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1 Introduction and preliminaries
Let U(r) := {z ∈ C : |z| < r} be the disk in the complex plane C centered at the origin, with
radius r > 0, and denote by U := U(1) the unit disk. We denote by A the class of analytic
functions in the unit disk U normalized by f (0) = f ′(0) – 1 = 0, and let S be the subclass of
A consisting of univalent functions.

We denote by S∗(α) the subclass of A consisting of functions which are starlike of order
α in U, that is,

S∗(α) :=
{

f ∈A : Re
zf ′(z)
f (z)

> α, z ∈U

}
, 0 ≤ α < 1.

Also, let us denote by S̃∗(α) the subclass of A consisting of functions which are strongly
starlike of order α in U, that is,

S̃∗(α) :=
{

f ∈A :
∣∣∣∣arg

zf ′(z)
f (z)

∣∣∣∣ <
απ

2
, z ∈U

}
, 0 ≤ α < 1.

Thus, in particular, S∗ := S∗(0) = S̃∗(1) represents the class of starlike functions in the
open unit disk U.

The real numbers

r∗
α(f ) := sup

{
r > 0 : Re

zf ′(z)
f (z)

> α, z ∈ U(r)
}

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-020-02443-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-020-02443-4&domain=pdf
mailto:necho@pknu.ac.kr


Ebadian et al. Journal of Inequalities and Applications        (2020) 2020:178 Page 2 of 12

and

r̃∗
α(f ) := sup

{
r > 0 :

∣∣∣∣arg
zf ′(z)
f (z)

∣∣∣∣ <
απ

2
, z ∈U(r)

}

are called the radius of starlikeness of order α and the radius of strong starlikeness of order
α of the function f , respectively. In particular, r∗(f ) := r∗

0(f ) = r∗̃
1(f ) is called the radius of

starlikeness of the function f .
Recently, Darus et al. [8] considered the general class k – UCST (α) defined as follows.

Definition 1 Let f ∈A. Then f ∈ k – UCST (α) if

Re
(zf ′(z))′

f ′(z)
> k

∣∣∣∣(1 – α)
zf ′(z)
f (z)

+ α
(zf ′(z))′

f ′(z)
– 1

∣∣∣∣, z ∈U,

where k ≥ 0 and 0 ≤ α ≤ 1.

Remark 1
(i) For k = 0 we get the class 0 – UCST (α) =: K, which includes the well-known class

of convex functions, that is,

Re

(
1 +

zf ′′(z)
f ′(z)

)
> 0, z ∈U.

(ii) For α = 1 we obtain the class k – UCST (1) =: k – UCV (see [11]), which includes
the class of k-uniformly convex functions, that is,

Re

(
1 +

zf ′′(z)
f ′(z)

)
> k

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣, z ∈U.

(iii) For k = 1 and α = 1 we get the class 1 – UCST (1) =: UCV (see [13]), which includes
the class of uniformly convex functions, that is,

Re

(
1 +

zf ′′(z)
f ′(z)

)
>

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣, z ∈U.

(iv) For α = 0 we have the class k – UCST (0) =: k – MN (see [14]), which represents
the functions f ∈A satisfying

Re

(
1 +

zf ′′(z)
f ′(z)

)
> k

∣∣∣∣zf ′(z)
f (z)

– 1
∣∣∣∣, z ∈U.

(v) For k = 1 and α = 0 we get the class 1 – UCST (0) =: MN (see [15]), which
represents the functions f ∈A satisfying

Re

(
1 +

zf ′′(z)
f ′(z)

)
>

∣∣∣∣zf ′(z)
f (z)

– 1
∣∣∣∣, z ∈U.

The real number

rk–UCST
α (f ) := sup

{
r > 0 : Re

(zf ′(z))′

f ′(z)
> k

∣∣∣∣(1 – α)
zf ′(z)
f (z)

+ α

(
(zf ′(z))′

f ′(z)

)
– 1

∣∣∣∣, z ∈U(r)
}
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is called the k – UCST (α) radius of the function f . We note that

r0–UCST
α (f ) =: rc(f ), rk–UCST

1 (f ) =: rucv(f ), r1–UCST
1 (f ) =: ruc(f ),

rk–UCST
0 (f ) =: rk–MN (f ), r1–UCST

0 (f ) =: rMN (f ).

