
Kvesić et al. Journal of Inequalities and Applications        (2020) 2020:176 
https://doi.org/10.1186/s13660-020-02441-6

R E S E A R C H Open Access

Generalizations of Ostrowski type
inequalities via Hermite polynomials
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Abstract
We present new generalizations of the weighted Montgomery identity constructed
by using the Hermite interpolating polynomial. The obtained identities are used to
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inequalities for this functional. By applying those results we derive inequalities for the
class of n-convex functions.
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1 Introduction
In 1938, A.M. Ostrowski [13] pointed out the following inequality which gives an approx-
imation of the integral 1
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∫ b

a f (t) dt:
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∥f ′∥∥∞

for all x ∈ [a, b], where f : [a, b] → R is continuous on [a, b] and differentiable on (a, b)
with a bounded derivative. Since the Ostrowski inequality can be proved by using the
Montgomery identity

f (x) =
1

b – a

∫ b

a
f (t) dt +

1
b – a

(∫ x

a
(t – a)f ′(t) dt +

∫ b

x
(t – b)f ′(t) dt

)

,

in this paper we use the weighted Montgomery identity to obtain certain generalizations
of Ostrowski type inequalities. The weighted Montgomery identity (see [14]) is defined by

f (x) =
∫ b

a
w(t)f (t) dt +

∫ b

a
Pw(x, t)f ′(t) dt, (1)
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where

Pw(x, t) =

⎧
⎨

⎩

∫ t
a w(u) du, a ≤ t ≤ x,

∫ t
a w(u) du – 1, x < t ≤ b,

(2)

is the weighted Peano kernel, f : [a, b] → R is differentiable on [a, b], f ′ : [a, b] → R is
integrable on [a, b], and w : [a, b] → [0,∞) is a normalized weighted function, i.e., an in-
tegrable function satisfying

∫ b

a
w(s) ds = 1.

Over the last decades, Ostrowski type inequalities have been largely investigated in the
literature since they are very useful in numerical analysis and probability theory. Aglić
Aljinović et al. considered some weighted Ostrowski type inequalities via the Montgomery
identity and the Taylor formula, and applications in numerical integration (see [2, 3] and
the references cited therein). Certain Ostrowski type bounds for the Chebyshev functional
and applications to the quadrature formulae can be found in papers [4, 5, 9, 10], and [16].
In [12] and [15], Ostrowski type inequalities for continuous functions with one point of
nondifferentiability and applications in numerical integration are presented. Some other
Ostrowski type inequalities can be found in [6, 7], and [8].

Throughout the paper, the symbol Cn[a, b], n ∈ N, denotes the set of n times continu-
ously differentiable functions on the interval [a, b]. It is well known that the function f is
called n times continuously differentiable iff it is n times differentiable and its nth order
derivative f (n) is continuous.

The main purpose of this note is to consider new generalizations of weighted Ostrowski
type inequalities for functions presented by a Hermite interpolating polynomial. Since a
special case of the Hermite interpolating polynomial is the two-point Taylor polynomial,
in this way we generalized results from paper [3], where Ostrowski type inequalities are
established by using the Taylor formula. For this purpose, let us introduce notations and
terminology used in relation to the Hermite interpolating polynomial (see [1, p. 62]).

Let –∞ < a < b < ∞ and a ≤ a1 < a2 · · · < ar ≤ b, r ≥ 2, be the given points. Hermite
interpolation of the function f ∈ Cn[a, b], n ≥ r, is of the form

f (t) = PH (t) + eH (t),

where PH is a unique polynomial of degree (n – 1) satisfying any of the following Hermite
conditions:

P(i)
H (aj) = f (i)(aj); 0 ≤ i ≤ kj, 1 ≤ j ≤ r,

r∑

j=1

kj + r = n. (3)

The polynomial PH is known in literature as a Hermite interpolating polynomial of the
function f . Further, the error eH (t) can be represented in terms of the Green function
GH,n(t, s). Let K be the square a ≤ t, s ≤ b; the same square with straight lines of the form
s = aj rejected be K0 and K0 with rejected diagonal t = s be K1. Then the Green function
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has the following fundamental property:

z(n)(t) = 0,

z(i)(aj) = 0, 0 ≤ i ≤ kj, 1 ≤ j ≤ r,

in K1.

