- Research
- Open access
- Published:
Generalizations of Ostrowski type inequalities via Hermite polynomials
Journal of Inequalities and Applications volume 2020, Article number: 176 (2020)
Abstract
We present new generalizations of the weighted Montgomery identity constructed by using the Hermite interpolating polynomial. The obtained identities are used to establish new generalizations of weighted Ostrowski type inequalities for differentiable functions of class \(C^{n}\). Also, we consider new bounds for the remainder of the obtained identities by using the Chebyshev functional and certain Grüss type inequalities for this functional. By applying those results we derive inequalities for the class of n-convex functions.
1 Introduction
In 1938, A.M. Ostrowski [13] pointed out the following inequality which gives an approximation of the integral \(\frac{1}{b-a}\int _{a}^{b}f ( t ) \,{d}t\):
for all \(x \in [a,b ]\), where \(f: [a,b ]\to \mathbb{R}\) is continuous on \([a,b ]\) and differentiable on \(( a,b ) \) with a bounded derivative. Since the Ostrowski inequality can be proved by using the Montgomery identity
in this paper we use the weighted Montgomery identity to obtain certain generalizations of Ostrowski type inequalities. The weighted Montgomery identity (see [14]) is defined by
where
is the weighted Peano kernel, \(f: [ a,b ] \rightarrow \mathbb{R} \) is differentiable on \([ a,b ]\), \(f^{\prime }: [ a,b ] \rightarrow \mathbb{R}\) is integrable on \([ a,b ] \), and \(w: [ a,b ] \rightarrow [ 0,\infty ) \) is a normalized weighted function, i.e., an integrable function satisfying
Over the last decades, Ostrowski type inequalities have been largely investigated in the literature since they are very useful in numerical analysis and probability theory. Aglić Aljinović et al. considered some weighted Ostrowski type inequalities via the Montgomery identity and the Taylor formula, and applications in numerical integration (see [2, 3] and the references cited therein). Certain Ostrowski type bounds for the Chebyshev functional and applications to the quadrature formulae can be found in papers [4, 5, 9, 10], and [16]. In [12] and [15], Ostrowski type inequalities for continuous functions with one point of nondifferentiability and applications in numerical integration are presented. Some other Ostrowski type inequalities can be found in [6, 7], and [8].
Throughout the paper, the symbol \(C^{n} [ a, b ]\), \(n \in \mathbb{N}\), denotes the set of n times continuously differentiable functions on the interval \([a,b ]\). It is well known that the function f is called n times continuously differentiable iff it is n times differentiable and its nth order derivative \(f^{(n)}\) is continuous.
The main purpose of this note is to consider new generalizations of weighted Ostrowski type inequalities for functions presented by a Hermite interpolating polynomial. Since a special case of the Hermite interpolating polynomial is the two-point Taylor polynomial, in this way we generalized results from paper [3], where Ostrowski type inequalities are established by using the Taylor formula. For this purpose, let us introduce notations and terminology used in relation to the Hermite interpolating polynomial (see [1, p. 62]).
Let \(-\infty < a< b< \infty \) and \(a\leq a_{1} < a_{2} \cdots< a_{r} \leq b\), \(r \geq 2\), be the given points. Hermite interpolation of the function \(f\in C^{n} [a,b]\), \(n\geq r\), is of the form
where \(P_{H}\) is a unique polynomial of degree \((n-1)\) satisfying any of the following Hermite conditions:
The polynomial \(P_{H}\) is known in literature as a Hermite interpolating polynomial of the function f. Further, the error \(e_{H}(t)\) can be represented in terms of the Green function \(G_{H,n}(t,s)\). Let K be the square \(a\leq t, s \leq b\); the same square with straight lines of the form \(s = a_{j}\) rejected be \(K_{0}\) and \(K_{0}\) with rejected diagonal \(t=s\) be \(K_{1}\). Then the Green function has the following fundamental property:
in \(K_{1}\).
Theorem 1
(cf. [1, pp. 73–74])
Let\(f \in C^{n}[a,b]\), and let\(P_{H}\)be its Hermite interpolating polynomial. Then
where\(H_{ij}\)are the fundamental polynomials of the Hermite basis defined by
where
and\(G_{H,n}\)is the Green function defined by
for all\(a_{l} \leq s \leq a_{l+1}\), \(l=0,\ldots,r\), with\(a_{0}=a\)and\(a_{r+1}=b\).
