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Abstract
In this paper, we study the structure of the discrete Muckenhoupt classAp(C) and the
discrete Gehring class Gq(K). In particular, we prove that the self-improving property
of the Muckenhoupt class holds, i.e., we prove that if u ∈Ap(C) then there exists q < p
such that u ∈ Aq(C1). Next, we prove that the power rule also holds, i.e., we prove that
if u ∈Ap then uq ∈Ap for some q > 1. The relation between the Muckenhoupt class
A1(C) and the Gehring class is also discussed. For illustrations, we give exact values of
the norms of Muckenhoupt and Gehring classes for power-low sequences. The results
are proved by some algebraic inequalities and some new inequalities designed and
proved for this purpose.
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1 Introduction
We fix an interval I ⊂ R and consider subintervals I of I and denote by |I| the Lebesgue
measure of I . A weight w is nonnegative locally integrable function. In the literature a
nonnegative measurable weight function w defined on a bounded fixed interval I is called
an Ap(C)-Muckenhoupt weight for 1 < p < ∞ if there exists a constant C < ∞ such that

(
1
|I|

∫
I
w(t) dt

)(
1
|I|

∫
I
w– 1

p–1 (t) dt
)p–1

≤ C (1)

for every subinterval I ⊂ I. For a given exponent p > 1, we define the Ap-norm of the
function w by the following quantity:

Ap(w) := sup
I⊂I

(
1
|I|

∫
I
w(t) dt

)(
1
|I|

∫
I
w– 1

p–1 (t) dt
)p–1

, (2)

where the supremum is taken over all intervals I ⊂ I. For a given fixed constant C > 1, if
the weight w belongs to Ap(C), then Ap(w) ≤ C . A weight w satisfying the condition

1
|I|

∫
I
w(x) dx ≤ Cw(x) for every x ∈ I (3)
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is called an A1(C)-Muckenhoupt weight where C > 1. In [25] Muckenhoupt proved the
following result.

Lemma 1.1 If w is a nonincreasing weight satisfying condition (3), then there exists p ∈
[1,C/(C – 1)] such that

1
|I|

∫
I
wp(x) dx ≤ C

C – p(C – 1)

(
1
|I|

∫
I
w(x) dx

)p

. (4)

Bojarski, Sbordone, and Wik [3] improved the Muckenhoupt result by excluding the
monotonicity condition on the weight w by using the rearrangement ω∗ of the function ω

over the interval I and established the best constant. In particular, they proved the follow-
ing lemma.

Lemma 1.2 If w is a nonincreasing weight and satisfies condition (3) with C > 1, then there
exists p ∈ [1,C/(C – 1)] such that

1
|I|

∫
I
ωp(t) dt ≤ C1–p

C – p(C – 1)

(
1
|I|

∫
I
ω(s) ds

)p

. (5)

In [25] Muckenhoupt also proved the following result.

Lemma 1.3 If 1 < p < ∞ and w satisfies the Ap-condition (1) on the interval I, with constant
C , then there exist constants q and C1 depending on p and C such that 1 < q < p and w
satisfies the Aq-condition

(
1
|I|

∫
I
w(t) dt

)(
1
|I|

∫
I
w– 1

q–1 (t) dt
)q–1

≤ C1 (6)

for every subinterval I ⊂ I.

In other words, Muckenhoupt’s result (see also Coifman and Fefferman [9]) for self-
improving property states that: if w ∈ Ap(C) then there exist a constant ε > 0 and a positive
constant C1 such that w ∈ Ap–ε(C1), and then

Ap(C) ⊂ Ap–ε(C1). (7)

Muckenhoupt [25] also proved the following result.

Lemma 1.4 If 1 < p < ∞ and w ∈ Ap(C) on the interval I with a constant C , then there exist
constants r and C1 depending only on p and C such that 1 < r and wr ∈ Ap(C1).

Gehring [12, 13] introduced a new class of weights satisfying reverse Hölder’s inequali-
ties in connection with the integrability properties of the gradient of quasiconformal map-
pings. The function w is said to belong to the Gehring class Gq(K) for q > 1 with a constant
K < ∞ if

(
1
|I|

∫
I
wq(x) dx

)1/q

≤K
(

1
|I|

∫
I
w(x) dx

)
for all I ⊂ I. (8)
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For a given exponent p > 1, we define the Gq(w)-norm of the weight w by the following
quantity:

Gq(w) = sup
I

[ |I|∫
I w(s) ds

(
1
|I|

∫
I
wq(s) ds

) 1
q
] q

q–1
,

where the supremum is taken over all I ⊂ I. For a given fixed constant K > 1, if the weight
w belongs to Gp(K), then Gp(w) ≤K.