We recall that the Legendre polynomials are solutions of the Legendre differential equa-
tion

d
dz

[(
1 – z2) d

dz
Pn(z)

]
+ n(n + 1)Pn(z) = 0, n ∈N := {1, 2, . . .},

while the Rodrigues formula for the Legendre polynomials is

Pn(z) =
1

2nn!
dn

dzn

[(
z2 – 1

)n], n ∈N.

The Legendre polynomials are symmetric or antisymmetric, that is,

Pn(–z) = (–1)nPn(z), n ∈N.

Since we will study different radius properties for the Legendre polynomials of odd de-
gree, let us consider the following normalized form of the Legendre P2n–1 polynomials,
that is, P2n–1 given by

P2n–1(z) :=
P2n–1(z)
P′

2n–1(0)
= z + a3z3 + · · · + a2n–1z2n–1.

It is well known that the Rodrigues formula implies that the Legendre polynomials of
odd degree have only real roots, and the roots of P2n–1(z) are 0 = z0 < z1 < · · · < zn–1 and
–z1, –z2, . . . , –zn–1, while the product representation of the polynomial P2n–1 is

P2n–1(z) = a2n–1z
(
z2 – z2

1
)(

z2 – z2
2
) · · · (z2 – z2

n–1
)
. (1)

Bulut and Engel [7] have obtained the radius of starlikeness, convexity, and uniform con-
vexity (see [10, 12, 13]) of the normalized form of the Legendre polynomial of odd degree.
In the recent years, several authors determined the radius of starlikeness, convexity, and
uniform convexity for some special functions, that is a relative new direction in the geo-
metric function theory (see, for example, [1–6]).

In the present paper we obtain the radius of strong starlikeness and other related radius
of the normalized form of Legendre polynomials of odd degree, and the technique of the
proofs used in our paper is similar to that of several papers [1, 3–6]. Further, our results
are well supported by some examples.

In order to prove our main results, we require the following lemmas.

Lemma 1 ([7, Lemma 1.1]) If |z| ≤ r < γ , where γ > 0, then we have

Re
z

γ – z
≤ r

γ – r
, (2)
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∣∣∣∣ z
γ – z

∣∣∣∣ ≤ r
γ – r

, (3)
∣∣∣∣ z
(γ – z)2

∣∣∣∣ ≤ r
(γ – r)2 . (4)

Lemma 2 ([9, Lemma 3.1]) If

Ra ≤ (Re a) sin(πγ /2) – (Im a) cos(πγ /2), with Im a ≥ 0,

then the disk |w – a| ≤ Ra is contained in the sector | arg w| ≤ πγ /2, where 0 < γ ≤ 1.

Lemma 3 ([9, Lemma 3.2]) For |z| ≤ r < 1 and |zk| = R > r, we have

∣∣∣∣ z
z – zk

+
r2

R2 – r2

∣∣∣∣ ≤ Rr
R2 – r2 .

2 Main results
Using the first of the above lemmas, we obtain the k –UCST (α) radius of P2n–1 as follows.

Theorem 1 The radius of k – UCST (α) of P2n–1 is rk–UCST
α (P2n–1) = r1, where r1 denotes

the smallest positive root of the equation

k(1 – α)
(

rP ′
2n–1(r)

P2n–1(r)
– 1

)
+ (1 + kα)

rP ′′
2n–1(r)

P ′
2n–1(r)

+ 1 = 0.

Proof Differentiating logarithmically the product representation (1) of the P2n–1 polyno-
mial, we have

zP ′
2n–1(z)

P2n–1(z)
= 1 –

n–1∑
k=1

2z2

z2
k – z2 , z ∈C \ {±z1,±z2, . . . ,±zn–1}, (5)

where zk , with k ∈ {1, 2, . . . , n – 1}, is the kth positive zero of the normalized Legendre
polynomial of odd degree. The logarithmical differentiation of the above equality leads to

1 +
zP ′′

2n–1(z)
P ′

2n–1(z)
=

zP ′
2n–1(z)

P2n–1(z)
–

∑n–1
k=1

4z2z2
k

(z2
k –z2)2

1 –
∑n–1

k=1
2z2

z2
k –z2

, z ∈ C \ {±z1,±z2, . . . ,±zn–1},

that is,

1 +
zP ′′

2n–1(z)
P ′

2n–1(z)
= 1 –

n–1∑
k=1

2z2

z2
k – z2 –

∑n–1
k=1

4z2z2
k

(z2
k –z2)2

1 –
∑n–1

k=1
2z2

z2
k –z2

, z ∈C \ {±z1,±z2, . . . ,±zn–1}. (6)