Hermite conditions (3) in particular include the following \(( m,n- m)\) type conditions (\(r=2\), \(a_{1}=a\), \(a_{2}=b\), \(1 \leq m \leq n-1\), \(k_{1}= m-1\), \(k_{2}=n- m-1\)):
In this case,
where
and the Green function \(G_{m,n}\) is of the form
Since we deal with an n-convex function, let us recall the definition of the divided difference (see [17, p. 15]).
Definition 1
Let f be a real-valued function defined on the segment \([a,b]\). The divided difference of order n of the function f at distinct points \(x_{0},\ldots, x_{n} \in [a,b]\) is defined recursively by
and
The value \(f[x_{0},\ldots,x_{n}]\) is independent of the order of the points \(x_{0},\ldots,x_{n}\).
The definition may be extended to include the case that some (or all) of the points coincide. Assuming that \(f^{(j-1)}(x)\) exists, we define
Also, the divided difference of order n of the function f can be represented as
where \(v(x_{i})= \prod_{j=0, j\neq i}^{n} (x_{i} -x_{j})\). With these observations in mind, Popoviciu defined n-convex function as follows (see [18]).
Definition 2
A function \(f: [a,b]\rightarrow \mathbb{R}\) is said to be n-convex on \([a,b]\), \(n \geq 0\), if for all choices of \((n+1)\) distinct points \(x_{0},\ldots, x_{n} \in [a,b]\), the nth order divided difference of f satisfies
If \(n = 0\), then a convex function f of order 0 is a nonnegative function, a 1-convex function is a nondecreasing function, while the class of 2-convex functions coincides with the class of convex functions. It is well known that if the nth order derivative \(f^{(n)}\) exists, then the function f is n-convex if and only if \(f^{(n)} \geq 0\) (see for example [17, p. 16 and p. 293]).
The paper is organized as follows. After this introduction, in Sect. 2, we establish weighted generalizations of the Montgomery identity constructed by using the Hermite interpolating polynomial and the Green function. In Sect. 3, we derive Ostrowski type inequalities for differentiable functions of class \(C^{n}\). As a special case, we consider results for \((m, n-m)\) interpolating polynomial. Further, in Sect. 4, we give some new bounds for the remainder of identities previously obtained by using the Chebyshev functional and certain Grüss type inequalities for this functional. Finally, in Sect. 5, applying the properties of n-convex functions and generalizations of the weighted Montgomery identity, we obtain inequalities for the class of n-convex functions.
Throughout the paper, it is assumed that all integrals under consideration exist and that they are finite.
2 Generalizations of the weighted Montgomery identity
In this section, applying the weighted Montgomery identity (1) and the Hermite interpolation polynomial of the n times continuously differentiable function f, (4), we derive new generalizations of the weighted Montgomery identity.
Theorem 2
Suppose that\(f\in C^{n} [ a,b ] \), \(w: [ a,b ] \rightarrow [ 0,\infty ) \)is some normalized weight function and\(H_{lj}\)is defined by (5). Then, for\(-\infty < a \leq a_{1}< a_{2}\dots < a_{r} \leq b<\infty \), \(r\geq 2\), \(\sum_{j=1}^{r} k_{j} + r = n-1\), the following identity holds:
Proof
By applying (4) with \(f^{\prime }\in C^{(n)}[a,b]\) instead of f, we obtain
By inserting (13) into the weighted Montgomery identity (1), we derive (12). □
Theorem 3
Let\(f\in C^{n} [ a,b ] \), \(w: [ a,b ] \rightarrow [ 0,\infty ) \)be some normalized weight function, and let\(H_{lj}\)be defined as (5). Then, for\(-\infty < a \leq a_{1}< a_{2}\dots < a_{r} \leq b<\infty \), \(r\geq 2\), \(\sum_{j=1}^{r} k_{j} + r = n\), the following identity holds:
Proof
Multiplying identity (4) by \(w(t)\) and integrating with respect to t from a to b, we obtain the following identity:
If we subtract (15) from identity (4) stated for the variable x instead of t, we get
By applying the weighted Montgomery identity (1) for \(H_{lj}(x)\) and \(G_{H,n}(x,s)\), we obtain the following identities:
and
Finally, inserting (17) and (18) into (16), we obtain (14). □
3 Ostrowski type inequalities
In this section, we use identity (12), identity (14), and Hölder’s inequality to prove some sharp and best possible inequalities for the functions whose higher order derivatives belong to \(L_{p}\) spaces, \(1\leq p\leq \infty \). As a special case, we discuss results for \((m, n-m)\) interpolating polynomial.