Remark 1.1 Lemma 1.2 proves that if the weight w belongs to the Muckenhoupt class
A1(C), then w belongs to the Gehring class Gp(K) with K = [C1–p/(C – p(C – 1))]1/p–1 for
p ∈ [1,C/(C – 1)].

For power-low functions Malaksiano in [18, Lemma 2.2] proved that if I = (0, 1), p > 1,
and α > –1/p, then

(
Gp(yα

))(p–1)/p =
1 + α

(1 + pα)1/p . (9)

Moreover, if 0 < α < β and p > 1, then Gp(yα ; (0, 1)) < Gp(yβ ; (0, 1)). Also in [19, Lemma 2.2]
Malaksiano proved that if I = (0, 1), q > 1, and α ∈ (–1, q – 1), then

Aq(yα
)

=
(q – 1)(q–1)

(α + 1)(q – 1 – α)q–1 . (10)

Moreover, if 0 < α < β < q – 1 and q > 1, then Aq(y–α ; (0, 1)) < Aq(y–β ; (0, 1)).
In recent years the study of the discrete analogues in harmonic analysis has become an

active field of research. For example, the study of regularity and boundedness of discrete
operators on lp analogues for Lp-regularity and higher summability of sequences has been
considered by some authors, see for example [2, 15–17, 26, 27] and the references they have
cited. Whereas some results from Euclidean harmonic analysis admit an obvious variant
in the discrete setting, others do not. The main challenge in such studies is that there
are no general methods to study these questions, see for example [5–8, 26, 27, 30–32]
and the references cited therein. We confine ourselves to proving the discrete analogue
of Muckenhoupt results (Lemmas 1.1 and 1.3) and establish some inclusion properties
between the discrete Muckenhoupt class and the discrete Gehring class. For structure
and relations between classical Muckenhoupt and Gehring classes (in the integral forms)
and their applications, we refer the reader to the papers [1, 3, 10–14, 18, 20–25, 28] and
the references cited therein.

Throughout the paper, we assume that 1 < p < ∞ and I is a fixed finite interval from Z+.
A discrete weight u defined on Z+ = {1, 2, . . .} is a sequence u = {u(n)}∞n=1 of nonnegative
real numbers. We consider the norm on lp(Z+) of the form

‖u‖lp(Z+) :=

( ∞∑
n=1

∣∣u(n)
∣∣p

)1/p

< ∞.
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A discrete nonnegative weight u belongs to the discrete Muckenhoupt class A1(A) on the
fixed interval I ⊂ Z+ for p > 1 and A > 1 if the inequality

1
|J|

∑
k∈J

u(k) ≤ Au(k) (11)

holds for every subinterval J ⊂ I and |J| is the cardinality of the set J . A discrete nonnega-
tive weight u belongs to the discrete Muckenhoupt class Ap(A) on the interval I ⊆ Z+ for
p > 1 and A > 1 if the inequality

(
1
|J|

∑
k∈J

u(k)
)(

1
|J|

∑
k∈J

u
–1

p–1 (k)
)p–1

≤ A (12)

holds for every subinterval J ⊂ I. For a given exponent p > 1, we define the Ap-norm of
the discrete weight u by the following quantity:

Ap(u) := sup
J⊂I

(
1
|J|

∑
k∈J

u(k)
)(

1
|I|

∑
k∈J

u
–1

p–1 (k)
)p–1

, (13)

where the supremum is taken over all intervals J ⊂ I. Note that by Hölder’s inequality
Ap(u) ≥ 1 for all 1 < p < ∞, and the following inclusion is true:

if 1 < p ≤ q < ∞, then A1 ⊂Ap ⊂Aq and Aq(u) ≤Ap(u).

For a given exponent q > 1 and a constant K > 1, a discrete nonnegative weight u belongs
to the discrete Gehring class Gq(K) (or satisfies a reverse Hölder inequality) on the interval
I if, for every subinterval J ⊆ I, we have

(
1
|J|

∑
k∈J

uq(k)
)1/q

≤K
(

1
|J|

∑
k∈J

u(k)
)

. (14)

For a given exponent q > 1, we define the Gq-norm of u as follows:

Gq(u) := sup
J⊂I

[(
1
|J|

∑
k∈J

u(k)
)–1( 1

|J|
∑
k∈J

uq(k)
) 1

q
] q

q–1
, (15)

where the supremum is taken over all intervals J ⊆ I and represents the best constant
for which the Gq-condition holds true independently on the interval J ⊆ I. Note that by
Hölder’s inequality Gq(u) ≥ 1 for all 1 < q < ∞, and that the following inclusion is true:

if 1 < p ≤ q < ∞, then Gq ⊂ Gp and 1 ≤ Gp(u) ≤ Gq(u). (16)