Theorem 1 (cf. [1, pp. 73–74]) Let f ∈ Cn[a, b], and let PH be its Hermite interpolating
polynomial. Then

f (t) = PH (t) + eH (t)

=
r∑

j=1

kj∑

i=0

Hij(t)f (i)(aj) +
∫ b

a
GH,n(t, s)f (n)(s) ds, (4)

where Hij are the fundamental polynomials of the Hermite basis defined by

Hij(t) =
1
i!

ω(t)
(t – aj)kj+1–i

kj–i∑

k=0

1
k!

dk

dtk

(
(t – aj)kj+1

ω(t)

)∣
∣
∣
∣
t=aj

(t – aj)k , (5)

where

ω(t) =
r∏

j=1

(t – aj)kj+1, (6)

and GH,n is the Green function defined by

GH,n(t, s) =

⎧
⎨

⎩

∑l
j=1

∑kj
i=0

(aj–s)n–i–1

(n–i–1)! Hij(t), s ≤ t

–
∑r

j=l+1
∑kj

i=0
(aj–s)n–i–1

(n–i–1)! Hij(t), s ≥ t,
(7)

for all al ≤ s ≤ al+1, l = 0, . . . , r, with a0 = a and ar+1 = b.

Hermite conditions (3) in particular include the following (m, n – m) type conditions
(r = 2, a1 = a, a2 = b, 1 ≤ m ≤ n – 1, k1 = m – 1, k2 = n – m – 1):

P(i)
mn(a) = f (i)(a), 0 ≤ i ≤ m – 1,

P(i)
mn(b) = f (i)(b), 0 ≤ i ≤ n – m – 1.

In this case,

f (t) =
m–1∑

l=0

ηl(t)f (l)(a) +
n–m–1∑

l=0

ρl(t)f (l)(b) +
∫ b

a
Gm,n(t, s)f (n)(s) ds, (8)

where

ηl(t) =
1
l!

(t – a)l
(

t – b
a – b

)n–m m–1–l∑

k=0

(
n – m + k – 1

k

)(
t – a
b – a

)k

, (9)
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ρl(t) =
1
l!

(t – b)l
(

t – a
b – a

)m n–m–1–l∑

k=0

(
m + k – 1

k

)(
t – b
a – b

)k

, (10)

and the Green function Gm,n is of the form

Gm,n(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑m–1
j=0 [

∑m–1–j
p=0

(n–m+p–1
p

)
( t–a

b–a )p]

× (t–a)j(a–s)n–j–1

j!(n–j–1)! ( b–t
b–a )n–m, s ≤ t,

–
∑n–m–1

i=0 [
∑n–m–1–i

q=0
(m+q–1

q
)
( b–t

b–a )q]

× (t–b)i(b–s)n–i–1

i!(n–i–1)! ( t–a
b–a )m, s ≥ t.

(11)

Since we deal with an n-convex function, let us recall the definition of the divided dif-
ference (see [17, p. 15]).

Definition 1 Let f be a real-valued function defined on the segment [a, b]. The divided
difference of order n of the function f at distinct points x0, . . . , xn ∈ [a, b] is defined recur-
sively by

f [xi] = f (xi), (i = 0, . . . , n)

and

f [x0, . . . , xn] =
f [x1, . . . , xn] – f [x0, . . . , xn–1]

xn – x0
.

The value f [x0, . . . , xn] is independent of the order of the points x0, . . . , xn.

The definition may be extended to include the case that some (or all) of the points coin-
cide. Assuming that f (j–1)(x) exists, we define

f [x, . . . , x︸ ︷︷ ︸
j-times

] =
f (j–1)(x)
(j – 1)!