In what follows, \((p,q )\) is a pair of conjugate exponents if \(1\leq p, q \leq \infty \) and \(\frac{1}{p}+\frac{1}{q}=1\), with the convention \(\frac{1}{\infty }=0\) and \(\frac{1}{0}=\infty \). The symbol \(L_{p} [a,b ]\), \(1\leq p<\infty \), denotes the space of p-power integrable functions on the interval \([a,b ]\) equipped with the norm \(\Vert f \Vert _{p}= (\int _{a}^{b} \vert f ( t ) \vert ^{p} \,{d}t )^{1/p}\), and \(L_{\infty } [a, b ]\) stands for the space of all essentially bounded functions on the interval \([a,b ]\) with the norm \(\Vert f \Vert _{\infty }= \operatorname{ess} \sup_{t \in [a,b ]} \vert f (t) \vert \).
Further, we denote
and
where the Green function \(G_{H,n}\) is as defined in (7).
Theorem 4
Suppose that all the assumptions of Theorem 2hold. Additionally, assume that\(( p,q ) \)is a pair of conjugate exponents\(1\leq p,q\leq \infty \)and\(f^{(n)} \in L_{p}[a,b]\). Then the following inequality holds:
where\(\varLambda _{w}\)is defined by (19). The constant on the right-hand side of (21) is sharp for\(1< p\leq \infty \)and the best possible for\(p=1\).
Proof
By applying Hölder’s inequality to (12), we obtain (21). For the proof of the sharpness of the constant \(\Vert \varLambda _{w} \Vert _{q}\), let us find a function f for which the equality in (21) is obtained.
For \(1< p<\infty \), take f to be such that
For \(p=\infty \), take \(f^{(n)}(s)=\operatorname{sgn} \varLambda _{w}(s)\).
For \(p=1\), we prove that
is the best possible inequality. Suppose that \(\vert \varLambda _{w}(s) \vert \) attains its maximum at \(s_{0}\in [a, b]\). First, we assume that \(\varLambda _{w}(s_{0})>0\). For ε small enough, we define \(f_{\varepsilon }(s)\) by
Then, for ε small enough,
Now, from inequality (22) we have
Since
the statement follows. In the case \(\varLambda _{w}(s_{0})<0\), we define \(f_{\varepsilon }(s)\) by
and the rest of the proof is the same as above. □
Theorem 5
Suppose that all the assumptions of Theorem 3hold. Additionally, assume that\(( p,q ) \)is a pair of conjugate exponents\(1\leq p,q\leq \infty \)and\(f^{(n)} \in L_{p}[a,b]\). Then the following inequality holds:
where\(\varOmega _{w}\)is defined by (20). The constant on the right-hand side of (23) is sharp for\(1< p\leq \infty \)and the best possible for\(p=1\).
Proof
By applying Hölder’s inequality to (14), we obtain (23). The proof of the sharpness of the constant \(\Vert \varOmega _{w} \Vert _{q}\) is analogous to the proof of Theorem 4. □
By using \((m,n-m)\) type conditions, we obtain the following generalizations of Ostrowski type inequalities as special cases of Theorem 4 and Theorem 5, respectively.
