Skip to main content

Radii problems for some classes of analytic functions associated with Legendre polynomials of odd degree

Abstract

The aim of the present paper is to study radii problems for two general classes including various known subclasses of analytic functions associated with the normalized form of Legendre polynomials of odd degree. We also obtain some special cases of the main results presented here with some useful examples.

1 Introduction and preliminaries

Let \(\mathbb{U}(r):=\{z\in \mathbb{C}: \vert z \vert < r\}\) be the disk in the complex plane \(\mathbb{C}\) centered at the origin, with radius \(r>0\), and denote by \(\mathbb{U}:=\mathbb{U}(1)\) the unit disk. We denote by \(\mathcal{A}\) the class of analytic functions in the unit disk \(\mathbb{U}\) normalized by \(f(0)=f^{\prime }(0)-1=0\), and let \(\mathcal{S}\) be the subclass of \(\mathcal{A}\) consisting of univalent functions.

We denote by \(\mathcal{S}^{*}(\alpha )\) the subclass of \(\mathcal{A}\) consisting of functions which are starlike of orderα in \(\mathbb{U}\), that is,

$$ \mathcal{S}^{*}(\alpha ):= \biggl\{ f\in \mathcal{A}:\operatorname{Re} \frac{zf'(z)}{f(z)}>\alpha , z\in \mathbb{U} \biggr\} ,\quad 0\le \alpha < 1. $$

Also, let us denote by \(\widetilde{\mathcal{S}}^{*}(\alpha )\) the subclass of \(\mathcal{A}\) consisting of functions which are strongly starlike of orderα in \(\mathbb{U}\), that is,

$$ \widetilde{\mathcal{S}}^{*}(\alpha ):= \biggl\{ f\in \mathcal{A}: \biggl\vert \arg \frac{zf^{\prime }(z)}{f(z)} \biggr\vert < \frac{\alpha \pi }{2}, z\in \mathbb{U} \biggr\} ,\quad 0\le \alpha < 1. $$

Thus, in particular, \(\mathcal{S}^{*}:=\mathcal{S}^{*}(0)=\widetilde{\mathcal{S}}^{*}(1)\) represents the class of starlike functions in the open unit disk \(\mathbb{U}\).

The real numbers

$$ r_{\alpha }^{\ast }(f):=\sup \biggl\{ r>0:\operatorname{Re} \frac{zf^{\prime }(z)}{f(z)}>\alpha , z\in \mathbb{U}(r) \biggr\} $$

and

$$ \widetilde{r_{\alpha }^{\ast }}(f):=\sup \biggl\{ r>0: \biggl\vert \arg \frac{zf^{\prime }(z)}{f(z)} \biggr\vert < \frac{\alpha \pi }{2}, z \in \mathbb{U}(r) \biggr\} $$

are called the radius of starlikeness of orderα and the radius of strong starlikeness of orderα of the function f, respectively. In particular, \(r^{\ast }(f):=r_{0}^{\ast }(f)=r_{1}^{\widetilde{\ast }}(f)\) is called the radius of starlikeness of the function f.

Recently, Darus et al. [8] considered the general class \(k-\mathcal{UCST}(\alpha )\) defined as follows.

Definition 1

Let \(f\in \mathcal{A}\). Then \(f\in k-\mathcal{UCST}(\alpha )\) if

$$ \operatorname{Re} \frac{ (zf^{\prime }(z) )^{\prime }}{f^{\prime }(z)}>k \biggl\vert (1- \alpha ) \frac{zf^{\prime }(z)}{f(z)}+ \alpha \frac{ (zf^{\prime }(z) )^{\prime }}{f^{\prime }(z)}-1 \biggr\vert , \quad z\in \mathbb{U}, $$

where \(k\ge 0\) and \(0\le \alpha \le 1\).

Remark 1

  1. (i)

    For \(k=0\) we get the class \(0-\mathcal{UCST}(\alpha )=:\mathcal{K}\), which includes the well-known class of convex functions, that is,

    $$ \operatorname{Re} \biggl(1+\frac{zf^{\prime \prime }(z)}{f^{\prime }(z)} \biggr)>0, \quad z\in \mathbb{U}. $$
  2. (ii)

    For \(\alpha =1\) we obtain the class \(k-\mathcal{UCST}(1)=:k-\mathcal{UCV}\) (see [11]), which includes the class of k-uniformly convex functions, that is,

    $$ \operatorname{Re} \biggl(1+\frac{zf^{\prime \prime }(z)}{f^{\prime }(z)} \biggr)>k \biggl\vert \frac{zf^{\prime \prime }(z)}{f^{\prime }(z)} \biggr\vert , \quad z\in \mathbb{U}. $$
  3. (iii)

    For \(k=1\) and \(\alpha =1\) we get the class \(1-\mathcal{UCST}(1)=:\mathcal{UCV}\) (see [13]), which includes the class of uniformly convex functions, that is,

    $$ \operatorname{Re} \biggl(1+\frac{zf^{\prime \prime }(z)}{f^{\prime }(z)} \biggr)> \biggl\vert \frac{zf^{\prime \prime }(z)}{f^{\prime }(z)} \biggr\vert , \quad z\in \mathbb{U}. $$
  4. (iv)

    For \(\alpha =0\) we have the class \(k-\mathcal{UCST}(0)=:k-\mathcal{MN}\) (see [14]), which represents the functions \(f\in \mathcal{A}\) satisfying

    $$ \operatorname{Re} \biggl(1+\frac{zf^{\prime \prime }(z)}{f^{\prime }(z)} \biggr)>k \biggl\vert \frac{zf^{\prime }(z)}{f(z)}-1 \biggr\vert , \quad z\in \mathbb{U}. $$
  5. (v)

    For \(k=1\) and \(\alpha =0\) we get the class \(1-\mathcal{UCST}(0)=:\mathcal{MN}\) (see [15]), which represents the functions \(f\in \mathcal{A}\) satisfying

    $$ \operatorname{Re} \biggl(1+\frac{zf^{\prime \prime }(z)}{f^{\prime }(z)} \biggr)> \biggl\vert \frac{zf^{\prime }(z)}{f(z)}-1 \biggr\vert , \quad z\in \mathbb{U}. $$