If |z| ≤ r < z1, then it follows that |z| ≤ r < zk for all k ∈ {1, 2, . . . , n – 1}. Hence, replacing
z by z2 and γ by z2

k for all k ∈ {1, 2, . . . , n – 1} in inequalities (2) and (4) of Lemma 1, we get

Re
z2

z2
k – z2 ≤ r2

z2
k – r2
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and
∣∣∣∣ z2

(z2
k – z2)2

∣∣∣∣ ≤ r2

(z2
k – r2)2 ,

respectively. Now, for |z| ≤ r < z1 from (6) and two above inequalities, we deduce the fol-
lowing inequalities:

Re

(
1 +

zP ′′
2n–1(z)

P ′
2n–1(z)

)
≥ 1 –

n–1∑
k=1

Re
2z2

z2
k – z2 –

∑n–1
k=1 | 4z2z2

k
(z2

k –z2)2 |
|1 –

∑n–1
k=1

2z2

z2
k –z2 |

≥ 1 –
n–1∑
k=1

2r2

z2
k – r2 –

∑n–1
k=1

4r2z2
k

(z2
k –r2)2

1 –
∑n–1

k=1 | 2z2

z2
k –z2 |

≥ 1 –
n–1∑
k=1

2r2

z2
k – r2 –

∑n–1
k=1

4r2z2
k

(z2
k –r2)2

1 –
∑n–1

k=1
2r2

z2
k –r2

= 1 +
rP ′′

2n–1(r)
P ′

2n–1(r)
. (7)

On the other hand, replacing z by z2 and γ by zk for all k ∈ {1, 2, . . . , n – 1} in inequality
(3) of Lemma 1 and using relations (5) and (6), we obtain

∣∣∣∣(1 – α)
zP ′

2n–1(z)
P2n–1(z)

+ α

(
1 +

zP ′′
2n–1(z)

P ′
2n–1(z)

)
– 1

∣∣∣∣

=
∣∣∣∣zP ′

2n–1(z)
P2n–1(z)

– α

∑n–1
k=1

4z2z2
k

(z2
k –z2)2

1 –
∑n–1

k=1
2z2

z2
k –z2

– 1
∣∣∣∣

=

∣∣∣∣∣–
n–1∑
k=1

2z2

z2
k – z2 – α

∑n–1
k=1

4z2z2
k

(z2
k –z2)2

1 –
∑n–1

k=1
2z2

z2
k –z2

∣∣∣∣∣ ≤
n–1∑
k=1

∣∣∣∣ 2z2

z2
k – z2

∣∣∣∣ + α

∑n–1
k=1 | 4z2z2

k
(z2

k –z2)2 |
|1 –

∑n–1
k=1

2z2

z2
k –z2 |

≤
n–1∑
k=1

2r2

z2
k – r2 + α

∑n–1
k=1

4r2z2
k

(z2
k –r2)2

1 –
∑n–1

k=1 | 2z2

z2
k –z2 | ≤

n–1∑
k=1

2r2

z2
k – r2 + α

∑n–1
k=1

4r2z2
k

(z2
k –r2)2

1 –
∑n–1

k=1
2r2

z2
k –r2

= (α – 1)
rP ′

2n–1(r)
P2n–1(r)

– α

(
1 +

rP ′′
2n–1(r)

P ′
2n–1(r)

)
+ 1 (8)

for |z| ≤ r < z1.
Therefore, from (7) and (8), for any k ≥ 0 we have

Re

(
1 +

zP ′′
2n–1(z)

P ′
2n–1(z)

)
– k

∣∣∣∣(1 – α)
zP ′

2n–1(z)
P2n–1(z)

+ α

(
1 +

zP ′′
2n–1(z)

P ′
2n–1(z)

)
– 1

∣∣∣∣
≥ 1 +

rP ′′
2n–1(r)

P ′
2n–1(r)

– k
[

(α – 1)
rP ′

2n–1(r)
P2n–1(r)

– α

(
1 +

rP ′′
2n–1(r)

P ′
2n–1(r)

)
+ 1

]

= k(1 – α)
rP ′

2n–1(r)
P2n–1(r)

+ (1 + kα)
rP ′′

2n–1(r)
P ′

2n–1(r)
+ k(α – 1) + 1
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= 1 – (k + 1)
n–1∑
k=1

2r2

z2
k – r2 – (1 + kα)

∑n–1
k=1

4r2z2
k

(z2
k –r2)2

1 –
∑n–1

k=1
2r2

z2
k –r2

for |z| ≤ r < z1.
Let ω : I → R, where I is the open interval (0, z1) which is subset of R be the function

defined by

ω(r) := k(1 – α)
rP ′

2n–1(r)
P2n–1(r)

+ (1 + kα)
rP ′′

2n–1(r)
P ′

2n–1(r)
+ k(α – 1) + 1

= 1 – (k + 1)
n–1∑
k=1

2r2

z2
k – r2 – (1 + kα)

∑n–1
k=1

4r2z2
k

(z2
k –r2)2

1 –
∑n–1

k=1
2r2

z2
k –r2

.