Our aim in this paper, in the next section, is to prove the discrete analogy of the Mucken-
houpt results which include the self-improving property of the Muckenhoupt class and we
also prove the transition property due to Bojarski, Sbordone, and Wik [3] with a sharp con-
stant. In particular, we prove that if u ∈Ap(C) then there exists q < p such that u ∈Aq(C1)
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and if u ∈ Ap then uq ∈ Ap for some q > 1. For the relation between the discrete Muck-
enhoupt class and the discrete Gehring class, we prove that if u ∈ A1(C) then u ∈ Gq(K)
with exact values of the exponent q and the constant K. In addition, for illustration, we
establish the exact values of the Muckenhoupt norm Aq(nα) and the Gehring norm Gp(nα)
for power-low sequences {nα}.

2 Main results
Throughout this section, we assume that the sequences in the statements of theorems are
nonnegative and assume for the sake of conventions that 0 · ∞ = 0, 0/0 = 0,

∑b
s=a y(s) = 0,

whenever a > b, and

�

( k–1∑
s=a

y(s)

)
= y(k),

k–1∑
s=a

�y(s) = y(k) – y(a).

We fix an interval I ⊂ Z+ and consider I of the form {1, 2, . . . , k, . . . , N} (or [1, N] ⊂ Z+). For
any weight u : I →R

+ which is nonnegative, we define the operator Hu : I →R
+ by

Hu(k) =
1
k

k∑
s=1

u(s), for all k ∈ I. (17)

The following lemma gives some properties of the operator Hu that will be needed later.

Lemma 2.1 Let Hu be defined as in (17). Then we have the following properties:
(1). If u is nonincreasing, then so is Hu(k) and Hu(k) ≥ u(k).
(2). If u is nondecreasing, then so is Hu(k) and Hu(k) ≤ u(k).

Proof (1). From the definition of H, we see that: If u is nonincreasing, then

Hu(k) =
1
k

k∑
s=1

u(s) ≥ 1
k

k∑
s=1

u(k) = u(k).

Hence, we have by using the above inequality that

�
(
Hu(k)

)
=

ku(k) –
∑k

s=1 u(s)
k(k + 1)

≤
∑k

s=1 u(s) –
∑k

s=1 u(s)
k(k + 1)

= 0,

thus Hu(k) is nonincreasing. This completes the proof of the first case.
(2). If u is nondecreasing, then

Hu(k) =
1
k

k∑
s=1

u(s) ≤ 1
k

k∑
s=1

u(k) = u(k).

Also, we have by using the above inequality that

�
(
Hu(k)

)
=

ku(k) –
∑k–1

s=1 u(s)
k(k + 1)

≥
∑k–1

s=1 u(s) –
∑k–1

s=1 u(s)
k(k + 1)

= 0,

thus Hu(k) is nondecreasing. This completes the proof of the second case. The proof is
complete. �
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Remark 2.1 As a consequence of Lemma 2.1, we notice that if q > 1 and u is nonnegative,
nonincreasing, then Huq is also nonnegative and nonincreasing and Huq ≥ uq. We also
notice from Lemma 2.1 that if q > 1 and u is nonnegative and nondecreasing, then Huq is
also nonnegative and nondecreasing and Huq ≤ uq.

In the proof of the next lemma, we shall use the notion of the characteristic function χJ

defined on a set J by

χJ (k) =

⎧⎨
⎩

1 for all elements k on J ,

0, otherwise.
(18)

Lemma 2.2 Let 1 < q < ∞, and let u ∈Aq(C) for C > 1. Then, for any subset J = {1, 2, . . . , k},
we have that

1
k

k∑
s=1

u(s) ≤ C sup
k∈J

u(k). (19)

Proof For any nonnegative sequence λ(k) defined on I, we see for any subset J =
{1, 2, . . . , k} ⊂ I that

k∑
s=1

λ(s) =
k∑

s=1

λ(s)u1/q(s)u–1/q(s)

≤
( k∑

s=1

λq(s)u(s)

)1/q( k∑
s=1

u–q′/q(s)

)1/q′

.

By using q′ = q/(q – 1), we get that

k∑
s=1

λ(s) ≤
( k∑

s=1

λq(s)u(s)

)1/q( k∑
s=1

u– 1
q–1 (s)

) q–1
q

.

That is,

( k∑
s=1

λ(s)

)q

≤
( k∑

s=1

λq(s)u(s)

)( k∑
s=1

u– 1
q–1 (s)

)q–1

.