.

Also, the divided difference of order n of the function f can be represented as

f [x0, . . . , xn] =
n∑

i=0

f (xi)
v(xi)

,

where v(xi) =
∏n

j=0,j �=i(xi –xj). With these observations in mind, Popoviciu defined n-convex
function as follows (see [18]).

Definition 2 A function f : [a, b] → R is said to be n-convex on [a, b], n ≥ 0, if for all
choices of (n + 1) distinct points x0, . . . , xn ∈ [a, b], the nth order divided difference of f
satisfies

f [x0, . . . , xn] ≥ 0.
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If n = 0, then a convex function f of order 0 is a nonnegative function, a 1-convex func-
tion is a nondecreasing function, while the class of 2-convex functions coincides with the
class of convex functions. It is well known that if the nth order derivative f (n) exists, then
the function f is n-convex if and only if f (n) ≥ 0 (see for example [17, p. 16 and p. 293]).

The paper is organized as follows. After this introduction, in Sect. 2, we establish
weighted generalizations of the Montgomery identity constructed by using the Hermite
interpolating polynomial and the Green function. In Sect. 3, we derive Ostrowski type
inequalities for differentiable functions of class Cn. As a special case, we consider results
for (m, n – m) interpolating polynomial. Further, in Sect. 4, we give some new bounds for
the remainder of identities previously obtained by using the Chebyshev functional and
certain Grüss type inequalities for this functional. Finally, in Sect. 5, applying the proper-
ties of n-convex functions and generalizations of the weighted Montgomery identity, we
obtain inequalities for the class of n-convex functions.

Throughout the paper, it is assumed that all integrals under consideration exist and that
they are finite.

2 Generalizations of the weighted Montgomery identity
In this section, applying the weighted Montgomery identity (1) and the Hermite interpo-
lation polynomial of the n times continuously differentiable function f , (4), we derive new
generalizations of the weighted Montgomery identity.

Theorem 2 Suppose that f ∈ Cn[a, b], w : [a, b] → [0,∞) is some normalized weight
function and Hlj is defined by (5). Then, for –∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞, r ≥ 2,
∑r

j=1 kj + r = n – 1, the following identity holds:

f (x) =
∫ b

a
w(t)f (t) dt +

r∑

j=1

kj∑

l=0

f (l+1)(aj)
∫ b

a
Pw(x, t)Hlj(t) dt

+
∫ b

a

(∫ b

a
Pw(x, t)GH,n–1(t, s) dt

)

f (n)(s) ds. (12)

Proof By applying (4) with f ′ ∈ C(n)[a, b] instead of f , we obtain

f ′(t) =
r∑

j=1

kj∑

l=0

Hlj(t)f (l+1)(aj) +
∫ b

a
GH,n–1(t, s)f (n)(s) ds. (13)

By inserting (13) into the weighted Montgomery identity (1), we derive (12). �

Theorem 3 Let f ∈ Cn[a, b], w : [a, b] → [0,∞) be some normalized weight function, and
let Hlj be defined as (5). Then, for –∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞, r ≥ 2,

∑r
j=1 kj + r = n,

the following identity holds:

f (x) =
∫ b

a
w(t)f (t) dt +

r∑

j=1

kj∑

l=0

f (l)(aj)
∫ b

a
Pw(x, t)H ′

lj(t) dt

+
∫ b

a

(∫ b

a
Pw(x, t)

∂

∂t
GH,n(t, s) dt

)

f (n)(s) ds. (14)
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Proof Multiplying identity (4) by w(t) and integrating with respect to t from a to b, we
obtain the following identity:

∫ b

a
w(t)f (t) dt =

r∑

j=1

kj∑

l=0

f (l)(aj)
∫ b

a
w(t)Hlj(t) dt

+
∫ b

a

∫ b

a
w(t)GH,n(t, s)f (n)(s) ds dt. (15)