Since limr↘0 ω(r) = 1, limr↗z1 ω(r) = –∞, and the function ω is continuous, it follows that
the equation ω(r) = 0 has at least a root in (0, z1). Thus, if r1 is the smallest positive root of
the equation ω(r) = 0, then we have

Re

(
1 +

zP ′′
2n–1(z)

P ′
2n–1(z)

)
≥ k

∣∣∣∣(1 – α)
zP ′

2n–1(z)
P2n–1(z)

+ α

(
1 +

zP ′′
2n–1(z)

P ′
2n–1(z)

)
– 1

∣∣∣∣
for |z| < r1, and

inf|z|<r1

{
Re

(
1 +

zP ′′
2n–1(z)

P ′
2n–1(z)

)
– k

∣∣∣∣(1 – α)
zP ′

2n–1(z)
P2n–1(z)

+ α

(
1 +

zP ′′
2n–1(z)

P ′
2n–1(z)

)
– 1

∣∣∣∣
}

= 0.

It follows that rk–UCST
α (P2n–1) = r1 is the radius of k –UCST (α) of the normalized Leg-

endre polynomial P2n–1, and hence this completes our proof. �

Choosing k = 0 in Theorem 1, we obtain the next result which was given by Bulut and
Engel for β = 0 in [7, Theorem 2.2].

Corollary 1 The radius of convexity of P2n–1 is rc(P2n–1) = r2, where r2 denotes the smallest
positive root of the equation

rP ′′
2n–1(r) + P ′

2n–1(r) = 0.

Example 1 For n = 2 we have

P3(z) :=
P3(z)
P′

3(0)
=

1
2 (5z3 – 3z)

– 3
2

= –
1
3
(
5z3 – 3z

)
.

Like we see from Fig. 1(a) the domain P3(U) is not convex; moreover, the function P3

is not univalent in U. From Corollary 1 it follows that the radius of convexity of P3 is
rc(P3) = 1/

√
15 � 0.2581988897 . . . , where 1/

√
15 denotes the smallest positive root of

the equation

rP ′′
3 (r) + P ′

3(r) = –15r2 + 1 = 0.

According to the above result, the domain P3(U(rc(P3))) shown in Fig. 1(b) is convex.



Ebadian et al. Journal of Inequalities and Applications        (2020) 2020:178 Page 7 of 12

Figure 1 The image P3(z)

Letting α = 1 in Theorem 1, we obtain the next special case.

Corollary 2 The radius of k-uniformly convexity of P2n–1 is rucv(P2n–1) = r3, where r3 de-
notes the smallest positive root of the equation

(1 + k)
rP ′′

2n–1(r)
P ′

2n–1(r)
+ 1 = 0.

Setting k = 1 in Corollary 2, we obtain the following result which was given by Bulut and
Engel in [7, Theorem 2.3].

Example 2 The radius of uniform convexity of P2n–1 is ruc(P2n–1) = r4, where r4 denotes
the smallest positive root of the equation

1 + 2
rP ′′

2n–1(r)
P ′

2n–1(r)
= 0.

Example 3 For n = 3 we have

P5(z) :=
P5(z)
P′

5(0)
=

1
8 (63z5 – 70z3 + 15z)

15
8

=
1

15
(
63z5 – 70z3 + 15z

)
.

Like we see from Fig. 2(a) the function P5 is not univalent in U. From Example 2 it
follows that the radius of uniform convexity of P5 is ruc(P5) =

√
735 – 42

√
259/63 �

0.1219993521 . . . , where
√

735 – 42
√

259/63 denotes the smallest positive root of the
equation

P ′
5(r) + 2rP ′′

5 (r) =
1

15
(
2835z4 – 1050z2 + 15

)
= 0.

According to the above result, the domain P5(U(ruc(P5))) is uniformly convex, and it is
plotted in Fig. 2(b).