Multiplying both sides by (1/(k)q)
∑k

s=1 u(s), we get that

1
(k)q

( k∑
s=1

λ(s)

)q k∑
s=1

u(s)

≤
( k∑

s=1

λq(s)u(s)

)(
1
k

k∑
s=1

u(s)

)(
1
k

k∑
s=1

u– 1
q–1 (s)

)q–1

. (20)

Now, since u ∈Aq(C), for C > 1, we see that

(
1
k

k∑
s=1

u(s)

)(
1
k

k∑
s=1

u
–1

q–1 (s)

)q–1

≤ C. (21)
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By using (21) in (20), we get that

1
(k)q

( k∑
s=1

λ(s)

)q k∑
s=1

u(s) ≤ C
( k∑

s=1

λq(s)u(s)

)

≤ C sup
s∈J

u(s)

( k∑
s=1

λq(s)

)
.

For λ(s) = χJ (s), we see that
∑k

s=1 u(s) ≤ Ck sups∈J u(s). That is,

1
k

k∑
s=1

u(s) ≤ C sup
k∈J

u(k),

which is the desired inequality (19). The proof is complete. �

Remark 2.2 The above lemma can be written as: if u ∈Aq(C) for some C > 1, then Hu(k) ≤
C supk∈J u(k).

Lemma 2.3 Let 1 < q < ∞ and u be a nonincreasing weight. If u ∈Aq(C), then u ∈A1(C).

Proof To prove the lemma, we need to prove that: if

(
1
k

k∑
s=1

u(s)

)(
1
k

k∑
s=1

u
–1

q–1 (s)

)q–1

≤ C for all k ∈ I, (22)

for some C > 1 independent of k, then

1
k

k∑
s=1

u(s) ≤ Cu(s) (23)

for all 1 < s ≤ k, and k ∈ I. By using (22) and employing Lemma 3.1 in [29], we get that

1
k

k∑
s=1

u(s) ≤ C exp

(
1
k

k∑
s=1

log u(s)

)
. (24)

Now, by applying property (2) in Lemma 2.1 for the nondecreasing weight log u(s), we
obtain that

1
k

k∑
s=1

u(s) ≤ C exp

(
1
k

k∑
s=1

log u(s)

)
≤ C exp

(
log u(k)

)

= Cu(k) ≤ Cu(s)

for all 1 < s ≤ k. The proof is complete. �

Lemma 2.4 Let 1 < p < ∞ and u be a nonnegative weight. Then u ∈ Ap if and only if
u1–p′ ∈Ap′ , with Ap′ (u1–p′ ) = [Ap(u)]p′–1, where p′ is the conjugate of p.
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Proof From the definition of the class Ap, and since 1 – p′ = 1/(1 – p) < 0, we have for A > 1
and all k ∈ I that

u ∈Ap ⇔ 1
k

k∑
s=1

u(s) ≤ A

(
1
k

k∑
s=1

u
1

1–p (s)

)1–p

⇔
(

1
k

k∑
s=1

u(s)

) 1
1–p

≥ A
1

1–p
1
k

k∑
s=1

u
1

1–p (s)

⇔ 1
k

k∑
s=1

u1–p′ ≤ Ap′–1

(
1
k

k∑
s=1

(
u1–p′) 1

1–p′
)1–p′

⇔ u1–p′ ∈Ap′
,

with Ap′ (u1–p′ ) = [Ap(u)]p′–1. The proof is complete. �

The following lemma will play an important role in proving one of our main results.

Lemma 2.5 Assume that u is a nonincreasing weight, and let A(k) =
∑k

s=1 u(s). If p > 1,
then

1
k

k∑
s=1

[
u(s)

Ap–1(s)
sp–1 –

p – 1
p

(A(s))p

sp

]
≤ 1

p
(A(k))p

kp (25)

for all k ∈ I.

Proof Since u is nonincreasing, then so is ω(s) = A(s)/s, thus we have

u(s)ωp–1(s) –
p – 1

p
ωp(s)

≤ u(s)ωp–1(s – 1) –
p – 1

p
ωp(s)

=
[
A(s) – A(s – 1)

]
ωp–1(s – 1) –

p – 1
p

ωp(s)

=
[
sω(s) – (s – 1)ω(s – 1)

]
ωp–1(s – 1) –

p – 1
p

ωp(s)

= sω(s)ωp–1(s – 1) – (s – 1)ωp(s – 1) –
p – 1

p
ωp(s). (26)

By applying Young’s inequality

ab ≤ ap

p
+

bq

q
, a, b > 0 and

1
p

+
1
q

= 1,

with q = p
p–1 , a = ω(s) and b = ωp–1(s), we obtain that

ω(s)ωp–1(s – 1) ≤ 1
p
ωp(s) +

p – 1
p

ωp(s – 1). (27)
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By substituting (27) into (26), we obtain

u(s)ωp–1(s) –
p – 1

p
ωp(s)