If we subtract (15) from identity (4) stated for the variable x instead of t, we get

f (x) –
∫ b

a
w(t)f (t) dt =

r∑

j=1

kj∑

l=0

f (l)(aj)
(

Hlj(x) –
∫ b

a
w(t)Hlj(t) dt

)

+
∫ b

a

(

GH,n(x, s) –
∫ b

a
w(t)GH,n(t, s) dt

)

f (n)(s) ds. (16)

By applying the weighted Montgomery identity (1) for Hlj(x) and GH,n(x, s), we obtain the
following identities:

Hlj(x) =
∫ b

a
w(t)Hlj(t) dt +

∫ b

a
Pw(x, t)H ′

lj(t) dt (17)

and

GH,n(x, s) =
∫ b

a
w(t)GH,n(t, s) dt +

∫ b

a
Pw(x, t)

∂

∂t
GH,n(t, s) dt. (18)

Finally, inserting (17) and (18) into (16), we obtain (14). �

3 Ostrowski type inequalities
In this section, we use identity (12), identity (14), and Hölder’s inequality to prove some
sharp and best possible inequalities for the functions whose higher order derivatives be-
long to Lp spaces, 1 ≤ p ≤ ∞. As a special case, we discuss results for (m, n – m) interpo-
lating polynomial.

In what follows, (p, q) is a pair of conjugate exponents if 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1,
with the convention 1

∞ = 0 and 1
0 = ∞. The symbol Lp[a, b], 1 ≤ p < ∞, denotes the

space of p-power integrable functions on the interval [a, b] equipped with the norm
‖f ‖p = (

∫ b
a |f (t)|p dt)1/p, and L∞[a, b] stands for the space of all essentially bounded func-

tions on the interval [a, b] with the norm ‖f ‖∞ = ess supt∈[a,b] |f (t)|.
Further, we denote

Λw(s) =
∫ b

a
Pw(x, t)GH,n–1(t, s) dt, s ∈ [a, b] (19)

and

Ωw(s) =
∫ b

a
Pw(x, t)

∂

∂t
GH,n(t, s) dt, s ∈ [a, b], (20)

where the Green function GH,n is as defined in (7).
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Theorem 4 Suppose that all the assumptions of Theorem 2 hold. Additionally, assume that
(p, q) is a pair of conjugate exponents 1 ≤ p, q ≤ ∞ and f (n) ∈ Lp[a, b]. Then the following
inequality holds:

∣
∣
∣
∣
∣
f (x) –

∫ b

a
w(t)f (t) dt –

r∑

j=1

kj∑

l=0

f (l+1)(aj)
∫ b

a
Pw(x, t)Hlj(t) dt

∣
∣
∣
∣
∣

≤ ‖Λw‖q
∥
∥f (n)∥∥

p, (21)

where Λw is defined by (19). The constant on the right-hand side of (21) is sharp for 1 < p ≤
∞ and the best possible for p = 1.

Proof By applying Hölder’s inequality to (12), we obtain (21). For the proof of the sharp-
ness of the constant ‖Λw‖q, let us find a function f for which the equality in (21) is ob-
tained.

For 1 < p < ∞, take f to be such that

f (n)(s) = sgnΛw(s)
∣
∣Λw(s)

∣
∣

1
p–1 .

For p = ∞, take f (n)(s) = sgnΛw(s).
For p = 1, we prove that

∣
∣
∣
∣

∫ b

a
Λw(s)f (n)(s) ds

∣
∣
∣
∣ ≤ max

s∈[a,b]

∣
∣Λw(s)

∣
∣
(∫ b

a

∣
∣f (n)(s)

∣
∣ds

)

(22)

is the best possible inequality. Suppose that |Λw(s)| attains its maximum at s0 ∈ [a, b]. First,
we assume that Λw(s0) > 0. For ε small enough, we define fε(s) by

fε(s) =

⎧
⎪⎪⎨

⎪⎪⎩

0, a ≤ s ≤ s0,
1

εn! (s – s0)n, s0 ≤ s ≤ s0 + ε,
1

(n–1)! (s – s0)n–1, s0 + ε ≤ s ≤ b.