The real number

$$ r_{\alpha }^{k-\mathcal{UCST}}(f):=\sup \biggl\{ r>0:\operatorname{Re} \frac{ (zf^{\prime }(z) )^{\prime }}{f^{\prime }(z)}> k \biggl\vert (1- \alpha )\frac{zf^{\prime }(z)}{f(z)}+\alpha \biggl( \frac{ (zf^{\prime }(z) )^{\prime }}{f^{\prime }(z)} \biggr)-1 \biggr\vert , z\in \mathbb{U}(r) \biggr\} $$

is called the \(k-\mathcal{UCST}(\alpha )\)radius of the function f. We note that

$$ \begin{gathered} r_{\alpha }^{0-\mathcal{UCST}}(f)=:r^{c}(f), \quad\quad r_{1}^{k-\mathcal{UCST}}(f)=:r^{ucv}(f), \quad\quad r_{1}^{1-\mathcal{UCST}}(f)=:r^{uc}(f), \\ r_{0}^{k-\mathcal{UCST}}(f)=:r^{k-\mathcal{MN}}(f), \quad\quad r_{0}^{1- \mathcal{UCST}}(f)=:r^{\mathcal{MN}}(f). \end{gathered} $$

We recall that the Legendre polynomials are solutions of the Legendre differential equation

$$ \frac{\mathrm{d}}{\mathrm{d}z} \biggl[ \bigl(1-z^{2} \bigr) \frac{\mathrm{d}}{\mathrm{d}z}P_{n}(z) \biggr]+n(n+1)P_{n}(z)=0,\quad n \in \mathbb{N}:=\{1,2,\ldots \}, $$

while the Rodrigues formula for the Legendre polynomials is

$$ P_{n}(z)=\frac{1}{2^{n} n!}\frac{\mathrm{d}^{n}}{\mathrm{d}z^{n}} \bigl[ \bigl(z^{2}-1\bigr)^{n} \bigr], \quad n\in \mathbb{N}. $$

The Legendre polynomials are symmetric or antisymmetric, that is,

$$ P_{n}(-z)=(-1)^{n}P_{n}(z), \quad n\in \mathbb{N}. $$

Since we will study different radius properties for the Legendre polynomials of odd degree, let us consider the following normalized form of the Legendre \(P_{2n-1}\) polynomials, that is, \(\mathcal{P}_{2n-1}\) given by

$$ \mathcal{P}_{2n-1}(z):=\frac{P_{2n-1}(z)}{P^{\prime }_{2n-1}(0)}=z+a_{3}z^{3}+ \cdots +a_{2n-1}z^{2n-1}. $$

It is well known that the Rodrigues formula implies that the Legendre polynomials of odd degree have only real roots, and the roots of \(P_{2n-1}(z)\) are \(0=z_{0}< z_{1}<\cdots <z_{n-1}\) and \(-z_{1},-z_{2},\ldots,-z_{n-1}\), while the product representation of the polynomial \(\mathcal{P}_{2n-1}\) is

$$ \mathcal{P}_{2n-1}(z)=a_{2n-1} z \bigl(z^{2}-z^{2}_{1} \bigr) \bigl(z^{2}-z^{2}_{2} \bigr)\cdots \bigl(z^{2}-z^{2}_{n-1} \bigr). $$
(1)

Bulut and Engel [7] have obtained the radius of starlikeness, convexity, and uniform convexity (see [10, 12, 13]) of the normalized form of the Legendre polynomial of odd degree. In the recent years, several authors determined the radius of starlikeness, convexity, and uniform convexity for some special functions, that is a relative new direction in the geometric function theory (see, for example, [16]).

In the present paper we obtain the radius of strong starlikeness and other related radius of the normalized form of Legendre polynomials of odd degree, and the technique of the proofs used in our paper is similar to that of several papers [1, 36]. Further, our results are well supported by some examples.

In order to prove our main results, we require the following lemmas.

Lemma 1

([7, Lemma 1.1])

If\(\vert z \vert \leq r<\gamma \), where\(\gamma >0\), then we have

$$\begin{aligned}& \operatorname{Re}\frac{z}{\gamma -z}\leq \frac{r}{\gamma -r}, \end{aligned}$$
(2)
$$\begin{aligned}& \biggl\vert \frac{z}{\gamma -z} \biggr\vert \leq \frac{r}{\gamma -r}, \end{aligned}$$
(3)
$$\begin{aligned}& \biggl\vert \frac{z}{(\gamma -z)^{2}} \biggr\vert \leq \frac{r}{(\gamma -r)^{2}}. \end{aligned}$$
(4)

Lemma 2

([9, Lemma 3.1])

If

$$ R_{a}\le (\operatorname{Re}a)\sin (\pi \gamma /2)-( \operatorname{Im}a) \cos (\pi \gamma /2), \quad \textit{with } \operatorname{Im}a\ge 0, $$

then the disk\(\vert w-a \vert \le R_{a}\)is contained in the sector\(\vert \arg w \vert \le \pi \gamma /2\), where\(0<\gamma \le 1\).

Lemma 3

([9, Lemma 3.2])

For\(\vert z \vert \leq r<1\)and\(\vert z_{k} \vert =R>r\), we have

$$ \biggl\vert \frac{z}{z-z_{k}}+\frac{r^{2}}{R^{2}-r^{2}} \biggr\vert \leq \frac{Rr}{R^{2}-r^{2}}. $$

2 Main results

Using the first of the above lemmas, we obtain the \(k-\mathcal{UCST}(\alpha )\) radius of \(\mathcal{P}_{2n-1}\) as follows.

