{-\lambda })<\mathcal{A}^{p}(n^{-\beta })\).
Proof
Consider the interval \(J=[a,N]\subset \mathbb{I}\). From the definition of the norm of \(\mathcal{A}^{p}(u)\), we see that
Now, we determine the summations in the right-hand side. We start by the summation \(\sum_{n=a}^{N-1}n^{\lambda }\). Noting that \(-1<\lambda <p-1 \) and since \(p>1\), we see that \(0<1+\lambda <p\) and
We consider different cases:
(1). The case when \(\lambda <0\). In this case we have that \(1+\lambda <1\), and we see that \(\Delta n^{1+\lambda } =(n+1)^{1+\lambda }-n^{1+\lambda }\). By using the inequality
we see that
So that
Now, we determine the summation \(( \sum_{n=a}^{N-1}n^{\frac{\lambda }{1-p}} ) ^{p-1}\). Since \(\lambda <0\), we see that \(1+\frac{\lambda }{1-p}>1\) and then by using the inequality
we see that
and hence we obtain
By combining (41) and (43), we see that
(2). The case when \(\lambda >0\). In this case, we have that \(\lambda +1>1\), and then we apply inequality (42) to get that
This implies that
Since \(\lambda >0\), we see that \(1+\frac{\lambda }{1-p}<1\), then by applying inequality (40), we get that
and so we get that
By combining (45) and (46), we have that
From (44) and (47), we see that
Denote \(t=N/a>1\), we see that
We define
for \(t>1\), \(p>1\), and \(-1<\lambda <p-1\). Now, by using Lemma 2.2 in [19], we see that \(\sup_{t>1}\zeta (t,p,\lambda )=1\) for all fixed \(p>1\) and \(-1<\lambda <p-1\). This gives us that \(\mathcal{A}^{p}(n^{\lambda })=\Phi (p,\lambda )\), which proves statement (i).
By noting that the function
is a decreasing function for \(x>0\), we have that \(F(-\lambda )< F(-\beta )\) if \(0<\lambda <\beta \). This completes the proof of (ii). The proof is complete. □
Lemma 2.8
-
(i).
If \(p>1\) and \(\alpha >-1/p\), then the norm \(( \mathcal{G}^{p}(n^{\alpha }) ) ^{\frac{p-1}{p}}:=\Psi (p,\alpha )\), where
$$ \Psi (p,\alpha )= \textstyle\begin{cases} \frac{2^{-\alpha } ( 1+\alpha ) }{ ( 1+p\alpha ) ^{1/p}},&\textit{if }\alpha < 0, \\ \frac{2^{\alpha } ( 1+\alpha ) }{ ( 1+p\alpha ) ^{1/p}},&\textit{if }\alpha >0.\end{cases} $$(48) -
(ii).
If \(0<\alpha <\beta \), then \(( \mathcal{G}^{p}(n^{\alpha }) ) ^{\frac{p-1}{p}}< ( \mathcal{G}^{p}(n^{\beta }) ) ^{\frac{p-1}{p}}\).
Proof
Consider the interval \(I=[a,N]\subset J\). From the definition of the norm of \(\mathcal{G}^{q}(u)\), we see that
Now, we determine the summations in the right-hand side. We start by the summation
When \(\alpha <0\), we note that \(-1/p<\alpha <0\). Since \(p>1\), we see that \(0<1+\alpha <1\). In this case, we get by employing inequality (40) that
So that
Now, we determine the summation
By noting that \(-1/p<\alpha <0\), we see \(0<1+p\alpha <1\), and then by employing inequality (40), we see that
and so we obtain
By combining (49) and (50), we see that
Now, we consider the case when \(\alpha >0\). In this case, we see that \(\alpha +1>1\), and then by applying inequality (42) we obtain
This implies that
By combining the two cases, we have
Now, since \(\alpha >0\), then \(1+p\alpha >1\), and in this case, we see that \(\Delta n^{1+p\alpha }> ( 1+p\alpha ) n^{p\alpha }\), and so we get that
So we have that
By combining(52) and (53), we have that
From (48) and (54), we see that
Denote \(t=N/a>1\), we see that
We define
for \(t>1\), \(p>1\), and \(\alpha >-1/p\). Now, by using Lemma 2.2 in [18], we see that
for all fixed \(p>1\) and \(\alpha >-1/p\). This gives us that
which proves statement (i). By noting that the function
is an increasing function for \(x>0\), we have that \(F(\alpha )< F(\beta )\) if \(0<\alpha <\beta \). This completes the proof of (ii). The proof is complete. □
3 Conclusion
In this paper, we studied the structure of the discrete cases of the well-known Muckenhoupt class \(\mathcal{A}^{p}(C)\) and Gehring class \(\mathcal{G}^{q}(K)\). We established exact values of the norms of the discrete Muckenhoupt and Gehring classes for power-low sequences. The relations between the two classes have also been discussed. In fact we have proved that if the weight w belongs to the Muckenhoupt class \(\mathcal{A}^{1}(C)\), then it belongs to the same Gehring classes \(\mathcal{G}^{q}(K)\) for some q obtained from a solution of an algebraic equation.