Then, for ε small enough,

∣
∣
∣
∣

∫ b

a
Λw(s)f (n)(s) ds

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ s0+ε

s0

Λw(s)
1
ε

ds
∣
∣
∣
∣ =

1
ε

∫ s0+ε

s0

Λw(s) ds.

Now, from inequality (22) we have

1
ε

∫ s0+ε

s0

Λw(s) ds ≤ Λw(s0)
∫ s0+ε

s0

1
ε

ds = Λw(s0).

Since

lim
ε→0

1
ε

∫ s0+ε

s0

Λw(s) ds = Λw(s0),
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the statement follows. In the case Λw(s0) < 0, we define fε(s) by

fε(s) =

⎧
⎪⎪⎨

⎪⎪⎩

1
(n–1)! (s – s0 – ε)n–1, a ≤ s ≤ s0,

– 1
εn! (s – s0 – ε)n, s0 ≤ s ≤ s0 + ε,

0, s0 + ε ≤ s ≤ b,

and the rest of the proof is the same as above. �

Theorem 5 Suppose that all the assumptions of Theorem 3 hold. Additionally, assume that
(p, q) is a pair of conjugate exponents 1 ≤ p, q ≤ ∞ and f (n) ∈ Lp[a, b]. Then the following
inequality holds:

∣
∣
∣
∣
∣
f (x) –

∫ b

a
w(t)f (t) dt –

r∑

j=1

kj∑

l=0

f (l)(aj)
∫ b

a
Pw(x, t)H ′

lj(t) dt

∣
∣
∣
∣
∣

≤ ‖Ωw‖q
∥
∥f (n)∥∥

p, (23)

where Ωw is defined by (20). The constant on the right-hand side of (23) is sharp for 1 < p ≤
∞ and the best possible for p = 1.

Proof By applying Hölder’s inequality to (14), we obtain (23). The proof of the sharpness
of the constant ‖Ωw‖q is analogous to the proof of Theorem 4. �

By using (m, n–m) type conditions, we obtain the following generalizations of Ostrowski
type inequalities as special cases of Theorem 4 and Theorem 5, respectively.

Theorem 6 Let w : [a, b] → [0,∞) be some normalized weight function, f ∈ Cn[a, b], and
(p, q) be a pair of conjugate exponents. Let ηl , ρl , and Gm,n be given by (9), (10), and (11),
respectively. Then the following inequality holds:

∣
∣
∣
∣
∣
f (x) –

∫ b

a
w(t)f (t) dt –

m–1∑

l=0

f (l)(a)
∫ b

a
Pw(x, t)η′

l(t) dt

–
n–m–1∑

l=0

f (l)(b)
∫ b

a
Pw(x, t)ρ ′

l (t) dt

∣
∣
∣
∣
∣
≤ ‖Kw‖q

∥
∥f (n)∥∥

p, (24)

where

Kw(s) =
∫ b

a
Pw(x, t)

∂

∂t
Gm,n(t, s) dt.

Proof This is a special case of Theorem 5 for r = 2, a1 = a, a2 = b, 1 ≤ m ≤ n – 1, k1 = m – 1,
k2 = n – m – 1. �

Corollary 1 Let w : [a, b] → [0,∞) be some normalized weight function, f ∈ C2[a, b], and
(p, q) be a pair of conjugate exponents. Then the following inequality holds:

∣
∣
∣
∣f (x) –

∫ b

a
w(t)f (t) dt +

f (a) – f (b)
b – a

(∫ b

a
Pw(x, t) dt

)∣
∣
∣
∣ ≤ ‖Kw‖q

∥
∥f ′′∥∥

p,
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where

Kw(s) =
∫ b

a
Pw(x, t)

∂

∂t
G1,2(t, s) dt

and

G1,2(t, s) =

⎧
⎨

⎩

(t–b)(s–a)
b–a , s ≤ t,

(s–b)(t–a)
b–a , s ≥ t.