Theorem 1

The radius of\(k-\mathcal{UCST}(\alpha )\)of\(\mathcal{P}_{2n-1}\)is\(r_{\alpha }^{k-\mathcal{UCST}}(\mathcal{P}_{2n-1})=r_{1}\), where\(r_{1}\)denotes the smallest positive root of the equation

$$ k(1-\alpha ) \biggl( \frac{r\mathcal{P}_{2n-1}^{\prime }(r)}{\mathcal{P}_{2n-1}(r)}-1 \biggr) +(1+k\alpha ) \frac{r\mathcal{P}_{2n-1}^{\prime \prime }(r)}{\mathcal{P}_{2n-1}^{\prime }(r)}+1=0. $$

Proof

Differentiating logarithmically the product representation (1) of the \(\mathcal{P}_{2n-1}\) polynomial, we have

$$ \frac{z\mathcal{P}_{2n-1}^{\prime }(z)}{\mathcal{P}_{2n-1}(z)}=1-\sum_{k=1}^{n-1} \frac{2z^{2}}{z^{2}_{k}-z^{2}}, \quad z\in \mathbb{C} \setminus \{\pm z_{1},\pm z_{2},\ldots,\pm z_{n-1}\}, $$
(5)

where \(z_{k}\), with \(k\in \{1,2,\ldots,n-1\}\), is the kth positive zero of the normalized Legendre polynomial of odd degree. The logarithmical differentiation of the above equality leads to

$$ 1+ \frac{z\mathcal{P}_{2n-1}^{\prime \prime }(z)}{\mathcal{P}_{2n-1}^{\prime }(z)}= \frac{z\mathcal{P}_{2n-1}^{\prime }(z)}{\mathcal{P}_{2n-1}(z)}- \frac{\sum_{k=1}^{n-1}\frac{4z^{2}z^{2}_{k}}{ (z^{2}_{k}-z^{2} )^{2}}}{1-\sum_{k=1}^{n-1}\frac{2z^{2}}{z^{2}_{k}-z^{2}}}, \quad z\in \mathbb{C}\setminus \{\pm z_{1},\pm z_{2},\ldots,\pm z_{n-1}\}, $$

that is,

$$ 1+ \frac{z\mathcal{P}_{2n-1}^{\prime \prime }(z)}{\mathcal{P}_{2n-1}^{\prime }(z)}= 1-\sum_{k=1}^{n-1} \frac{2z^{2}}{z^{2}_{k}-z^{2}}- \frac{\sum_{k=1}^{n-1}\frac{4z^{2}z^{2}_{k}}{ (z^{2}_{k}-z^{2} )^{2}}}{1-\sum_{k=1}^{n-1}\frac{2z^{2}}{z^{2}_{k}-z^{2}}}, \quad z\in \mathbb{C}\setminus \{\pm z_{1},\pm z_{2},\ldots,\pm z_{n-1}\}. $$
(6)

If \(\vert z \vert \le r< z_{1}\), then it follows that \(\vert z \vert \le r< z_{k}\) for all \(k\in \{1,2,\ldots,n-1\}\). Hence, replacing z by \(z^{2}\) and γ by \(z^{2}_{k}\) for all \(k\in \{1,2,\ldots,n-1\}\) in inequalities (2) and (4) of Lemma 1, we get

$$ \operatorname{Re}\frac{z^{2}}{z^{2}_{k}-z^{2}}\leq \frac{r^{2}}{z^{2}_{k}-r^{2}} $$

and

$$ \biggl\vert \frac{z^{2}}{ (z^{2}_{k}-z^{2} )^{2}} \biggr\vert \leq \frac{r^{2}}{ (z^{2}_{k}-r^{2} )^{2}}, $$

respectively. Now, for \(\vert z \vert \le r< z_{1}\) from (6) and two above inequalities, we deduce the following inequalities:

$$\begin{aligned} \operatorname{Re} \biggl(1+ \frac{z\mathcal{P}_{2n-1}^{\prime \prime }(z)}{\mathcal{P}_{2n-1}^{\prime }(z)} \biggr)&\geq 1-\sum _{k=1}^{n-1}\operatorname{Re} \frac{2z^{2}}{z^{2}_{k}-z^{2}}- \frac{\sum_{k=1}^{n-1} \vert \frac{4z^{2}z^{2}_{k}}{ (z^{2}_{k}-z^{2} )^{2}} \vert }{ \vert 1-\sum_{k=1}^{n-1}\frac{2z^{2}}{z^{2}_{k}-z^{2}} \vert } \\ &\geq 1-\sum_{k=1}^{n-1}\frac{2r^{2}}{z^{2}_{k}-r^{2}}- \frac{\sum_{k=1}^{n-1} \frac{4r^{2}z^{2}_{k}}{ (z^{2}_{k}-r^{2} )^{2}}}{1-\sum_{k=1}^{n-1} \vert \frac{2z^{2}}{z^{2}_{k}-z^{2}} \vert } \\ &\geq 1-\sum_{k=1}^{n-1} \frac{2r^{2}}{z^{2}_{k}-r^{2}}- \frac{\sum_{k=1}^{n-1} \frac{4r^{2}z^{2}_{k}}{ (z^{2}_{k}-r^{2} )^{2}}}{1-\sum_{k=1}^{n-1}\frac{2r^{2}}{z^{2}_{k}-r^{2}}} \\ &=1+ \frac{r\mathcal{P}_{2n-1}^{\prime \prime }(r)}{\mathcal{P}_{2n-1}^{\prime }(r)}. \end{aligned}$$
(7)

On the other hand, replacing z by \(z^{2}\) and γ by \(z_{k}\) for all \(k\in \{1,2,\ldots,n-1\}\) in inequality (3) of Lemma 1 and using relations (5) and (6), we obtain