≤ s
[

1
p
ωp(s) +

p – 1
p

ωp(s – 1)
]

– (s – 1)ωp(s – 1) –
p – 1

p
ωp(s)

=
1
p
[
(p – 1)sωp(s – 1) – p(s – 1)ωp(s – 1) – (p – 1)ωp(s) + (s – 1)ωp(s – 1)

]

+
1
p
[
sωp(s) – (s – 1)ωp(s – 1)

]

= –
p – 1

p
�ωp(s – 1) +

1
p
�(s – 1)ωp(s – 1). (28)

Using (28) and since 1–p
p < 0, then we have

1
k

k∑
s=1

[
u(s)ωp–1(s) –

p – 1
p

ωp(s)
]

≤
(

1 – p
p

)
1
k

k∑
s=1

�ωp(s – 1) +
1
p

1
k

k∑
s=1

�(s – 1)ωp(s – 1)

=
(

1 – p
p

)
1
k
ωp(k) +

1
p
ωp(k) ≤ 1

p
ωp(k).

Rewriting the last inequality and using ω = A(k)/k, we obtain that

1
k

k∑
s=1

[
u(s)

Ap–1(s)
sp–1 –

p – 1
p

Ap(s)
sp

]
≤ 1

p
Ap(k)

kp ,

which is the required inequality (25). The proof is complete. �

As a consequence of the above lemma and by the definition of H, and the fact that
(Hu)(k) = A(k)/k, we obtain the following lemma.

Lemma 2.6 Assume that u is a nonincreasing weight, and let Hu be defined as in (17). If
p > 1, then

1
k

k∑
s=1

[
u(s)

(
Hu(s)

)p–1 –
(p – 1)

p
(
Hu(s)

)p
]

≤ 1
p
(
Hu(k)

)p

for all k ∈ I.

Theorem 2.1 Let u : I →R
+ be a nonnegative and nonincreasing weight. If

Hu(k) ≤ Cu(k) for some C > 1 and all k ∈ I, (29)

then, for r ∈ [1,C/(C – 1)), we have that

H
(
u(k)

)r ≤ A
[
Hu(k)

]r for all k ∈ I, (30)
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where A is given by

A :=
C1–r

r – (r – 1)C . (31)

Proof From the definition of Hu(k) and Lemma 2.5 with p = r > 1, we see that

1
k

k∑
s=1

[
u(s)

(
Hu(s)

)r–1 –
r – 1

r
(
Hu(s)

)r
]

≤ 1
r
(
Hu(k)

)r . (32)

Define the function

	(η) = γ ηr–1 –
r – 1

r
ηr for every γ > 0 and η ≥ γ . (33)

By noting that, for η ≥ γ , we have

	′(η) = γ (r – 1)ηr–2 – (r – 1)ηr–1(p – η)

≤ (r – 1)ηr–1 – (r – 1)ηr–1 ≤ 0.

That is, 	(η) is decreasing for η ≥ γ . From Lemma 2.1, we see that

Hu(s) ≥ u(s).

Now, by taking that γ = u(s), β = Hu(s) and θ = Cu(k), we see that γ ≤ β ≤ θ , and then we
have

	(γ ) ≥ 	(β) ≥ 	(θ ) for γ ≤ β ≤ θ .

This implies, by using (33), that

u(s)
(
Hu(s)

)r–1 –
r – 1

r
(
Hu(s)

)r

≥ u(s)
(
Cu(s)

)r–1 –
r – 1

r
(
Cu(s)

)r

= Cr–1(u(s)
)r –

r – 1
r

Cr(u(s)
)r = Cr–1

[
1 –

r – 1
r

C
](

u(s)
)r . (34)

By combining (32) and (34), we get that

Cr–1
[

r – (r – 1)C
r

]
1
k

k∑
s=1

(
u(s)

)r ≤ 1
r
(
Hu(k)

)r .

This implies that

1
k

k∑
s=1

(
u(s)

)r ≤ C1–r

r – (r – 1)C
(
Hu(k)

)r .

The proof is complete. �
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Remark 2.3 Theorem 2.1 is a discrete version of Lemma 1.2 and proves that if u ∈ A1(C)
then u ∈ Gr(A) for r ∈ [1,C/(C – 1)) and a constant A given by (31).

Theorem 2.2 Let u be a nondecreasing weight. If 1 < p < ∞ and u ∈Ap(C), then there exist
constants q and C1 depending on p and C such that 1 < q < p and u ∈Aq(C1).