Theorem 6
Let\(w:[a,b]\rightarrow [ 0,\infty ) \)be some normalized weight function, \(f\in C^{n}[a,b]\), and\(( p,q ) \)be a pair of conjugate exponents. Let\(\eta _{l}\), \(\rho _{l}\), and\(G_{m,n}\)be given by (9), (10), and (11), respectively. Then the following inequality holds:
where
Proof
This is a special case of Theorem 5 for \(r=2\), \(a_{1}=a\), \(a_{2}=b\), \(1 \leq m \leq n-1\), \(k_{1}= m-1\), \(k_{2}=n- m-1\). □
Corollary 1
Let\(w:[a,b]\rightarrow [0,\infty ) \)be some normalized weight function, \(f\in C^{2}[a,b]\), and\(( p,q ) \)be a pair of conjugate exponents. Then the following inequality holds:
where
and
Proof
This is a special case of Theorem 6 for \(n=2\). □
Remark 1
By applying Corollary 1 to the uniform weight function \(w ( t ) =\frac{1}{b-a}\), \(t\in [ a,b ] \), we deduce
where
Corollary 2
Let\(w:[a,b]\rightarrow [ 0,\infty ) \)be some normalized weight function, \(f\in C^{3}[a,b]\), and\(( p,q ) \)be a pair of conjugate exponents. Then
where
Proof
This is a special case of Theorem 4 for \(n=3\), \(r=2\), \(a_{1}=a\), and \(a_{2}=b\). □
Remark 2
By applying Corollary 2 to the uniform weight function \(w ( t ) =\frac{1}{b-a}\), \(t\in [ a,b ] \), we obtain
where
4 Grüss type inequalities
We start this section by observation about the Chebyshev functional and certain inequalities for the Chebyshev functional. These inequalities are very useful in numerical integration, some recent results can be found in papers [9, 10], and [16]. For that reason, we consider some new bounds for the remainder of identities (12) and (14) by using the Chebyshev functional and Grüss type inequalities for this functional.
For two real functions \(f, h: [a,b ] \rightarrow \mathbb{R} \) such that \(f, h, f\cdot h \in L_{1} [a,b ]\), Chebyshev functional [11] is defined by
In [5], Cerone and Dragomir established the following inequalities for the Chebyshev functional.
Theorem 7
(cf. [5, Th. 1])
Let\(f: [a,b ]\rightarrow \mathbb{R}\)be an integrable function, \(h: [a,b ]\rightarrow \mathbb{R}\)be an absolutely continuous function, and\(g: [a,b ]\rightarrow \mathbb{R}\), defined by\(g(t)=(t-a)(b-t) [h'(t) ]^{2}\), such that\(g \in L_{1} [a,b ]\). Then the following inequality holds:
Remark 3
The constant \(\frac{1}{\sqrt{2}}\) in (26) is the best possible.
Theorem 8
(cf. [5, Th. 2])
Suppose that\(h: [a,b ]\rightarrow \mathbb{R}\)is monotonically nondecreasing on\([a,b ]\)and\(f: [a,b ]\rightarrow \mathbb{R}\)is absolutely continuous with\(f'\in L_{\infty } [a,b ]\). Then the following inequality holds:
Remark 4
The constant \(\frac{1}{2}\) in (27) is the best possible.
Now we use the above theorems and the results proved in the previous sections to obtain certain Grüss type inequalities.
Theorem 9
Let\(-\infty < a\leq a_{1}< a_{2}\dots < a_{r}\leq b<\infty \), \(r\geq 2\), let\(f: [a,b ]\rightarrow \mathbb{R}\)be such that\(f\in C^{n+1} [a,b ]\), and let the functions\(H_{lj}\), \(l=0,\ldots,k_{j}\), \(j=1,\ldots,r\), \(\varLambda _{w}\), \(\varOmega _{w}\)and the functionalSbe given by (5), (19), (20), and (25), respectively.
-
(i)
If\(\sum_{j=1}^{r} k_{j} + r = n-1\), then
