- Research
- Open Access
- Published:
Hermite–Hadamard inequality for fractional integrals of Caputo–Fabrizio type and related inequalities
Journal of Inequalities and Applications volume 2020, Article number: 172 (2020)
Abstract
In this article, firstly, Hermite–Hadamard’s inequality is generalized via a fractional integral operator associated with the Caputo–Fabrizio fractional derivative. Then a new kernel is obtained and a new theorem valid for convex functions is proved for fractional order integrals. Also, some applications of our main findings are given.
1 Introduction
Fractional calculus has been appealing to many researchers over the last decades [1–5]. Some researchers have found that different fractional derivatives with different singular or nonsingular kernels need to be identified by real-world problems in different fields of engineering and science [6–12]. These different fractional operators are also used in integral inequalities [13–21]. Thus, fractional calculus plays an important role in the development of inequality theory. One of the best-known inequalities, the Hermite–Hadamard inequality, which is generalized by means of several fractional integral operators, is given now.
Theorem 1
(See [22])
Let\(f:I\rightarrow \mathbb{R} \)be a convex function defined on the intervalIof real numbers and\(a,b\in I\)with\(a< b\). Then the following inequality holds:
In the field of fractional analysis, many researchers have focused on defining new operators and modeling and implementing of the problems based on their features. The features that make the operators different from each other include singularity and locality, while kernel expression of the operator is presented with functions such as the power law, the exponential function or a Mittag-Leffler function. The distinctive feature of the Caputo–Fabrizio operator is that it has a non-singular kernel. With the help of the Caputo–Fabrizio operator, new studies have been made on many modeling problems and real-world problems. This is so because the definition of Caputo–Fabrizio is very effective in better describing heterogeneousness and systems with different scales with memory effects. The main basic feature of the Caputo–Fabrizio definition can be explained as a real power turned into the integer by the Laplace transformation, thus the exact solution can be easily found for various problems. Now, we will proceed by some necessary definitions and preliminary results which are used and referred throughout this paper.
Definition 1
Let \(f\in H^{1} ( a,b ) \), \(a< b\), \(\alpha \in [ 0,1 ] \), then the definition of the left fractional derivative in the sense of Caputo and Fabrizio becomes
and the associated fractional integral is
where \(B ( \alpha ) >0\) is a normalization function satisfying \(B ( 0 ) =B ( 1 ) =1\). For the right fractional derivative we have
and the associated fractional integral is
Fractional derivative and integral operators have recently been used to generalize existing kernels. The kernel which we will generalize with the help of a Caputo–Fabrizio fractional integral operator is proven by Dragomir and Agarwal.
Lemma 1
(See [25])
Let\(f:I^{\circ }\subseteq \mathbb{R} \rightarrow \mathbb{R} \)be a differentiable mapping on\(I^{\circ }\), \(a,b\in I\)with\(a< b\). If\(f^{\prime }\in L [ a,b ] \)then the following equality holds:
In the following section, we will prove a theorem which is a variant of the Hermite–Hadamard inequality.
2 A generalization of Hermite–Hadamard inequality via the Caputo–Fabrizio fractional operator
Theorem 2
Let a function\(f: [ a,b ] \subseteq \mathbb{R} \rightarrow \mathbb{R} \)be convex on\([ a,b ] \)and\(f\in L_{1} [ a,b ] \). If\(\alpha \in [ 0,1 ] \), then the following double inequality holds:
where\(k\in [ a,b ] \)and\(B ( \alpha ) >0\)is a normalization function.
Proof
Since f is a convex function on \([ a,b ] \) we can write
By multiplying both sides of (2) with \(\frac{\alpha ( b-a ) }{2B ( \alpha ) }\) and adding \(\frac{2 ( 1-\alpha ) }{B ( \alpha ) }f ( k ) \) we have
So, the proof of the first inequality in (1) is completed by reorganizing the last inequality. For the proof of the second inequality in (1), if we use the right hand side of Hadamard inequality, we can write
By making the same operations with (2) in (4), we have
By reorganizing (5), the proof of the second inequality in (1) is completed. □
Theorem 3
Let\(f,g:I\subseteq \mathbb{R}\rightarrow \mathbb{R}\)be a convex function. If\(fg\in L([a,b])\), then we have the following inequality:
where
and\(k\in [ a,b ] \), \(B ( \alpha ) >0\)is a normalization function.
Proof
Since f and g are convex functions on \([a,b]\), we have
and
Multiplying above inequalities both sides, we have
Integrating (6) with respect to t over \([0,1]\), and making the change of variable, we obtain
which implies
By multiplying both sides with \(\frac{\alpha ( b-a ) }{2B ( \alpha ) }\) and adding \(\frac{2 ( 1-\alpha ) }{B ( \alpha ) }f ( k ) g(k)\) we have
Thus
and with suitable rearrangements, the proof is completed. □
Theorem 4
Let\(f,g:I\subseteq \mathbb{R}\rightarrow \mathbb{R}\)be a convex function. If\(fg\in L([a,b])\), the set of integrable functions, then
where\(M(a,b)\)and\(N(a,b)\)are given in Theorem3and\(k\in [ a,b ] \), \(B ( \alpha ) >0\)is a normalization function.