Proof This is a special case of Theorem 6 for n = 2. �

Remark 1 By applying Corollary 1 to the uniform weight function w(t) = 1
b–a , t ∈ [a, b], we

deduce

∣
∣
∣
∣f (x) –

1
b – a

∫ b

a
f (t) dt +

f (a) – f (b)
b – a

(

x –
a + b

2

)∣
∣
∣
∣ ≤ ‖K‖q

∥
∥f ′′∥∥

p,

where

K(s) =

⎧
⎨

⎩

(s–a)(2x–b–s)
2(b–a) , s ≤ x,

(s–b)(2x–a–s)
2(b–a) , x ≤ s.

Corollary 2 Let w : [a, b] → [0,∞) be some normalized weight function, f ∈ C3[a, b], and
(p, q) be a pair of conjugate exponents. Then

∣
∣
∣
∣f (x) –

∫ b

a
w(t)f (t) dt –

1
b – a

[

f ′(a)
∫ b

a
(b – t)Pw(x, t) dt

+ f ′(b)
∫ b

a
(t – a)Pw(x, t) dt

]∣
∣
∣
∣ ≤ ‖Vw‖q

∥
∥f ′′′∥∥

p,

where

Vw(s) =
∫ b

a
Pw(x, t)G1,2(t, s) dt.

Proof This is a special case of Theorem 4 for n = 3, r = 2, a1 = a, and a2 = b. �

Remark 2 By applying Corollary 2 to the uniform weight function w(t) = 1
b–a , t ∈ [a, b], we

obtain

∣
∣
∣
∣f (x) –

1
b – a

∫ b

a
f (t) dt – f ′(a)

(
1
6

(b – a) –
(b – x)2

2(b – a)

)

– f ′(b)
(

1
6

(b – a) –
(x – a)2

2(b – a)

)∣
∣
∣
∣ ≤ ‖V‖q

∥
∥f ′′′∥∥

p,
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where

V (s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(s–a)
(b–a)2 [(s – b) (s–a)2

3

+ [ x3–s3

3 – (a + b) x2–s2

2 + ab(x – s)] – (x–b)3

3 ], s ≤ x,
(s–b)

(b–a)2 [ (x–a)3

3

+ [ s3–x3

3 – (a + b) s2–x2

2 + ab(s – x)] – (s – a) (s–b)2

3 ], s ≥ x.

4 Grüss type inequalities
We start this section by observation about the Chebyshev functional and certain inequal-
ities for the Chebyshev functional. These inequalities are very useful in numerical inte-
gration, some recent results can be found in papers [9, 10], and [16]. For that reason,
we consider some new bounds for the remainder of identities (12) and (14) by using the
Chebyshev functional and Grüss type inequalities for this functional.

For two real functions f , h : [a, b] → R such that f , h, f · h ∈ L1[a, b], Chebyshev func-
tional [11] is defined by

S(f , h) =
1

b – a

∫ b

a
f (t)h(t) dt –

1
b – a

∫ b

a
f (t) dt

1
b – a

∫ b

a
h(t) dt. (25)

In [5], Cerone and Dragomir established the following inequalities for the Chebyshev
functional.

Theorem 7 (cf. [5, Th. 1]) Let f : [a, b] → R be an integrable function, h : [a, b] → R be
an absolutely continuous function, and g : [a, b] →R, defined by g(t) = (t – a)(b – t)[h′(t)]2,
such that g ∈ L1[a, b]. Then the following inequality holds:

∣
∣S(f , h)

∣
∣ ≤ 1√

2

[
1

b – a
S(f , f )

∫ b

a
(t – a)(b – t)

(
h′(t)

)2 dt
] 1

2
. (26)

Remark 3 The constant 1√
2 in (26) is the best possible.