$$\begin{aligned} & \biggl\vert (1-\alpha ) \frac{z\mathcal{P}_{2n-1}^{\prime }(z)}{\mathcal{P}_{2n-1}(z)}+ \alpha \biggl(1+ \frac{z\mathcal{P}_{2n-1}^{\prime \prime }(z)}{\mathcal{P}_{2n-1}^{\prime }(z)} \biggr)-1 \biggr\vert \\ &\quad = \biggl\vert \frac{z\mathcal{P}_{2n-1}^{\prime }(z)}{\mathcal{P}_{2n-1}(z)} - \alpha \frac{\sum_{k=1}^{n-1}\frac{4z^{2}z^{2}_{k}}{ (z^{2}_{k}-z^{2} )^{2}}}{1-\sum_{k=1}^{n-1} \frac{2z^{2}}{z^{2}_{k}-z^{2}}}-1 \biggr\vert \\ &\quad = \Biggl\vert -\sum_{k=1}^{n-1} \frac{2z^{2}}{z^{2}_{k}-z^{2}}- \alpha \frac{\sum_{k=1}^{n-1}\frac{4z^{2}z^{2}_{k}}{ (z^{2}_{k}-z^{2} )^{2}}}{1-\sum_{k=1}^{n-1} \frac{2z^{2}}{z^{2}_{k}-z^{2}}} \Biggr\vert \leq \sum _{k=1}^{n-1} \biggl\vert \frac{2z^{2}}{z^{2}_{k}-z^{2}} \biggr\vert +\alpha \frac{\sum_{k=1}^{n-1} \vert \frac{4z^{2}z^{2}_{k}}{ (z^{2}_{k}-z^{2} )^{2}} \vert }{ \vert 1-\sum_{k=1}^{n-1}\frac{2z^{2}}{z^{2}_{k}-z^{2}} \vert } \\ &\quad \leq \sum_{k=1}^{n-1}\frac{2r^{2}}{z^{2}_{k}-r^{2}}+ \alpha \frac{\sum_{k=1}^{n-1} \frac{4r^{2}z^{2}_{k}}{ (z^{2}_{k}-r^{2} )^{2}}}{1-\sum_{k=1}^{n-1} \vert \frac{2z^{2}}{z^{2}_{k}-z^{2}} \vert } \leq \sum_{k=1}^{n-1} \frac{2r^{2}}{z^{2}_{k}-r^{2}}+\alpha \frac{\sum_{k=1}^{n-1} \frac{4r^{2}z^{2}_{k}}{ (z^{2}_{k}-r^{2} )^{2}}}{1-\sum_{k=1}^{n-1}\frac{2r^{2}}{z^{2}_{k}-r^{2}}} \\ &\quad =(\alpha -1) \frac{r\mathcal{P}_{2n-1}^{\prime }(r)}{\mathcal{P}_{2n-1}(r)}- \alpha \biggl(1+ \frac{r\mathcal{P}_{2n-1}^{\prime \prime }(r)}{\mathcal{P}_{2n-1}^{\prime }(r)} \biggr)+1 \end{aligned}$$
(8)

for \(\vert z \vert \le r< z_{1}\).

Therefore, from (7) and (8), for any \(k\ge 0\) we have

$$\begin{aligned}& \operatorname{Re} \biggl(1+ \frac{z\mathcal{P}_{2n-1}^{\prime \prime }(z)}{\mathcal{P}_{2n-1}^{\prime }(z)} \biggr)-k \biggl\vert (1-\alpha ) \frac{z\mathcal{P}_{2n-1}^{\prime }(z)}{\mathcal{P}_{2n-1}(z)}+ \alpha \biggl(1+ \frac{z\mathcal{P}_{2n-1}^{\prime \prime }(z)}{\mathcal{P}_{2n-1}^{\prime }(z)} \biggr)-1 \biggr\vert \\& \quad \geq 1+ \frac{r\mathcal{P}_{2n-1}^{\prime \prime }(r)}{\mathcal{P}_{2n-1}^{\prime }(r)} -k \biggl[(\alpha -1) \frac{r\mathcal{P}_{2n-1}^{\prime }(r)}{\mathcal{P}_{2n-1}(r)} - \alpha \biggl(1+ \frac{r\mathcal{P}_{2n-1}^{\prime \prime }(r)}{\mathcal{P}_{2n-1}^{\prime }(r)} \biggr)+1 \biggr] \\& \quad =k(1-\alpha ) \frac{r\mathcal{P}_{2n-1}^{\prime }(r)}{\mathcal{P}_{2n-1}(r)} +(1+k \alpha ) \frac{r\mathcal{P}_{2n-1}^{\prime \prime }(r)}{\mathcal{P}_{2n-1}^{\prime }(r)}+k( \alpha -1)+1 \\& \quad =1-(k+1)\sum_{k=1}^{n-1} \frac{2r^{2}}{z^{2}_{k}-r^{2}}-(1+k \alpha ) \frac{\sum_{k=1}^{n-1} \frac{4r^{2}z^{2}_{k}}{ (z^{2}_{k}-r^{2} )^{2}}}{1-\sum_{k=1}^{n-1}\frac{2r^{2}}{z^{2}_{k}-r^{2}}} \end{aligned}$$

for \(\vert z \vert \le r< z_{1}\).

Let \(\omega:I\rightarrow\mathbb{R}\), where I is the open interval \((0,z_{1})\) which is subset of \(\mathbb{R}\) be the function defined by

$$\begin{aligned} \omega (r):={}&k(1-\alpha ) \frac{r\mathcal{P}_{2n-1}^{\prime }(r)}{\mathcal{P}_{2n-1}(r)} +(1+k \alpha ) \frac{r\mathcal{P}_{2n-1}^{\prime \prime }(r)}{\mathcal{P}_{2n-1}^{\prime }(r)}+k( \alpha -1)+1 \\ ={}&1-(k+1)\sum_{k=1}^{n-1} \frac{2r^{2}}{z^{2}_{k}-r^{2}}-(1+k \alpha ) \frac{\sum_{k=1}^{n-1} \frac{4r^{2}z^{2}_{k}}{ (z^{2}_{k}-r^{2} )^{2}}}{1-\sum_{k=1}^{n-1}\frac{2r^{2}}{z^{2}_{k}-r^{2}}}. \end{aligned}$$