Proof Since u ∈Ap(C), then it satisfies the condition

(
1
k

k∑
s=1

u(s)

)(
1
k

k∑
s=1

u
–1

p–1 (s)

)p–1

≤ C. (35)

From Lemma 2.4, we see also that u1–p′ satisfies the Ap′–1-condition

(
1
k

k∑
s=1

u1–p′ (s)

)(
1
k

k∑
s=1

(
u1–p′ (s)

) 1
1–p′

)p′–1

≤ Ap′–1.

Since 1 – p′ = –1/(p – 1) and u is nondecreasing, we see that u– 1
p–1 is nonincreasing. Now,

applying Lemmas 2.2 and 2.1, we see that

(
1
k

k∑
s=1

(
u(s)

)– r
p–1

)
≤ A

[
1
k

k∑
s=1

u– 1
p–1 (s))

]r

(36)

for r ∈ (1, r0), with a constant A. Combining (35) and (36), we have that

(
1
k

k∑
s=1

u(s)

)(
1
k

k∑
s=1

u– r
p–1 (s)

)(p–1)/r

≤ A(p–1)/r

(
1
k

k∑
s=1

u(s)

)[
1
k

k∑
s=1

u– 1
p–1 (s))

]p–1

≤ A(p–1)/rC.

This shows that u satisfies the Aq-condition, where q = 1 + (p – 1)r and C1 = A(p–1)/rC . It is
immediate that q and C1 depend only on C and p. The proof is complete. �

Theorem 2.3 Let u be a nondecreasing weight on I with |I| = 2r for r ∈ Z+. If 1 < p < ∞
and u satisfies the Ap-condition (35) with constant C , then there exist constants q and C1

depending on p and C such that 1 < q and uq satisfies the Ap-condition with constant C1.

Proof In [4] Böttcher and Seybold proved that if u satisfies the Ap-condition (35) with
constant C , then there exists a constant m > 1 and C1 < ∞ depending only on p such that

1
k

k∑
s=1

um(s) ≤ C1

(
1
k

k∑
s=1

u(s)

)m

(37)
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for all m > 1 and all even natural numbers k. Now, by combining (36) and (37), we see that

(
1
k

k∑
s=1

um(s)

)1/m(
1
k

k∑
s=1

u– r
p–1 (s)

)(p–1)/r

≤ C1/m
1 A(p–1)/rC

(
1
k

k∑
s=1

u(s)

)(
1
k

k∑
s=1

u(s)

)–1

.

That is,

(
1
k

k∑
s=1

um(s)

)1/m(
1
k

k∑
s=1

u– r
p–1 (s)

)(p–1)/r

≤ C1/m
1 A(p–1)/rC. (38)

No, let q = min{r, m}, then Hölder’s inequality implies that

[
1
k

k∑
s=1

|up(s)

] 1
p

≤
[

1
k

k∑
s=1

|uq(s)

] 1
q

for 1 < p < q,

and then (38) shows that

(
1
k

k∑
s=1

uq(s)

)1/q(
1
k

k∑
s=1

u– q
p–1 (s)

)(p–1)/q

≤L,

where L = C1/m
1 A(p–1)/rC . Taking the qth power, we get the desired result for p > 1. The

proof is complete. �

One of the basic special formulas in the differential calculus is the power rule (d/dt)tk =
ktk–1. Unfortunately, the difference of a power is complicated and not very useful since

�tn = (t + 1)n – tn =
n–1∑
k=0

(
n
k

)
tk .

In the following, we show how we can use the difference calculus to prove the property of
the parameter of Muckenhoupt and Gehring classes for power-low sequences.

Lemma 2.7
(i). If p > 1 and –1 < λ < p – 1, then the norm Ap(nλ) = 	(p,λ), where

	(p,λ) =

⎧⎨
⎩

2–λ

(1+λ) ( p–1
p–λ–1 )p–1, if λ < 0,

2λ

(1+λ) ( p–1
p–λ–1 )p–1, if λ > 0.

(39)

(ii). If 0 < λ < β , then Ap(n–λ) < Ap(n–β ).

Proof Consider the interval J = [a, N] ⊂ I. From the definition of the norm of Ap(u), we
see that

Ap(nλ
)

:= sup
[a,N]⊂I

(
1

N – a

N–1∑
n=a

nλ

)(
1

N – a

N–1∑
n=a

n
λ

1–p

)p–1

.
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Now, we determine the summations in the right-hand side. We start by the summation∑N–1
n=a nλ. Noting that –1 < λ < p – 1 and since p > 1, we see that 0 < 1 + λ < p and

0 < 1 +
λ

1 – p
<

p
p – 1

.