Theorem 8 (cf. [5, Th. 2]) Suppose that h : [a, b] → R is monotonically nondecreasing
on [a, b] and f : [a, b] → R is absolutely continuous with f ′ ∈ L∞[a, b]. Then the following
inequality holds:

∣
∣S(f , h)

∣
∣ ≤ 1

2(b – a)
∥
∥f ′∥∥∞

∫ b

a
(t – a)(b – t) dh(t). (27)

Remark 4 The constant 1
2 in (27) is the best possible.

Now we use the above theorems and the results proved in the previous sections to obtain
certain Grüss type inequalities.

Theorem 9 Let –∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞, r ≥ 2, let f : [a, b] → R be such that
f ∈ Cn+1[a, b], and let the functions Hlj, l = 0, . . . , kj, j = 1, . . . , r, Λw, Ωw and the functional
S be given by (5), (19), (20), and (25), respectively.
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(i) If
∑r

j=1 kj + r = n – 1, then

f (x) –
∫ b

a
w(t)f (t) dt

=
r∑

j=1

kj∑

l=0

f (l+1)(aj)
∫ b

a
Pw(x, t)Hlj(t) dt

+
f (n–1)(b) – f (n–1)(a)

b – a

∫ b

a

∫ b

a
Pw(x, t)GH,n–1(t, s) dt ds

+ R1
n(f ; a, b), (28)

where the remainder R1
n(f ; a, b) satisfies the estimation

∣
∣R1

n(f ; a, b)
∣
∣ ≤

[
b – a

2
S(Λw,Λw)

∫ b

a
(s – a)(b – s)

(
f (n+1)(s)

)2 ds
] 1

2
. (29)

(ii) If
∑r

j=1 kj + r = n, then

f (x) –
∫ b

a
w(t)f (t) dt

=
r∑

j=1

kj∑

l=0

f (l)(aj)
∫ b

a
Pw(x, t)H ′

lj(t) dt

+
f (n–1)(b) – f (n–1)(a)

b – a

∫ b

a

∫ b

a
Pw(x, t)

∂

∂t
GH,n(t, s) dt ds

+ R2
n(f ; a, b), (30)

where the remainder R2
n(f ; a, b) satisfies the estimation

∣
∣R2

n(f ; a, b)
∣
∣ ≤

[
b – a

2
S(Ωw,Ωw)

∫ b

a
(s – a)(b – s)

(
f (n+1)(s)

)2 ds
] 1

2
. (31)

Proof
(i) By applying Theorem 7 to Λw in place of f and f (n) in place of h, we obtain the

following:

∣
∣
∣
∣

1
b – a

∫ b

a
Λw(s)f (n)(s) ds –

1
b – a

∫ b

a
Λw(s) ds · 1

b – a

∫ b

a
f (n)(s) ds

∣
∣
∣
∣

≤ 1√
2

[
1

b – a
S(Λw,Λw)

∫ b

a
(s – a)(b – s)

(
f (n+1)(s)

)2 ds
] 1

2
.

Since

∫ b

a
Λw(s)f (n)(s) ds

=
f (n–1)(b) – f (n–1)(a)

b – a

∫ b

a
Λw(s) ds + R1

n(f ; a, b),
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from identity (12) we obtain (28). Further, the remainder R1
n(f ; a, b) satisfies

estimation (29).
(ii) Analogous to (i). �

Theorem 10 Let –∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞, r ≥ 2, let f : [a, b] → R be such that
f ∈ Cn+1[a, b] with f (n+1) ≥ 0 on [a, b], and let Λw, Ωw be defined in (19) and (20). Then
we have representations (28) and (30) and the remainders Ri

n(f ; a, b), i = 1, 2, satisfy the
bounds

∣
∣R1

n(f ; a, b)
∣
∣ ≤ ∥

∥Λ′
w
∥
∥∞

[
b – a

2
(
f (n–1)(b) + f (n–1)(a)