Proof
Since f and g are convex functions on \([a,b]\), for \(t=\frac{1}{2}\), we have
and
Multiplying the above inequalities at both sides, we have
Integrating the above inequality with respect to t over \([0,1]\) and making the change of variable, one obtains
Thus
By multiplying both sides with \(\frac{\alpha ( b-a ) }{2B ( \alpha ) }\) and subtracting \(\frac{2 ( 1-\alpha ) }{B ( \alpha ) }f ( k ) g(k)\) we have
and one arrives at
Multiplying both sides of the above inequality by \(\frac{2B(\alpha )}{\alpha (b-a)}\), we get the required inequality (7). □
3 Some new results related with Caputo–Fabrizio fractional operator
In this section, firstly, we will generalize a lemma, then we will put forward a theorem with the help of the lemma.
Lemma 2
Let\(f:I\subseteq \mathbb{R} \rightarrow \mathbb{R} \)be a differentiable mapping on\(I^{\circ }\), \(a,b\in I\)with\(a< b\). If\(f^{\prime }\in L_{1} [ a,b ] \)and\(\alpha \in [ 0,1 ] \), the following equality holds:
where\(k\in [ a,b ] \)and\(B ( \alpha ) >0\)is a normalization function.
Proof
It is easy to see that
By multiplying both sides with \(\frac{\alpha ( b-a ) ^{2}}{2B ( \alpha ) }\) and subtracting \(\frac{2 ( 1-\alpha ) }{B ( \alpha ) }f ( k ) \) we have
Thus, the proof is completed. □
Theorem 5
Let\(f:I\subseteq \mathbb{R} \rightarrow \mathbb{R} \)be a differentiable positive mapping on\(I^{\circ }\)and\(\vert f^{\prime } \vert \)be convex on\([ a,b ] \)where\(a,b\in I\)with\(a< b\). If\(f^{\prime }\in L_{1} [ a,b ] \)and\(\alpha \in [ 0,1 ] \), the following inequality holds:
where\(k\in [ a,b ] \)and\(B ( \alpha ) >0\)is a normalization function.
Proof
By using Lemma 2, the properties of the absolute value and the convexity of \(\vert f^{\prime } \vert \) we have
So the proof is completed. □
Theorem 6
Let\(f:I\subseteq \mathbb{R} \rightarrow \mathbb{R} \)be a differentiable positive mapping on\(I^{\circ }\)and\(\vert f^{\prime } \vert ^{q}\)be convex on\([ a,b ] \)where\(p>1\), \(p^{-1}+q^{-1}=1\), \(a,b\in I\)with\(a< b\). If\(f^{\prime }\in L_{1} [ a,b ] \)and\(\alpha \in [ 0,1 ] \), the following inequality holds:
where\(k\in [ a,b ] \)and\(B ( \alpha ) >0\)is a normalization function.
Proof
By a similar argument to the proof of the previous theorem, but now using Lemma 2, the Hölder inequality and convexity of \(\vert f^{\prime } \vert ^{q}\), we get
So the proof is completed. □
4 Application to special means
It is very important to give an application in terms of efficiency and usefulness of the results obtained. At the same time, the accuracy of the findings will be confirmed by the application to special means for real numbers \(a_{1}\), \(a_{2}\) such that \(a_{1}\neq a_{2}\):
- (1)
The arithmetic mean
$$ \mathcal{A}=\mathcal{A}(a_{1},a_{2})= \frac{a_{1}+a_{2}}{2},\quad a_{1},a_{2} \in \mathbb{R}. $$ - (2)
The generalized logarithmic mean
$$ \mathcal{L}=\mathcal{L}_{r}^{r}(a_{1},a_{2})= \frac{a_{2}^{\mathfrak{r}+1}-a_{1}^{\mathfrak{r}+1}}{(r+1)(a_{2}-a_{1})}, \quad \mathfrak{r} \in \mathbb{R}\setminus \{-1,0 \setminus \}, a_{1},a_{2}\in \mathbb{R}, a_{1} \neq a_{2}. $$
Now, using the results in Sect. 3, we have some applications to the special means of real numbers.