Since \(\lim_{r\searrow 0}\omega (r)=1\), \(\lim_{r\nearrow z_{1}}\omega (r)=-\infty \), and the function ω is continuous, it follows that the equation \(\omega (r)=0\) has at least a root in \((0,z_{1})\). Thus, if \(r_{1}\) is the smallest positive root of the equation \(\omega (r)=0\), then we have

$$ \operatorname{Re} \biggl(1+ \frac{z\mathcal{P}_{2n-1}^{\prime \prime }(z)}{\mathcal{P}_{2n-1}^{\prime }(z)} \biggr)\geq k \biggl\vert (1- \alpha ) \frac{z\mathcal{P}_{2n-1}^{\prime }(z)}{\mathcal{P}_{2n-1}(z)}+ \alpha \biggl(1+ \frac{z\mathcal{P}_{2n-1}^{\prime \prime }(z)}{\mathcal{P}_{2n-1}^{\prime }(z)} \biggr)-1 \biggr\vert $$

for \(\vert z \vert < r_{1}\), and

$$ \inf_{ \vert z \vert < r_{1}} \biggl\{ \operatorname{Re} \biggl(1+ \frac{z\mathcal{P}_{2n-1}^{\prime \prime }(z)}{\mathcal{P}_{2n-1}^{\prime }(z)} \biggr)-k \biggl\vert (1-\alpha ) \frac{z\mathcal{P}_{2n-1}^{\prime }(z)}{\mathcal{P}_{2n-1}(z)}+\alpha \biggl(1+ \frac{z\mathcal{P}_{2n-1}^{\prime \prime }(z)}{\mathcal{P}_{2n-1}^{\prime }(z)} \biggr)-1 \biggr\vert \biggr\} =0. $$

It follows that \(r_{\alpha }^{k-\mathcal{UCST}}(\mathcal{P}_{2n-1})=r_{1}\) is the radius of \(k-\mathcal{UCST}(\alpha )\) of the normalized Legendre polynomial \(\mathcal{P}_{2n-1}\), and hence this completes our proof. □

Choosing \(k=0\) in Theorem 1, we obtain the next result which was given by Bulut and Engel for \(\beta =0\) in [7, Theorem 2.2].

Corollary 1

The radius of convexity of\(\mathcal{P}_{2n-1}\)is\(r^{c}(\mathcal{P}_{2n-1})=r_{2}\), where\(r_{2}\)denotes the smallest positive root of the equation

$$ r\mathcal{P}_{2n-1}^{\prime \prime }(r)+\mathcal{P}_{2n-1}^{\prime }(r)=0. $$

Example 1

For \(n=2\) we have

$$ \mathcal{P}_{3}(z):=\frac{P_{3}(z)}{P^{\prime }_{3}(0)}= \frac{\frac{1}{2} (5z^{3}-3z )}{-\frac{3}{2}}=- \frac{1}{3} \bigl(5z^{3}-3z \bigr). $$

Like we see from Fig. 1(a) the domain \(\mathcal{P}_{3}(\mathbb{U})\) is not convex; moreover, the function \(\mathcal{P}_{3}\) is not univalent in \(\mathbb{U}\). From Corollary 1 it follows that the radius of convexity of \(\mathcal{P}_{3}\) is \(r^{c}(\mathcal{P}_{3})={1}/{\sqrt{15}}\simeq 0.2581988897\ldots\) , where \({1}/{\sqrt{15}}\) denotes the smallest positive root of the equation

$$ r\mathcal{P}_{3}^{\prime \prime }(r)+\mathcal{P}_{3}^{\prime }(r)=-15r^{2}+1=0. $$

According to the above result, the domain \(\mathcal{P}_{3} (\mathbb{U} (r^{c}(\mathcal{P}_{3}) ) )\) shown in Fig. 1(b) is convex.

Figure 1
figure 1

The image \(\mathcal{P}_{3}(z)\)

Letting \(\alpha =1\) in Theorem 1, we obtain the next special case.

Corollary 2

The radius ofk-uniformly convexity of\(\mathcal{P}_{2n-1}\)is\(r^{ucv}(\mathcal{P}_{2n-1})=r_{3}\), where\(r_{3}\)denotes the smallest positive root of the equation

$$ (1+k) \frac{r\mathcal{P}_{2n-1}^{\prime \prime }(r)}{\mathcal{P}_{2n-1}^{\prime }(r)}+1=0. $$

Setting \(k=1\) in Corollary 2, we obtain the following result which was given by Bulut and Engel in [7, Theorem 2.3].

Example 2

The radius of uniform convexity of \(\mathcal{P}_{2n-1}\) is \(r^{uc}(\mathcal{P}_{2n-1})=r_{4}\), where \(r_{4}\) denotes the smallest positive root of the equation

$$ 1+2 \frac{r\mathcal{P}_{2n-1}^{\prime \prime }(r)}{\mathcal{P}_{2n-1}^{\prime }(r)}=0. $$

Example 3

For \(n=3\) we have

$$ \mathcal{P}_{5}(z):=\frac{P_{5}(z)}{P^{\prime }_{5}(0)}= \frac{\frac{1}{8} (63z^{5}-70z^{3}+15z )}{\frac{15}{8}} = \frac{1}{15} \bigl(63z^{5}-70z^{3}+15z \bigr). $$

Like we see from Fig. 2(a) the function \(\mathcal{P}_{5}\) is not univalent in \(\mathbb{U}\). From Example 2 it follows that the radius of uniform convexity of \(\mathcal{P}_{5}\) is \(r^{uc}(\mathcal{P}_{5})={\sqrt{735-42 \sqrt{259}}}/{63}\simeq 0.1219993521 \ldots\) , where \({\sqrt{735-42 \sqrt{259}}}/{63}\) denotes the smallest positive root of the equation

$$ \mathcal{P}_{5}^{\prime }(r)+2r\mathcal{P}_{5}^{\prime \prime }(r)= \frac{1}{15} \bigl(2835z^{4}-1050z^{2}+15 \bigr)=0. $$

According to the above result, the domain \(\mathcal{P}_{5} (\mathbb{U} (r^{uc}(\mathcal{P}_{5}) ) )\) is uniformly convex, and it is plotted in Fig. 2(b).

Figure 2
figure 2

The image \(\mathcal{P}_{5}(z)\)

Letting \(\alpha =0\) in Theorem 1, we deduce the next result.

Corollary 3

The radius of\(k-\mathcal{MN}\)of\(\mathcal{P}_{2n-1}\)is\(r^{k-\mathcal{MN}}(\mathcal{P}_{2n-1})=r_{5}\), where\(r_{5}\)denotes the smallest positive root of the equation

$$ k \biggl(\frac{r\mathcal{P}_{2n-1}^{\prime }(r)}{\mathcal{P}_{2n-1}(r)}-1 \biggr) + \frac{r\mathcal{P}_{2n-1}^{\prime \prime }(r)}{\mathcal{P}_{2n-1}^{\prime }(r)}+1=0. $$

Letting \(k=1\) in Corollary 3, we obtain the following special case.