Letting α = 0 in Theorem 1, we deduce the next result.
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Figure 2 The image P5(z)

Corollary 3 The radius of k – MN of P2n–1 is rk–MN (P2n–1) = r5, where r5 denotes the
smallest positive root of the equation

k
(

rP ′
2n–1(r)

P2n–1(r)
– 1

)
+

rP ′′
2n–1(r)

P ′
2n–1(r)

+ 1 = 0.

Letting k = 1 in Corollary 3, we obtain the following special case.

Example 4 The radius of MN of P2n–1 is rMN (P2n–1) = r6, where r6 denotes the smallest
positive root of the equation

rP ′
2n–1(r)

P2n–1(r)
+

rP ′′
2n–1(r)

P ′
2n–1(r)

= 0.

In the following theorem we obtain the radius of strong starlikeness of order α of P2n–1.

Theorem 2 The radius of strong starlikeness of order α of P2n–1 is r̃∗
α(P2n–1) = r∗

1 , where r∗
1

is the smallest positive root of the equation

n–1∑
k=1

2r2(z2
k + r2 sin απ

2 )
z4

k – r4 – sin
πα

2
= 0, 0 < α ≤ 1.

Proof If |z| ≤ r < z1, then it follows that |z| ≤ r < zk for all k ∈ {1, 2, . . . , n – 1}, where zk ,
with k ∈ {1, 2, . . . , n – 1}, is the kth positive zero of the normalized Legendre polynomial of
odd degree. Hence, replacing z by z2 and R by z2

k for all k ∈ {1, 2, . . . , n – 1} in the inequality
of Lemma 3, we get

∣∣∣∣ z2

z2 – z2
k

+
r2

z4
k – r4

∣∣∣∣ ≤ z2
kr2

z4
k – r4 , |z| ≤ r < z1, k ∈ {1, 2, . . . , n – 1}.

Using the above inequalities, from relation (5) we get

∣∣∣∣∣
zP ′

2n–1(z)
P2n–1(z)

–

(
1 –

n–1∑
k=1

2r4

z4
k – r4

)∣∣∣∣∣ =

∣∣∣∣∣1 –
n–1∑
k=1

2z2

z2
k – z2 –

(
1 –

n–1∑
k=1

2r4

z4
k – r4

)∣∣∣∣∣
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=

∣∣∣∣∣
n–1∑
k=1

2z2

z2 – z2
k

+
n–1∑
k=1

2r4

z4
k – r4

∣∣∣∣∣ =
n–1∑
k=1

∣∣∣∣ 2z2

z2 – z2
k

+
2r4

z4
k – r4

∣∣∣∣

≤
n–1∑
k=1

2z2
kr2

z4
k – r4

for |z| ≤ r < z1.
Denoting

w :=
zP ′

2n–1(z)
P2n–1(z)

, a := 1 –
n–1∑
k=1

2r4

z4
k – r4 and Ra :=

n–1∑
k=1

2z2
kr2

z4
k – r4 ,

we see that Im a = 0, and from Lemma 2 and the above inequality it follows that the disc
|w – a| ≤ Ra is contained in the sector | arg w| ≤ πα/2, that is,

∣∣∣∣arg
zP ′

2n–1(z)
P2n–1(z)

∣∣∣∣ ≤ πα

2
,

if we assume that the inequality

n–1∑
k=1

2z2
kr2

z4
k – r4 ≤

(
1 –

n–1∑
k=1

2r4

z4
k – r4

)
sin

πα

2

holds.
Let ψ : I →R, where I is the open interval (0, z1) which is subset of R be defined by

ψ(r) :=
n–1∑
k=1

2r2(z2
k + r2 sin απ

2 )
z4

k – r4 – sin
πα

2
.

The above inequality implies that ψ(r) ≤ 0 for r ∈ (0, z1). Also, we have limr↘0 ψ(r) =
– sin πα

2 < 0 and limr↗z1 ψ(r) = +∞. On the other the hand, we have ψ ′(r) ≥ 0 for z ∈ (0, z1).
It follows that the equation ψ(r) = 0 has a unique root r∗

1 in (0, z1). Therefore, the radius
of strong starlikeness of order α of P2n–1 is r̃∗

α(P2n–1) = r∗
1 . �

Example 5 For n = 2 we have

P3(z) :=
P3(z)
P′

3(0)
=

1
2 (5z3 – 3z)