References
Basile, L., D’Apuzzo, L., Squillante, M.: The limit class of Gehring type \(G_{\infty }\). Boll. UMI 11, 871–884 (1997)
Bober, J., Carneiro, E., Hughes, K., Pierce, L.B.: On a discrete version of Tanaka’s theorem for maximal functions. Proc. Am. Math. Soc. 140, 1669–1680 (2012)
Bojarski, B., Sbordone, C., Wik, I.: The Muckenhoupt class \(A_{1}(\mathbb{R})\). Stud. Math. 101, 155–163 (1992)
Böttcher, A., Seybold, M.: Wackelsatz and Stechkin’s inequality for discrete Muckenhoupt weights. Preprint no. 99-7, TU Chemnitz (1999)
Böttcher, A., Seybold, M.: Discrete Wiener–Hopf operators on spaces with Muckenhoupt weight. Stud. Math. 143, 121–144 (2000)
Böttcher, A., Seybold, M.: Discrete one-dimensional zero-order pseudodifferential operators on spaces with Muckenhoupt weight. Algebra Anal. 13, 116–129 (2001)
Böttcher, A., Spitkovsky, I.: Wiener–Hopf integral operators with PC symbols on spaces with Muckenhoupt weight. Rev. Mat. Iberoam. 9, 257–279 (1993)
Böttcher, A., Spitkovsky, I.: Pseudodifferential operators with heavy spectrum. Integral Equ. Oper. Theory 19, 251–269 (1994)
Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 51, 241–250 (1974)
Franciosi, M.: Weighted rearrangement and higher integrability results. Stud. Math. 92, 31–39 (1989)
Franciosi, M., Moscariello, G.: Higher integrability results. Manuscr. Math. 52, 151–170 (1985)
Gehring, F.W.: The \(L^{p}\)-integrability of the partial derivatives of a quasiconformal mapping. Bull. Am. Math. Soc. 97, 465–466 (1973)
Gehring, F.W.: The \(L^{p}\)-integrability of the partial derivatives of a quasi-conformal mapping. Acta Math. 130, 265–277 (1973)
Korenovskii, A.A.: The exact continuation of a reverse Hölder inequality and Muckenhoupt’s conditions. Math. Notes 52, 1192–1201 (1992)
Liu, F.: Endpoint regularity of discrete multisublinear fractional maximal operators associated with \(l^{1}\)-balls. J. Inequal. Appl. 2018, 33 (2018)
Madrid, J.: Sharp inequalities for the variation of the discrete maximal function. Bull. Aust. Math. Soc. 95, 94–107 (2017)
Magyar, A., Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis: spherical averages. Ann. Math. 155, 189–208 (2002)
Malaksiano, N.A.: The exact inclusions of Gehring classes in Muckenhoupt classes. Mat. Zametki 70(5), 742–750 (2001) (in Russian); translation in Math. Notes 70(5–6), 673–681 (2001)
Malaksiano, N.A.: The precise embeddings of one-dimensional Muckenhoupt classes in Gehring classes. Acta Sci. Math. 68, 237–248 (2002)
Mishra, L.N.: On existence and behavior of solutions to some nonlinear integral equations with applications. Ph.D. Thesis, National Institute of Technology, Silchar 788 010, Assam, India (2017)
Mishra, V.N.: Some problems on approximations of functions in Banach spaces. Ph.D. Thesis, Indian Institute of Technology, Roorkee 247 667, Uttarakhand, India (2007)
Mishra, V.N., Delen, S., Cangul, I.N.: Algebraic structure of graph operations in terms of degree sequences. Int. J. Anal. Appl. 16, 809–821 (2018)
Mishra, V.N., Khatri, K., Mishra, L.N.: Using linear operators to approximate signals of \(\operatorname{Lip}(\alpha ,p)\), \((p\geq 1)\)-class. Filomat 27, 353–363 (2013)
Mishra, V.N., Mishra, L.N.: Trigonometric approximation of signals (functions) in \(L^{p}\)-norm. Int. J. Contemp. Math. Sci. 7, 909–918 (2012)
Mucheknhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)
Saker, S.H., Krnić, M., Pečarić, J.: Higher summability theorems from the weighted reverse discrete inequalities. Appl. Anal. Discrete Math. 13, 423–439 (2019)
Saker, S.H., Kubiaczyk, I.: Higher summability and discrete weighted Muckenhoupt and Gehring type inequalities. Proc. Edinb. Math. Soc. 64(4), 949–973 (2019)
Saker, S.H., O’Regan, D., Agarwal, R.P.: A higher integrability theorem from a reverse weighted inequality. Bull. Lond. Math. Soc. 51(6), 967–977 (2019)
Saker, S.H., Rabie, S.S., Alzabut, J., O’Regan, D., Agarwal, R.P.: Basic properties of discrete Muckenhoupt and Gehring classes and some fundamental relations. Preprint
Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis I: \(l^{2}\)-estimates for singular Radon transforms. Am. J. Math. 121, 1291–1336 (1999)
Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis II: fractional integration. Am. J. Math. Anal. 80, 335–355 (2000)
Stein, E.M., Wainger, S.: Two discrete fractional integral operators revisited. J. Anal. Math. 87, 451–479 (2002)
Acknowledgements
This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.
Availability of data and materials
Not applicable.
Funding
Fast-track Research Funding Program, Deanship of Scientific Research at Princess Nourah bint Abdulrahman University.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to the writing of this paper. All authors approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Saker, S.H., Rabie, S.S., AlNemer, G. et al. On structure of discrete Muckenhoupt and discrete Gehring classes. J Inequal Appl 2020, 233 (2020). https://doi.org/10.1186/s13660-020-02497-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-020-02497-4