Example 4

The radius of \(\mathcal{MN}\) of \(\mathcal{P}_{2n-1}\) is \(r^{\mathcal{MN}}(\mathcal{P}_{2n-1})=r_{6}\), where \(r_{6}\) denotes the smallest positive root of the equation

$$ \frac{r\mathcal{P}_{2n-1}^{\prime }(r)}{\mathcal{P}_{2n-1}(r)} + \frac{r\mathcal{P}_{2n-1}^{\prime \prime }(r)}{\mathcal{P}_{2n-1}^{\prime }(r)}=0. $$

In the following theorem we obtain the radius of strong starlikeness of order α of \(\mathcal{P}_{2n-1}\).

Theorem 2

The radius of strong starlikeness of orderαof\(\mathcal{P}_{2n-1}\)is\(\widetilde{r_{\alpha }^{\ast }}(\mathcal{P}_{2n-1})=r^{*}_{1}\), where\(r^{*}_{1}\)is the smallest positive root of the equation

$$ \sum_{k=1}^{n-1} \frac{2r^{2} (z^{2}_{k}+r^{2}\sin \frac{\alpha \pi }{2} )}{z^{4}_{k}-r^{4}}- \sin \frac{\pi \alpha }{2}=0, \quad 0< \alpha \le 1. $$

Proof

If \(\vert z \vert \le r< z_{1}\), then it follows that \(\vert z \vert \le r< z_{k}\) for all \(k\in \{1,2,\ldots,n-1\}\), where \(z_{k}\), with \(k\in \{1,2,\ldots,n-1\}\), is the kth positive zero of the normalized Legendre polynomial of odd degree. Hence, replacing z by \(z^{2}\) and R by \(z^{2}_{k}\) for all \(k\in \{1,2,\ldots,n-1\}\) in the inequality of Lemma 3, we get

$$ \biggl\vert \frac{z^{2}}{z^{2}-z_{k}^{2}}+ \frac{r^{2}}{z_{k}^{4}-r^{4}} \biggr\vert \leq \frac{z_{k}^{2}r^{2}}{z_{k}^{4}-r^{4}}, \quad \vert z \vert \le r< z_{1}, k\in \{1,2, \ldots,n-1\}. $$

Using the above inequalities, from relation (5) we get

$$\begin{aligned} \Biggl\vert \frac{z\mathcal{P}_{2n-1}^{\prime }(z)}{\mathcal{P}_{2n-1}(z)}- \Biggl(1-\sum_{k=1}^{n-1} \frac{2r^{4}}{z^{4}_{k}-r^{4}} \Biggr) \Biggr\vert &= \Biggl\vert 1-\sum _{k=1}^{n-1} \frac{2z^{2}}{z^{2}_{k}-z^{2}}- \Biggl(1-\sum _{k=1}^{n-1} \frac{2r^{4}}{z^{4}_{k}-r^{4}} \Biggr) \Biggr\vert \\ &= \Biggl\vert \sum_{k=1}^{n-1} \frac{2z^{2}}{z^{2}-z^{2}_{k}}+\sum_{k=1}^{n-1} \frac{2r^{4}}{z^{4}_{k}-r^{4}} \Biggr\vert =\sum_{k=1}^{n-1} \biggl\vert \frac{2z^{2}}{z^{2}-z^{2}_{k}}+ \frac{2r^{4}}{z^{4}_{k}-r^{4}} \biggr\vert \\ &\le \sum _{k=1}^{n-1} \frac{2z^{2}_{k}r^{2}}{z^{4}_{k}-r^{4}} \end{aligned}$$

for \(\vert z \vert \le r< z_{1}\).

Denoting

$$ w:=\frac{z\mathcal{P}_{2n-1}^{\prime }(z)}{\mathcal{P}_{2n-1}(z)}, \quad\quad a:=1-\sum_{k=1}^{n-1} \frac{2r^{4}}{z^{4}_{k}-r^{4}} \quad \text{and}\quad R_{a}:=\sum _{k=1}^{n-1} \frac{2z^{2}_{k}r^{2}}{z^{4}_{k}-r^{4}}, $$

we see that \(\operatorname{Im}a=0\), and from Lemma 2 and the above inequality it follows that the disc \(\vert w-a \vert \le R_{a}\) is contained in the sector \(\vert \arg w \vert \le \pi \alpha /2\), that is,

$$ \biggl\vert \arg \frac{z\mathcal{P}_{2n-1}^{\prime }(z)}{\mathcal{P}_{2n-1}(z)} \biggr\vert \le \frac{\pi \alpha }{2}, $$

if we assume that the inequality

$$ \sum_{k=1}^{n-1}\frac{2z^{2}_{k}r^{2}}{z^{4}_{k}-r^{4}}\le \Biggl(1-\sum_{k=1}^{n-1}\frac{2r^{4}}{z^{4}_{k}-r^{4}} \Biggr) \sin \frac{\pi \alpha }{2} $$

holds.

Let \(\psi:I\rightarrow\mathbb{R}\), where I is the open interval \((0,z_{1})\) which is subset of \(\mathbb{R}\) be defined by

$$ \psi (r):=\sum_{k=1}^{n-1} \frac{2r^{2} (z^{2}_{k}+r^{2}\sin \frac{\alpha \pi }{2} )}{z^{4}_{k}-r^{4}}- \sin \frac{\pi \alpha }{2}. $$

The above inequality implies that \(\psi (r)\le 0\) for \(r\in (0,z_{1})\). Also, we have \(\lim_{r\searrow 0}\psi (r)=-\sin \frac{\pi \alpha }{2}<0\) and \(\lim_{r\nearrow z_{1}}\psi (r)=+\infty \). On the other the hand, we have \(\psi ^{\prime }(r)\ge 0\) for \(z\in (0,z_{1})\). It follows that the equation \(\psi (r)=0\) has a unique root \(r^{*}_{1}\) in \((0,z_{1})\). Therefore, the radius of strong starlikeness of order α of \(\mathcal{P}_{2n-1}\) is \(\widetilde{r_{\alpha }^{\ast }}(\mathcal{P}_{2n-1})=r^{*}_{1}\). □