$$\begin{aligned}& f(x)- \int _{a}^{b}w(t)f(t) \,dt \\& \quad =\sum_{j=1}^{r}\sum _{l=0}^{k_{j}}f^{(l+1)}(a_{j}) \int _{a}^{b}P_{w}(x,t)H_{lj}(t) \,dt \\& \quad\quad{} +\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a} \int _{a}^{b} \int _{a}^{b}P_{w}(x,t)G_{H, n-1}(t,s) \,dt \,ds \\& \quad\quad{} + R^{1}_{n}(f;a,b), \end{aligned}$$(28)where the remainder\(R^{1}_{n}(f;a,b)\)satisfies the estimation
$$\begin{aligned} \bigl\vert R^{1}_{n}(f;a,b) \bigr\vert \leq \biggl[\frac{b-a}{2}S(\varLambda _{w},\varLambda _{w}) \int _{a}^{b}(s-a) (b-s) \bigl(f^{(n+1)}(s) \bigr)^{2}\,ds \biggr]^{ \frac{1}{2}}. \end{aligned}$$(29) -
(ii)
If\(\sum_{j=1}^{r} k_{j} + r = n\), then
$$\begin{aligned}& f(x)- \int _{a}^{b}w(t)f(t) \,dt \\& \quad =\sum_{j=1}^{r}\sum _{l=0}^{k_{j}}f^{(l)}(a_{j}) \int _{a}^{b}P_{w}(x,t)H^{ \prime }_{lj}(t) \,dt \\& \quad\quad{} +\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a} \int _{a}^{b} \int _{a}^{b}P_{w}(x,t) \frac{\partial }{\partial t}G_{H, n}(t,s) \,dt \,ds \\& \quad\quad{} + R^{2}_{n}(f;a,b), \end{aligned}$$(30)where the remainder\(R^{2}_{n}(f;a,b)\)satisfies the estimation
$$\begin{aligned} \bigl\vert R^{2}_{n}(f;a,b) \bigr\vert \leq \biggl[\frac{b-a}{2}S(\varOmega _{w},\varOmega _{w}) \int _{a}^{b}(s-a) (b-s) \bigl(f^{(n+1)}(s) \bigr)^{2}\,ds \biggr]^{ \frac{1}{2}}. \end{aligned}$$(31)
Proof
-
(i)
By applying Theorem 7 to \(\varLambda _{w}\) in place of f and \(f^{(n)}\) in place of h, we obtain the following:
$$\begin{aligned}& \biggl\vert \frac{1}{b-a} \int _{a}^{b}\varLambda _{w}(s)f^{(n)}(s) \,ds- \frac{1}{b-a} \int _{a}^{b}\varLambda _{w}(s)\,ds\cdot \frac{1}{b-a} \int _{a}^{b}f^{(n)}(s)\,ds \biggr\vert \\& \quad \leq \frac{1}{\sqrt{2}} \biggl[\frac{1}{b-a} S(\varLambda _{w},\varLambda _{w}) \int _{a}^{b}(s-a) (b-s) \bigl(f^{(n+1)}(s) \bigr)^{2}\,ds \biggr]^{ \frac{1}{2}}. \end{aligned}$$Since
$$\begin{aligned}& \int _{a}^{b}\varLambda _{w}(s)f^{(n)}(s) \,ds \\& \quad =\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a} \int _{a}^{b}\varLambda _{w}(s) \,ds+R_{n}^{1}(f;a,b), \end{aligned}$$from identity (12) we obtain (28). Further, the remainder \(R_{n}^{1}(f; a,b)\) satisfies estimation (29).
-
(ii)
Analogous to (i).
□
Theorem 10
Let\(-\infty < a\leq a_{1}< a_{2}\dots < a_{r}\leq b<\infty \), \(r\geq 2\), let\(f: [a,b ]\rightarrow \mathbb{R}\)be such that\(f\in C^{n+1} [a,b ]\)with\(f^{(n+1)}\geq 0\)on\([a,b ]\), and let\(\varLambda _{w}\), \(\varOmega _{w}\)be defined in (19) and (20). Then we have representations (28) and (30) and the remainders\(R^{i}_{n}(f;a,b)\), \(i=1,2\), satisfy the bounds
and
Proof
By applying Theorem 8 to \(\varLambda _{w}\) in place of f and \(f^{(n)}\) in place of h, we deduce
Since
using identity (12) and (34), we obtain (32). Similarly, from identity (14) we get inequality (33). □
5 Inequalities for n-convex functions
The aim of this section is to consider certain inequalities for n-convex functions. This will be done by using the properties of n-convex functions and generalizations of weighted Montgomery identity obtained in Sect. 2.
Theorem 11
Let\(-\infty < a\leq a_{1}< a_{2}\dots < a_{r}\leq b<\infty \), \(r\geq 2\), \(\sum_{j=1}^{r} k_{j} + r = n-1 \), and let the functions\(H_{lj}\), \(l=0,\ldots,k_{j}\), \(j=1,\ldots,r\), and\(G_{H,n-1}\)be defined as (5) and (7), respectively. If\(f: [a,b ]\rightarrow \mathbb{R}\)isn-convex and
then
If the inequality in (35) is reversed, then the inequality in (36) is reversed, too.