We consider different cases:
(1). The case when λ < 0. In this case we have that 1 + λ < 1, and we see that �n1+λ =

(n + 1)1+λ – n1+λ. By using the inequality

pyp–1(y – z) ≤ yp – zp ≤ pzp–1(y – z) for y ≥ z > 0 and 0 < p < 1, (40)

we see that

2λ(1 + λ)nλ ≤ (1 + λ)(n + 1)λ ≤ �n1+λ

= (n + 1)1+λ – n1+λ ≤ (1 + λ)nλ.

So that

1
N – a

N–1∑
n=a

nλ ≤ 1
N – a

1
2λ(1 + λ)

(
N1+λ – a1+λ

)
. (41)

Now, we determine the summation (
∑N–1

n=a n
λ

1–p )p–1. Since λ < 0, we see that 1 + λ
1–p > 1

and then by using the inequality

γ zγ –1(y – z) ≤ yγ – zγ ≤ γ yγ –1(y – z) for y ≥ z > 0,γ ≥ 1 or γ < 0, (42)

we see that

(
1 +

λ

1 – p

)
n

λ
1–p ≤ �n1+pλ = (n + 1)1+ λ

1–p – n1+ λ
1–p

≤
(

1 +
λ

1 – p

)
(n + 1)

λ
1–p ,

and hence we obtain

(
1

N – a

N–1∑
k=a

n
λ

1–p

)p–1

≤
(

p – 1
p – λ – 1

)p–1 (N1+ λ
1–p – a1+ λ

1–p )p–1

(N – a)p–1 . (43)

By combining (41) and (43), we see that

Ap(nλ
)

=
1

2λ(1 + λ)

(
p – 1

p – λ – 1

)p–1

× sup
[a,N]⊂I

(N1+λ – a1+λ)
(N – a)p

(
N1+ λ

1–p – a1+ λ
1–p

)p–1. (44)
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(2). The case when λ > 0. In this case, we have that λ+ 1 > 1, and then we apply inequality
(42) to get that

(1 + λ)nλ ≤ �n1+λ = (n + 1)1+λ – n1+λ ≤ (1 + λ)(1 + n)λ.

This implies that

1
N – a

N–1∑
k=a

nλ ≤ 1
N – a

1
(1 + λ)

(
N1+λ – a1+λ

)
. (45)

Since λ > 0, we see that 1 + λ
1–p < 1, then by applying inequality (40), we get that

2
λ

1–p

(
1 +

λ

1 – p

)
n

λ
1–p ≤

(
1 +

λ

1 – p

)
(n + 1)

λ
1–p ≤ �n1+ λ

1–p ,

and so we get that

(
1

N – a

N–1∑
k=a

n
λ

1–p

)p–1

≤ 2λ

(N – a)p–1

(
p – 1

p – λ – 1

)p–1(
N1+ λ

1–p – a1+ λ
1–p

)p–1. (46)

By combining (45) and (46), we have that

Ap(nλ
)

=
2λ

(1 + λ)

(
p – 1

p – λ – 1

)p–1

× sup
[a,N)⊂I

(N1+λ – a1+λ)
(N – a)p

(
N1+ λ

1–p – a1+ λ
1–p

)p–1. (47)

From (44) and (47), we see that

Ap(nλ
)

= 	(p,λ) sup
[a,N)⊂I

(N1+λ – a1+λ)
(N – a)p

(
N1+ λ

1–p – a1+ λ
1–p

)p–1.

Denote t = N/a > 1, we see that

(
N1+λ – a1+λ

)
(N – a)–p(N1+ λ

1–p – a1+ λ
1–p

)p–1

=
(
t1+λ – 1

)
(t – 1)–p(t1+ λ

1–p – 1
)p–1.

We define

ζ (t, p,λ) =
(
t1+λ – 1

)
(t – 1)–p(t1+ λ

1–p – 1
)p–1

for t > 1, p > 1, and –1 < λ < p – 1. Now, by using Lemma 2.2 in [19], we see that
supt>1 ζ (t, p,λ) = 1 for all fixed p > 1 and –1 < λ < p – 1. This gives us that Ap(nλ) = 	(p,λ),
which proves statement (i).

By noting that the function

F(x) =
2x

(1 + x)

(
1 – p

x + 1 – p

)p–1
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is a decreasing function for x > 0, we have that F(–λ) < F(–β) if 0 < λ < β . This completes
the proof of (ii). The proof is complete. �

Lemma 2.8
(i). If p > 1 and α > –1/p, then the norm (Gp(nα))

p–1
p := �(p,α), where

�(p,α) =

⎧⎨
⎩

2–α (1+α)
(1+pα)1/p , if α < 0,
2α (1+α)

(1+pα)1/p , if α > 0.
(48)

(ii). If 0 < α < β , then (Gp(nα))
p–1

p < (Gp(nβ ))
p–1

p .