Example 5

For \(n=2\) we have

$$ \mathcal{P}_{3}(z):=\frac{P_{3}(z)}{P^{\prime }_{3}(0)}= \frac{\frac{1}{2} (5z^{3}-3z )}{-\frac{3}{2}}=- \frac{1}{3} \bigl(5z^{3}-3z \bigr), $$

where the roots of \(P_{3}\) are \(z_{0}=0\) and \(z_{1}=\pm {\sqrt{15}}/{5}\). From Theorem 2 it follows that the radii of strong starlikeness of order \(1/3\), \(1/2\), and \(2/3\) of \(\mathcal{P}_{3}\) are \(\widetilde{r_{1/3}^{\ast }}(\mathcal{P}_{3})={\sqrt{-10+5\sqrt{7}}}/{5} \simeq 0.3593748213\ldots\) , \(\widetilde{r_{1/2}^{\ast }}(\mathcal{P}_{3})={\sqrt{-5\sqrt{2}+5\sqrt{5}}}/{5} \simeq 0.4054267912\ldots\) , and \(\widetilde{r_{2/3}^{\ast }}(\mathcal{P}_{3})= \frac{\sqrt{15\sqrt{39}-30\sqrt{3}}}{15}\simeq 0.4305729813\ldots\) , where \(\frac{\sqrt{-10+5\sqrt{7}}}{5}\), \({\sqrt{-5\sqrt{2}+5\sqrt{5}}}/{5}\), and \({\sqrt{15\sqrt{39}-30\sqrt{3}}}/{15}\) denote the smallest positive roots of the equations

$$\begin{aligned}& \frac{2r^{2} (\frac{15}{25}+r^{2}\frac{1}{2} )}{\frac{(15)^{2}}{5^{4}}-r^{4}}- \frac{1}{2} =-\frac{3}{2}\cdot \frac{25 {r}^{4}+20 {r}^{2}-3}{25 {r}^{4}-9}=0, \\& \frac{2r^{2} (\frac{15}{25}+r^{2}\frac{\sqrt{2}}{2} )}{\frac{(15)^{2}}{5^{4}}-r^{4}}- \frac{\sqrt{2}}{2} =-\frac{3}{2}\cdot \frac{25 \sqrt{2}{r}^{4}+20 {r}^{2}-3 \sqrt{2}}{25 {r}^{4}-9}=0, \end{aligned}$$

and

$$\begin{aligned}& \frac{2r^{2} (\frac{15}{25}+r^{2}\frac{\sqrt{3}}{2} )}{\frac{(15)^{2}}{5^{4}}-r^{4}}- \frac{\sqrt{3}}{2} =-\frac{3}{2}\cdot \frac{25 \sqrt{3}{r}^{4}+20 {r}^{2}-3 \sqrt{3}}{25 {r}^{4}-9}=0, \end{aligned}$$

respectively. According to the above result, the domains \(\mathcal{P}_{3} (\mathbb{U} (\widetilde{r_{1/3}^{\ast }}( \mathcal{P}_{3}) ) )\), \(\mathcal{P}_{3} (\mathbb{U} (\widetilde{r_{1/2}^{\ast }}( \mathcal{P}_{3}) ) )\), and \(\mathcal{P}_{3} (\mathbb{U} (\widetilde{r_{2/3}^{\ast }}( \mathcal{P}_{3}) ) )\) are strongly starlike of order \(1/3\), \(1/2\), and \(2/3\), respectively.

Example 6

For \(n=3\) we have

$$ \mathcal{P}_{5}(z):=\frac{P_{5}(z)}{P^{\prime }_{5}(0)}= \frac{\frac{1}{8} (63z^{5}-70z^{3}+15z )}{\frac{15}{8}} = \frac{1}{15} \bigl(63z^{5}-70z^{3}+15z \bigr), $$

where the roots of \(P_{5}\) are \(z_{0}=0\), \(z_{1}=\pm {\sqrt{245-14\sqrt{70}}}/{21}\), and \(z_{2}=\pm {\sqrt{245+14\sqrt{70}}}/{21}\). From Theorem 2 it follows that the radii of strong starlikeness of order \(1/3\), \(1/2\), and \(2/3\) of \(\mathcal{P}_{5}\) are \(\widetilde{r_{1/3}^{\ast }}(\mathcal{P}_{5})\simeq 0.2212264225 \ldots\) , \(\widetilde{r_{1/2}^{\ast }}(\mathcal{P}_{5})\simeq 0.2537535993 \ldots\) , and \(\widetilde{r_{2/3}^{\ast }}(\mathcal{P}_{5})\simeq 0.2724589258 \ldots\) , where \(\widetilde{r_{1/3}^{\ast }}(\mathcal{P}_{5})\), \(\widetilde{r_{1/2}^{\ast }}(\mathcal{P}_{5})\), and \(\widetilde{r_{2/3}^{\ast }}(\mathcal{P}_{5})\) denote the smallest positive roots of the equations

$$\begin{aligned}& \frac{1{,}607{,}445 {r}^{8}+1{,}428{,}840 {r}^{6}-731{,}430 {r}^{4}-340{,}200 {r}^{2}+18{,}225}{ (1134 {r}^{4}+40 \sqrt{70}-430 ) (-567 {r}^{4}+20 \sqrt{70}+215 )}=0, \\& \frac{1{,}607{,}445 \sqrt{2}{r}^{8}+1{,}428{,}840 {r}^{6}-731{,}430 \sqrt{2}{r}^{4}-340{,}200 {r}^{2}+18{,}225 \sqrt{2}}{ (1134 {r}^{4}+40 \sqrt{70}-430 ) (-567 {r}^{4}+20 \sqrt{70}+215 )}=0, \end{aligned}$$

and

$$\begin{aligned}& \frac{1{,}607{,}445 \sqrt{3}{r}^{8}+1{,}428{,}840 {r}^{6}-731{,}430 \sqrt{3}{r}^{4}-340{,}200 {r}^{2}+18{,}225 \sqrt{3}}{ (1134 {r}^{4}+40 \sqrt{70}-430 ) (-567 {r}^{4}+20 \sqrt{70}+215 )}=0, \end{aligned}$$

respectively. According to the above result, the domains \(\mathcal{P}_{5} (\mathbb{U} (\widetilde{r_{1/3}^{\ast }}( \mathcal{P}_{5}) ) )\), \(\mathcal{P}_{5} (\mathbb{U} (\widetilde{r_{1/2}^{\ast }}( \mathcal{P}_{5}) ) )\), and \(\mathcal{P}_{5} (\mathbb{U} (\widetilde{r_{2/3}^{\ast }}( \mathcal{P}_{5}) ) )\) are strongly starlike of order \(1/3\), \(1/2\), and \(2/3\), respectively.