Proof
Since the function f is n-convex, therefore, without loss of generality, we can assume that f is n-times differentiable and \(f^{(n)}(t)\geq 0\), \(t\in [a, b ]\). Using this fact and assumption (35), by applying Theorem 2, we obtain (36). □
Theorem 12
Let\(-\infty < a\leq a_{1}< a_{2}\dots < a_{r}\leq b<\infty \), \(r\geq 2\), \(\sum_{j=1}^{r} k_{j} + r = n \), and let the functions\(H_{lj}\), \(l=0,\ldots,k_{j}\), \(j=1,\ldots,r\), and\(G_{H,n}\)be defined as (5) and (7), respectively. If\(f: [a,b ]\rightarrow \mathbb{R}\)isn-convex and
then
If the inequality in (37) is reversed, then the inequality in (38) is reversed, too.
Proof
The proof is similar to the proof of Theorem 11. □
6 Conclusion
In this paper, new generalizations of Ostrowski type inequalities are obtained. The methods used are based on the classical real analysis, application of the Hermite interpolating polynomials and the weighted Montgomery identity. The obtained results and the Chebyshev functional are then applied to establish new upper bounds for the remainder of generalized Montgomery identity. Also, certain inequalities for the class of n-convex functions are derived. In our future work, we will investigate some applications of the above results in numerical analysis and probability theory.
References
Agarwal, R.P., Wong, P.J.Y.: Error Inequalities in Polynomial Interpolation and Their Applications. Kluwer Academic, Dordrecht (1993)
Aglić Aljinović, A., Čivljak, A., Kovač, S., Pečarić, J., Ribičić Penava, M.: General Integral Identities and Related Inequalities. Element, Zagreb (2013)
Aglić Aljinović, A., Pečarić, J., Vukelić, A.: On some Ostrowski type inequalities via Montgomery identity and Taylor’s formula II. Tamkang J. Math. 36(4), 279–301 (2005)
Awan, K.M., Pečarić, J., Ribičić Penava, M.: Companion inequalities to Ostrowski–Grüss type inequality and applications. Turk. J. Math. 39, 228–234 (2015)
Cerone, P., Dragomir, S.S.: Some new Ostrowski-type bounds for the Čebyšev functional and applications. J. Math. Inequal. 8(1), 159–170 (2014)
Dragomir, S.S.: A functional generalization of Ostrowski inequality via Montgomery identity. Acta Math. Univ. Comen. 84(1), 63–78 (2015)
Dragomir, S.S.: Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14(1), 1–287 (2017)
Dragomir, S.S.: Ostrowski type inequalities for Riemann–Liouville fractional integrals of absolutely continuous functions in terms of 1-norm. RGMIA Res. Rep. Collect. 20, 49 (2017)
Klaričić Bakula, M., Pečarić, J., Ribičić Penava, M., Vukelić, A.: Some Grüss type inequalities and corrected three-point quadrature formulae of Euler type. J. Inequal. Appl. 2015, Article ID 76 (2015)
Klaričić Bakula, M., Pečarić, J., Ribičić Penava, M., Vukelić, A.: New estimations of the remainder in three-point quadrature formulae of Euler type. J. Math. Inequal. 9(4), 1143–1156 (2015)
Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993)
Niezgoda, M.: Grüss and Ostrowski type inequalities. Appl. Math. Comput. 217(23), 9779–9789 (2011)
Ostrowski, A.: Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 10, 226–227 (1938)
Pečarić, J.: On the Čebyšev inequality. Bul. Inst. Politeh. Timisoara 25(39), 10–11 (1980)
Pečarić, J., Ribičić Penava, M.: Weighted Ostrowski and Grüss type inequalities. J. Inequal. Spec. Funct. 11(1), 12–23 (2020)
Pečarić, J., Ribičić Penava, M., Vukelić, A.: Bounds for the Chebyshev functional and applications to the weighted integral formulae. Appl. Math. Comput. 268, 957–965 (2015)
Pečarić, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, San Diego (1992)
Popoviciu, T.: Sur l’approximation des fonctions convexes d’ordre superieur. Mathematica 10, 49–54 (1934)
Acknowledgements
The research of the second author is supported by the Ministry of Education and Science of the Russian Federation (Agreement No. 02.a03.21.0008.).
Availability of data and materials
Not applicable.
Funding
There is no funding for this work.
Author information
Authors and Affiliations
Contributions
All authors jointly worked on the results and they read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Kvesić, L., Pečarić, J. & Ribičić Penava, M. Generalizations of Ostrowski type inequalities via Hermite polynomials. J Inequal Appl 2020, 176 (2020). https://doi.org/10.1186/s13660-020-02441-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-020-02441-6