Proposition 1
Let\(a_{1},a_{2}\in \mathbb{R}^{+}\), \(a_{1}< a_{2}\), then
Proof
In Theorem 5, if we set \(f(z)=z^{2}\) with \(\alpha =1\) and \(B(\alpha )=B(1)=1\), then we obtain the result immediately. □
Proposition 2
Let\(a_{1},a_{2}\in \mathbb{R}^{+}\), \(a_{1}< a_{2}\), then
Proof
In Theorem 5, if we set \(f(z)=e^{z}\) with \(\alpha =1\) and \(B(\alpha )=B(1)=1\), then we obtain the result immediately. □
Proposition 3
Let\(a_{1},a_{2}\in \mathbb{R}^{+}\), \(a_{1}< a_{2}\), then
Proof
In Theorem 5, if we set \(f(z)=z^{n}\) where n is an even number with \(\alpha =1\) and \(B(\alpha )=B(1)=1\), then we obtain the result immediately. □
References
Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)
Das, S.: Functional Fractional Calculus. Springer, Berlin (2011)
Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Mathematics Studies, vol. 204. North-Holland, Amsterdam (2006)
Dokuyucu, M.A., Baleanu, D., Celik, E.: Analysis of Keller–Segel model with Atangana–Baleanu fractional derivative. Filomat 32(16), 5633–5643 (2018)
Dokuyucu, M.A., Celik, E., Bulut, H., Baskonus, H.M.: Cancer treatment model with the Caputo–Fabrizio fractional derivative. Eur. Phys. J. Plus 133(3), 92 (2018)
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods, 2nd edn. (2016)
Rashid, S., Hammouch, Z., Kalsoom, H., Ashraf, R., Chu, Y.M.: New investigations on the generalized \(\mathcal{K}\)-fractional integral operators. Front. Phys. 8, 25 (2020)
Rashid, S., Kalsoom, H., Hammouch, Z., Ashraf, R., Baleanu, D., Chu, Y.M.: New multi-parametrized estimates having pth-order differentiability in fractional calculus for predominating h-convex functions in Hilbert space. Symmetry 12(2), 222 (2020)
Arshad, S., Defterli, O., Baleanu, D.: A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model. Appl. Math. Comput. 374, Article ID 125061 (2020)
Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, Article ID 109705 (2020)
Baleanu, D., Mohammadi, H., Rezapour, S.: A mathematical theoretical study of a particular system of Caputo–Fabrizio fractional differential equations for the rubella disease model. Adv. Differ. Equ. 2020, 184 (2020). https://doi.org/10.1186/s13662-020-02614-z
Eiman, Shah, K., Sarwar, M., Baleanu, D.: Study on Krasnoselskii’s fixed point theorem for Caputo–Fabrizio fractional differential equations. Adv. Differ. Equ. 2020, 178 (2020). https://doi.org/10.1186/s13662-020-02624-x
Yaldız, H., Akdemir, A.O.: Katugampola fractional integrals within the class of convex functions. Turk. J. Sci. III(I), 40–50 (2018)
Kashuri, A., Liko, R.: Ostrowski type conformable fractional integrals for generalized \((g,s,m,\phi )\)-preinvex functions. Turk. J. Inequal. 2(2), 54–70 (2018)
Okur, N., Yalçın, F.B.: Two-dimensional operator harmonically convex functions and related generalized inequalities. Turk. J. Sci. IV(I), 30–38 (2019)
Set, E., Akdemir, A.O., Gürbüz, M.: Integral inequalities for different kinds of convex functions involving Riemann–Liouville fractional integrals. Karaelmas Sci. Eng. J. 7(1), 140–144 (2017)
Kunt, M., İşcan, İ.: Fractional Hermite–Hadamard–Fejer type inequalities for GA-convex functions. Turk. J. Inequal. 2(1), 1–20 (2018)
Özdemir, M.E., Avcı-Ardıç, M., Kavurmacı-Önalan, H.: Hermite–Hadamard type inequalities for s-convex and s-concave functions via fractional integrals. Turk. J. Sci. I(I), 28–40 (2016)
Sarikaya, M.Z., Alp, N.: On Hermite–Hadamard–Fejer type integral inequalities for generalized convex functions via local fractional integrals. Open J. Math. Sci. 3(1), 273–284 (2019)
Ekinci, A., Ozdemir, M.E.: Some new integral inequalities via Riemann–Liouville integral operators. Appl. Comput. Math. 3, 288–295 (2019)
Farid, G.: Existence of an integral operator and its consequences in fractional and conformable integrals. Open J. Math. Sci. 3(1), 210–216 (2019)
Dragomir, S.S., Pearce, C.E.M.: Selected topics on Hermite–Hadamard inequalities and applications (2003). https://rgmia.org/papers/monographs/Master.pdf
Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80(1), 11–27 (2017)
Abdeljawad, T.: Fractional operators with exponential kernels and a Lyapunov type inequality. Adv. Differ. Equ. 2017(1), 313 (2017)
Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11(5), 91–95 (1998)
Acknowledgements
The authors would like to thank the anonymous referees for their valuable suggestions and comments.
Availability of data and materials
Data sharing is not applicable to this paper as no datasets were generated or analyzed during the current study.
Funding
There is no funding for this work.
Author information
Authors and Affiliations
Contributions
All authors jointly worked on the results and they read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declares that there is no conflict of interests regarding the publication of this paper.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Gürbüz, M., Akdemir, A.O., Rashid, S. et al. Hermite–Hadamard inequality for fractional integrals of Caputo–Fabrizio type and related inequalities. J Inequal Appl 2020, 172 (2020). https://doi.org/10.1186/s13660-020-02438-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-020-02438-1
MSC
- 26A33
- 26D10
- 26D15
- 05C38
- 15A15
Keywords
- Caputo–Fabrizio Fractional integral
- Convexity