Letting \(\alpha =1\) in the above theorem, we get the following corollary.

Corollary 4

The radius of starlikeness of\(\mathcal{P}_{2n-1}\)is\(r^{\ast }(\mathcal{P}_{2n-1})=r^{*}_{2}\), where\(r^{*}_{2}\)denotes the smallest positive root of the equation

$$ \sum_{k=1}^{n-1}\frac{2r^{2}}{z^{2}_{k}-r^{2}}-1=0. $$

Example 7

For \(n=2\) we have

$$ \mathcal{P}_{3}(z):=\frac{P_{3}(z)}{P^{\prime }_{3}(0)}= \frac{\frac{1}{2} (5z^{3}-3z )}{-\frac{3}{2}}=- \frac{1}{3} \bigl(5z^{3}-3z \bigr), $$

where the roots of \(P_{3}\) are \(z_{0}=0\) and \(z_{1}=\pm {\sqrt{15}}/{5}\). From Corollary 4 it follows that the radius of starlikeness of \(\mathcal{P}_{3}\) is \(r^{\ast }(\mathcal{P}_{3})={1}/{\sqrt{5}}\simeq 0.4472135954\ldots\) , where \({1}/{\sqrt{5}}\) denotes the smallest positive root of the equation

$$ \frac{2r^{2}}{z^{2}_{1}-r^{2}}-1=-{ \frac{3(5 {r}^{2}-1)}{5 {r}^{2}-3}}=0. $$

According to the above result, as Fig. 3, the domain \(\mathcal{P}_{3} (\mathbb{U} ({1}/{\sqrt{5}} ) )\) is starlike.

Figure 3
figure 3

The image of \(\mathbb{U} (\frac{1}{\sqrt{5}} )\) under \(\mathcal{P}_{3}(z)=-\frac{1}{3} (5z^{3}-3z )\)

Remark 2

All the figures inserted in this article have been obtained using MAPLE™ software.

References

  1. Ali, R.M., Jain, N.K., Ravichandran, V.: Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane. Appl. Math. Comput. 218(11), 6557–6565 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Analouei Adegani, E., Bulboacă, T.: New properties of the generalized Dini function. Hacet. J. Math. Stat. In press

  3. Baricz, Á., Dimitrov, D.K., Orhan, H., Yağmur, N.: Radii of starlikeness of some special functions. Proc. Am. Math. Soc. 144(8), 3355–3367 (2016)

    Article  MathSciNet  Google Scholar 

  4. Baricz, Á., Kupán, P.A., Szász, R.: The radius of starlikeness of normalized Bessel functions of the first kind. Proc. Am. Math. Soc. 142(6), 2019–2025 (2014)

    Article  MathSciNet  Google Scholar 

  5. Baricz, Á., Szász, R.: The radius of convexity of normalized Bessel functions. Anal. Math. 41(3), 141–151 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bohra, N., Ravichandran, V.: Radii problems for normalized Bessel functions of first kind. Comput. Methods Funct. Theory 18(1), 99–123 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bulut, S., Engel, O.: The radius of starlikeness, convexity and uniform convexity of the Legendre polynomials of odd degree. Results Math. 74, 48 (2018). https://doi.org/10.1007/s00025-019-0975-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Darus, M., Hussain, S., Raza, M., Sokół, J.: On a subclass of starlike functions. Results Math. 73, 22 (2018). https://doi.org/10.1007/s00025-018-0771-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Gangadharan, A., Ravichandran, V., Shanmugam, T.N.: Radii of convexity and strong starlikeness for some classes of analytic functions. J. Math. Anal. Appl. 211(1), 301–313 (1997)

    Article  MathSciNet  Google Scholar 

  10. Goodman, A.W.: On uniformly convex functions. Ann. Pol. Math. 56(1), 87–92 (1991)

    Article  MathSciNet  Google Scholar 

  11. Kanas, S., Wiśniowska, A.: Conic regions and k-uniform convexity. J. Comput. Appl. Math. 105, 327–336 (1999)

    Article  MathSciNet  Google Scholar 

  12. Mocanu, P.T., Bulboacă, T., Sălăgean, G.S.: Geometric Function Theory of Univalent Functions, 2nd edn. House of Scientific Book Publ., Cluj-Napoca (2006) (in Roumanian)

    Google Scholar 

  13. Rønning, F.: Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 118(1), 189–196 (1993)

    Article  MathSciNet  Google Scholar 

  14. Sivasubramanian, S., Govindaraj, M., Piejko, K.: On certain class of univalent functions with conic domains involving Sokół–Nunokawa class. UPB Sci. Bull., Ser. A 80, 123–134 (2018)

    MATH  Google Scholar 

  15. Sokół, J., Nunokawa, M.: On some class of convex functions. C. R. Math. 353, 427–431 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Not applicable.

Availability of data and materials

Not applicable.

Funding

The second author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (No. 2019R1I1A3A01050861).

Author information

Authors and Affiliations

Authors

Contributions

All authors jointly worked on the results and they read and approved the final manuscript.

Corresponding author

Correspondence to Nak Eun Cho.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebadian, A., Cho, N.E., Analouei Adegani, E. et al. Radii problems for some classes of analytic functions associated with Legendre polynomials of odd degree. J Inequal Appl 2020, 178 (2020). https://doi.org/10.1186/s13660-020-02443-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-020-02443-4

MSC

Keywords