)
– f (n–2)(b) + f (n–2)(a)

]

(32)

and

∣
∣R2

n(f ; a, b)
∣
∣ ≤ ∥

∥Ω ′
w
∥
∥∞

[
b – a

2
(
f (n–1)(b) + f (n–1)(a)

)
– f (n–2)(b) + f (n–2)(a)

]

. (33)

Proof By applying Theorem 8 to Λw in place of f and f (n) in place of h, we deduce
∣
∣
∣
∣

1
b – a

∫ b

a
Λw(s)f (n)(s) ds –

1
b – a

∫ b

a
Λw(s) ds · 1

b – a

∫ b

a
f (n)(s) ds

∣
∣
∣
∣

≤ 1
2(b – a)

∥
∥Λ′

w
∥
∥∞

∫ b

a
(s – a)(b – s)f (n+1)(s) ds. (34)

Since
∫ b

a
(s – a)(b – s)f (n+1)(s) ds =

∫ b

a

[
2s – (a + b)

]
f (n)(s) ds

= (b – a)
[
f (n–1)(b) + f (n–1)(a)

]
– 2

[
f (n–2)(b) – f (n–2)(a)

]
,

using identity (12) and (34), we obtain (32). Similarly, from identity (14) we get inequality
(33). �

5 Inequalities for n-convex functions
The aim of this section is to consider certain inequalities for n-convex functions. This will
be done by using the properties of n-convex functions and generalizations of weighted
Montgomery identity obtained in Sect. 2.

Theorem 11 Let –∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞, r ≥ 2,
∑r

j=1 kj + r = n – 1, and let the
functions Hlj, l = 0, . . . , kj, j = 1, . . . , r, and GH,n–1 be defined as (5) and (7), respectively. If
f : [a, b] →R is n-convex and

∫ b

a
Pw(x, t)GH,n–1(t, s) dt ≥ 0 for all s ∈ [a, b], (35)

then

f (x) –
∫ b

a
w(t)f (t) dt –

r∑

j=1

kj∑

l=0

f (l+1)(aj)
∫ b

a
Pw(x, t)Hlj(t) dt ≥ 0. (36)

If the inequality in (35) is reversed, then the inequality in (36) is reversed, too.
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Proof Since the function f is n-convex, therefore, without loss of generality, we can assume
that f is n-times differentiable and f (n)(t) ≥ 0, t ∈ [a, b]. Using this fact and assumption
(35), by applying Theorem 2, we obtain (36). �

Theorem 12 Let –∞ < a ≤ a1 < a2 · · · < ar ≤ b < ∞, r ≥ 2,
∑r

j=1 kj + r = n, and let the
functions Hlj, l = 0, . . . , kj, j = 1, . . . , r, and GH,n be defined as (5) and (7), respectively. If
f : [a, b] →R is n-convex and

∫ b

a
Pw(x, t)

∂

∂t
GH,n(t, s) dt ≥ 0 for all s ∈ [a, b], (37)

then

f (x) –
∫ b

a
w(t)f (t) dt –

r∑

j=1

kj∑

l=0

f (l)(aj)
∫ b

a
Pw(x, t)H ′

lj(t) dt ≥ 0. (38)

If the inequality in (37) is reversed, then the inequality in (38) is reversed, too.

Proof The proof is similar to the proof of Theorem 11. �

6 Conclusion
In this paper, new generalizations of Ostrowski type inequalities are obtained. The meth-
ods used are based on the classical real analysis, application of the Hermite interpolating
polynomials and the weighted Montgomery identity. The obtained results and the Cheby-
shev functional are then applied to establish new upper bounds for the remainder of gener-
alized Montgomery identity. Also, certain inequalities for the class of n-convex functions
are derived. In our future work, we will investigate some applications of the above results
in numerical analysis and probability theory.
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