Proof Consider the interval I = [a, N] ⊂ J . From the definition of the norm of Gq(u), we
see that

(
Gp(nα

)) p–1
p := sup

[a,N]⊂I

(
1

N – a

N–1∑
k=a

nα

)–1(
1

N – a

N–1∑
k=a

npα

) 1
p

.

Now, we determine the summations in the right-hand side. We start by the summation

N–1∑
k=a

nα .

When α < 0, we note that –1/p < α < 0. Since p > 1, we see that 0 < 1 + α < 1. In this case,
we get by employing inequality (40) that

(1 + α)(n + 1)α ≤ �n1+α = (n + 1)1+α – n1+α ≤ (1 + α)nα .

So that

1
N – a

N–1∑
k=a

nα ≥ 1
(1 + α)

1
N – a

(
N1+α – a1+α

)
. (49)

Now, we determine the summation

N–1∑
k=a

npα .

By noting that –1/p < α < 0, we see 0 < 1 + pα < 1, and then by employing inequality (40),
we see that

�n1+pα ≥ (n + 1)1+pα – n1+pα ≥ (1 + pα)(n + 1)pα ≥ 2pα(1 + pα)npα ,

and so we obtain

(
1

N – a

N–1∑
k=a

npα

) 1
p

≤ 1
2α(1 + pα)1/p

1
(N – a)1/p

(
N1+pα – a1+pα

)1/p. (50)
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By combining (49) and (50), we see that

(
Gp(nα

)) p–1
p =

1 + α

2α(1 + pα)1/p

× sup
[a,N)⊂I

(
N1+pα – a1+pα

)1/p(N – a)1– 1
p
(
N1+α – a1+α

)–1. (51)

Now, we consider the case when α > 0. In this case, we see that α + 1 > 1, and then by
applying inequality (42) we obtain

�n1+α = (n + 1)1+α – n1+α ≤ 2α(1 + α)nα .

This implies that

N–1∑
k=a

nα ≥ 1
2α(1 + α)

(
N1+α – a1+α

)
.

By combining the two cases, we have

(
1

N – a

N–1∑
k=a

nα

)–1

≤ 2α(1 + α)(N – a)
(
N1+α – a1+α

)–1. (52)

Now, since α > 0, then 1 + pα > 1, and in this case, we see that �n1+pα > (1 + pα)npα , and
so we get that

(N–1∑
k=a

npα

) 1
p

≤ 1
(1 + pα)1/p

(
N1+pα – a1+pα

)1/p.

So we have that

(
1

N – a

N–1∑
k=a

npα

) 1
p

≤ 1
(1 + pα)1/p

1
(N – a)1/p

(
N1+pα – a1+pα

)1/p. (53)

By combining(52) and (53), we have that

(
Gp(nα

)) p–1
p =

2α(1 + α)
(1 + pα)1/p sup

[a,N)⊂I

(
N1+pα – a1+pα

)1/p(N – a)1– 1
p
(
N1+α – a1+α

)–1. (54)

From (48) and (54), we see that

(
Gp(nα

)) p–1
p = �(p,α) sup

[a,N)⊂I

(
N1+pα – a1+pα

)1/p(N – a)1– 1
p
(
N1+α – a1+α

)–1.

Denote t = N/a > 1, we see that

(
N1+pα – a1+pα

)1/p(N – a)1– 1
p
(
N1+α – a1+α

)–1

= (t – 1)1– 1
p
(
t1+pα – 1

)1/p(t1+α – 1
)–1.
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We define

ζ (t, p,α) = (t – 1)1– 1
p
(
t1+pα – 1

)1/p(t1+α – 1
)–1

for t > 1, p > 1, and α > –1/p. Now, by using Lemma 2.2 in [18], we see that

sup
t>1

ζ (t, p,α) = 1

for all fixed p > 1 and α > –1/p. This gives us that

(
Gp(nα

)) p–1
p = �(p,α),

which proves statement (i). By noting that the function

F(x) =
2x(1 + x)

(1 + px)1/p

is an increasing function for x > 0, we have that F(α) < F(β) if 0 < α < β . This completes
the proof of (ii). The proof is complete. �

3 Conclusion
In this paper, we studied the structure of the discrete cases of the well-known Mucken-
houpt class Ap(C) and Gehring class Gq(K). We established exact values of the norms
of the discrete Muckenhoupt and Gehring classes for power-low sequences. The relations
between the two classes have also been discussed. In fact we have proved that if the weight
w belongs to the Muckenhoupt class A1(C), then it belongs to the same Gehring classes
Gq(K) for some q obtained from a solution of an algebraic equation.
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