– 3
2

= –
1
3
(
5z3 – 3z

)
,

where the roots of P3 are z0 = 0 and z1 = ±√
15/5. From Theorem 2 it follows that the

radii of strong starlikeness of order 1/3, 1/2, and 2/3 of P3 are r̃∗
1/3(P3) =

√
–10 + 5

√
7/5 �

0.3593748213 . . . , r̃∗
1/2(P3) =

√
–5

√
2 + 5

√
5/5 � 0.4054267912 . . . , and r̃∗

2/3(P3) =√
15

√
39–30

√
3

15 � 0.4305729813 . . . , where
√

–10+5
√

7
5 ,

√
–5

√
2 + 5

√
5/5, and√

15
√

39 – 30
√

3/15 denote the smallest positive roots of the equations

2r2( 15
25 + r2 1

2 )
(15)2

54 – r4
–

1
2

= –
3
2

· 25r4 + 20r2 – 3
25r4 – 9

= 0,
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2r2( 15
25 + r2

√
2

2 )
(15)2

54 – r4
–

√
2

2
= –

3
2

· 25
√

2r4 + 20r2 – 3
√

2
25r4 – 9

= 0,

and

2r2( 15
25 + r2

√
3

2 )
(15)2

54 – r4
–

√
3

2
= –

3
2

· 25
√

3r4 + 20r2 – 3
√

3
25r4 – 9

= 0,

respectively. According to the above result, the domains P3(U(r̃∗
1/3(P3))), P3(U(r̃∗

1/2(P3))),
and P3(U(r̃∗

2/3(P3))) are strongly starlike of order 1/3, 1/2, and 2/3, respectively.

Example 6 For n = 3 we have

P5(z) :=
P5(z)
P′

5(0)
=

1
8 (63z5 – 70z3 + 15z)

15
8

=
1

15
(
63z5 – 70z3 + 15z

)
,

where the roots of P5 are z0 = 0, z1 = ±
√

245 – 14
√

70/21, and z2 = ±
√

245 + 14
√

70/21.
From Theorem 2 it follows that the radii of strong starlikeness of order 1/3, 1/2, and
2/3 of P5 are r̃∗

1/3(P5) � 0.2212264225 . . . , r̃∗
1/2(P5) � 0.2537535993 . . . , and r̃∗

2/3(P5) �
0.2724589258 . . . , where r̃∗

1/3(P5), r̃∗
1/2(P5), and r̃∗

2/3(P5) denote the smallest positive roots
of the equations

1,607,445r8 + 1,428,840r6 – 731,430r4 – 340,200r2 + 18,225
(1134r4 + 40

√
70 – 430)(–567r4 + 20

√
70 + 215)

= 0,

1,607,445
√

2r8 + 1,428,840r6 – 731,430
√

2r4 – 340,200r2 + 18,225
√

2
(1134r4 + 40

√
70 – 430)(–567r4 + 20

√
70 + 215)

= 0,

and

1,607,445
√

3r8 + 1,428,840r6 – 731,430
√

3r4 – 340,200r2 + 18,225
√

3
(1134r4 + 40

√
70 – 430)(–567r4 + 20

√
70 + 215)

= 0,

respectively. According to the above result, the domains P5(U(r̃∗
1/3(P5))), P5(U(r̃∗

1/2(P5))),
and P5(U(r̃∗

2/3(P5))) are strongly starlike of order 1/3, 1/2, and 2/3, respectively.

Letting α = 1 in the above theorem, we get the following corollary.

Corollary 4 The radius of starlikeness of P2n–1 is r∗(P2n–1) = r∗
2 , where r∗

2 denotes the
smallest positive root of the equation

n–1∑
k=1

2r2

z2
k – r2 – 1 = 0.

Example 7 For n = 2 we have

P3(z) :=
P3(z)
P′

3(0)
=

1
2 (5z3 – 3z)

– 3
2

= –
1
3
(
5z3 – 3z

)
,
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Figure 3 The image of U( 1√
5
) under P3(z) = – 1

3 (5z
3 – 3z)

where the roots of P3 are z0 = 0 and z1 = ±√
15/5. From Corollary 4 it follows that the

radius of starlikeness of P3 is r∗(P3) = 1/
√

5 � 0.4472135954 . . . , where 1/
√

5 denotes the
smallest positive root of the equation

2r2

z2
1 – r2 – 1 = –

3(5r2 – 1)
5r2 – 3

= 0.

According to the above result, as Fig. 3, the domain P3(U(1/
√

5)) is starlike.

Remark 2 All the figures inserted in this article have been obtained using MAPLE™ soft-
ware.
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